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1 Computation of response bias and standard deviation of the
response

The key equations of our model are Eqs. 1 (optimal action u∗(y) for internal measurement y) and 2
(probability of response r given the true time interval x); see main text. In particular, they allow us to
compute the response bias and standard deviation (sd) which are shown in the plots.

As intermediate calculations, the mean response for interval x is

E [r]p(r|x) =

∫
p(r|x)r dr =

∫ [∫
ps(y|x)pm(r|u∗(y)) dy

]
r dr =

∫
ps(y|x)u∗(y) dy (S1)

and, analogously, the the second moment of the response reads

E
[
r2
]
p(r|x) =

∫
p(r|x)r2 dr =

∫ [∫
ps(y|x)pm(r|u∗(y)) dy

]
r2 dr

=

∫
ps(y|x)

[
u∗(y)2 + σ2

m(u∗(y))
]
dy.

(S2)

In the above derivations we have used the fact that the motor likelihood pm(r|u) is modelled as a Gaussian
with mean u and variance σ2

m(u) (the specific function for the variance depends on the observer model;
see Methods).

From Eqs. S1 and S2 we can compute

Reponse bias (x) = E [r]p(r|x) − x, Response sd (x) =

√
E [r2]p(r|x) −

(
E [r]p(r|x)

)2
. (S3)

Note that the optimal action u∗(y) is a key element of all equations. In particular, the mean response
in Eq. S1 is obtained by convolving the optimal action with the sensory likelihood. In other words, plots
of the mean response are smoothed versions of plots of the optimal action; the same relationship holds
for the response bias and shifted optimal action u∗(y)− y (see Figure S1).
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Figure S1. Comparison of response bias and (shifted) optimal action. Response bias and
(shifted) optimal action for four different ideal observers (columns a-d) are shown (see Figure 1 in main
text). Top: Response bias for the example observer models taken from Figure 1 in the paper. Bottom:
Shifted optimal action u∗(y)−y for the same models. For ease of comparison, different colored dots mark
a discrete set of interval durations. Note the similarity between the two rows; the mean response is in
fact obtained by convolving the optimal action with the sensory noise (Eq. S1).
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2 Non-quadratic loss function

Our basic model assumed a quadratic (or pseudo-quadratic) loss function that was obtained by squaring

the subjective error map f̃(x, r) (Eq. 1 in main text). The exponent 2 allowed a semi-analytical solution
of Eq. 1, which made tractable the problems of (a) computing the marginal likelihood for a relatively
large class of models and (b) nonparametrically inferring the subjects’ priors (see main text). However,
previous work has shown that people in sensorimotor tasks may be instead following a sub-quadratic loss
function [1].

For the sake of completeness, we explored an extended model with non-quadratic loss functions. For
computational reasons we could not perform a full Bayesian model comparison, but we considered only
the ‘best’ observer model per subject. We used datasets from Experiments 1 and 2 as they comprised
two distinct blocks per subject, which provided more data points and reduced risk of overfitting. For
each subject we chose the most supported model components for the sensory and motor likelihood and
the shape of the subjective error mapping (Standard, Skewed or Fractional), whereas for the prior we
took the nonparametrically inferred priors. However, the exponent of the loss function was now free to
vary, so that the equation for the optimal action reads

u∗(y) = arg min
u

∫
ps(y|x;ws)q(x)pm(r|u;wm)

∣∣∣f̃(x, r)
∣∣∣κ dx dr. (S4)

where κ > 0 is a continuous free parameter representing the exponent of the loss function. Eq. S4
was solved numerically (function fminbnd and trapz in MATLAB) for various values of y and then
interpolated. Through Eqs. 2 and 7 we computed for each subject the posterior probability of the
exponent Pr(κ|data) ∝ Pr(data|κ) Pr(κ), where we assumed an (improper) uniform prior on κ.

Results are shown in Figure S2 as a box plot for each subject’s inferred κ. Taking the median of the
posterior distribution as the inferred value for κ, the exponent averaged across subjects (excluding one
outlier) is 1.88 ± 0.06 which is marginally lower than 2 (one-sample t-test p < 0.07). (Taking the mean
of the posterior instead of the median renders analogous results.) This result is in qualitative agreement
with [1] which found that subjects were following a sub-quadratic loss function (with exponent 1.72±0.03
for a power law). Our average inferred exponent is however higher, and only marginally lower than 2,
but this might be due to the fact that the subjects’ priors have been inferred under the assumption of a
quadratic loss function, and therefore priors may be already ‘fitting’ some features of the data that were
due instead to a sub-quadratic loss function. The structure of the model does not currently allow for a
simultaneous inference of both nonparametric priors and exponent of the loss function computationally,
which is an open problem for future work.

3 Bayesian observer model with lapse

We extended the Bayesian observer model described in the paper (Eqs. 1 and 2) by introducing for
each subject in Experiments 1 and 2 a third continuous parameter, the probability of lapse λ. For each
trial, the observer has some probability λ of ignoring the current stimulus and responding with uniform
probability over the range of allowed responses – a very simple model of data outliers due to subjects’
errors. The response probability with lapse reads

plapse(r|x;ws, wm, λ) = λ
1

L
+ (1− λ)p(r|x;ws, wm) (S5)

where L is the allowed response window duration (which is block-dependent, see Data Analysis). By using
Eq. S5 in Eq. 7 (see Methods) we computed the marginal likelihood of models with lapse, extracted the
most supported model components and hence inferred the subjective priors.
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Figure S2. Non-quadratic loss function. Inferred exponents of the loss function for subjects in
Experiment 1 (ss 1 − 4) and 2 (ss 5 − 10). The box plots have lines at the lower quartile, median, and
upper quartile values; whiskers cover 95% confidence interval. Excluding one outlier (s 3), the average
inferred exponent is marginally lower than 2 (p < 0.07).

The average moments of the reconstructed priors did not differ significantly from the ones computed
with the basic model without lapse (see Table 2), and in particular the kurtosis was similar, being in
general systematically higher than the true distribution kurtosis. The excess kurtosis for the observers
with lapse, computed by averaging the moments of sampled priors pooled from all subjects, was (mean ±1
s.d.): 0.85±1.30 (Short Uniform), 0.70±1.01 (Long Uniform); 0.91±1.57 (Medium Uniform), 1.87±1.84
(Medium Peaked); as opposed to a true excess kurtosis of -1.27 (Uniform blocks) and 0.09 (Peaked block).

4 Sensory and motor variability

The sensory (estimation) and motor (reproduction) likelihoods in our observer’s model were represented
by normal distributions whose standard deviation (either constant or ‘scalar’, Figure 6 i and ii, see
paper) was governed by the two parameters ws, wm, respectively for the sensory and motor component.
We describe here a set of additional experiments and analyses which tested various hypotheses about our
subjects’ sensorimotor likelihoods.

First of all, we examined whether the parameter values ws, wm inferred from the data corresponded to
direct measures of sensory and motor variability gathered in different tasks. We found a good agreement
at the group level for both parameters and a good correlation for the individual values of the sensory
noise (see ‘Measuring sensory and motor noise’).

With an additional model comparison, we checked whether, according to our data, subjects’ ‘knew’
their own sensory (estimation) variability; that is, we examined whether their internal estimate of their
sensory variability matched their objective sensory variability (both quantities were computed from the
model). The analysis suggests that subjects were generally ‘aware’ of their own sensory variability (refer
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to subsection below on ‘Internal knowledge of estimation variability’). We did not perform an analogous
study on the motor variability as the problem becomes under-constrained (see below).

At last, to see whether we could better understand the form of the motor noise we analyzed our data
with a ‘generalized’ model with 2 parameters governing the growth of the standard deviation of the motor
noise. Interestingly, the generalized model did not perform better in terms of model comparison than the
1-parameter scalar model (refer to subsection below on ‘Generalized law for motor noise’).

4.1 Measuring sensory and motor noise

For each subject in Experiments 1 and 2 we computed the posterior distribution of ws, wm (weighted
average over all models) and took the mean of the posterior as the ‘model-inferred’ sensory and motor
variability. We examined whether the model-inferred values corresponded to direct measures of sensory
and motor variability (w′s, w

′
m) obtained through additional experiments. We directly measured each

subject’s sensory variability w′s in a two-alternative forced choice time interval discrimination task, and
analogously we directly measured the subjects’ motor variability w′m in a time interval ‘production’ task
(see below, Methods, for details).

The comparison between the model-inferred values and the directly-measured ones is shown in Figure
S3 for the sensory (left) and motor (right) noise parameters. For sensory variability, we found that w′s had
a good correlation (R2 = 0.77) with ws, and the group means were in good agreement (ws = 0.157±0.002,
w′s = 0.166± 0.009). For the motor variability, the group means were quantitatively similar, even though
in slight statistical disagreement (wm = 0.072 ± 0.001, w′m = 0.078 ± 0.001), but we did not find a
correlation between w′m and wm (see Discussion). These results suggest that the model parameters for
the ‘noise properties’ extracted from the full model were in agreement with independent measures of
these noise properties in isolation. Interestingly, independent measurements of the sensory noise had
predictive power on the subjects’ performance even at the individual level (data not shown), due to the
good correlation with the sensory model parameter.

The lack of correlation for the motor noise parameter at the individual level may have been due to
other noise factors, not contemplated in the model, that influenced the variance of the produced response
(e.g. noise in the decision making process, non-Gaussian likelihoods, deviations from the exact scalar
property, etc.).

Methods

Each participant of Experiments 1 and 2 took part in a side sensory and motor measurement session. In
these sessions all stimuli and materials were identical to the ones presented in the main experiment (see
Methods in main text); the design of these experiments itself was chosen to be as similar as possible to
the main experiment, but focussing only on the sensory (estimation) or motor (reproduction) part of the
task.

In the sensory noise measurement session, ∼ 320 trials, in each trial subjects clicked on a mouse
button and a dot flashed on screen after a given duration (x1 ms). Subjects clicked again on the mouse
button, and a second dot flashed on screen after x2 ms. At the end of each trial subjects had to specify
which interval was longer through a two-alternative forced choice. Correct responses received a tone as
positive feedback. Intervals x1 and x2 were adaptively chosen from the range 300–1275 ms on a trial
by trial basis in order to approximately maximize the expected gain in information about the sensory
variability of the subject (we adapted the algorithm described in [2]).

In the motor noise measurement session, each trial subjects had to reproduce a given block-dependent
interval by holding the mouse button. Subjects received visual feedback of their performance through
the Skewed error mapping (as in Experiments 1 and 2). For each block the target interval was always
the same (500, 750 or 1000 ms) and the subjects were instructed about it. Subjects performed on the
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three intervals twice, in a randomized order, for a total of six blocks (30 trials per block, the first five
trials were discarded).

For each subject we built simple ideal observer models of the interval discrimination and interval
reproduction tasks in which the sensory and motor variability could either be constant or scalar (according
to the results of the model comparison in the main experiment). We computed the posterior distributions
of the sensory and motor noise parameters, and took the mean of the posterior as the ‘directly-measured’
noise parameters (w′s, w

′
m).
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Figure S3. Comparison of sensory and motor noise parameters (main experiment vs direct
measurements). For each participant of the main experiments (Experiment 1 and 2, n = 10) we
independently measured the sensory (w′s) and motor (w′m) variabilities in a time-interval discrimination
session and a time interval reproduction session with performance feedback (see text for details). We
built simple probabilistic models for the above tasks and computed the posterior mean and standard
deviation for w′s and w′m. For each subject we also calculated the posterior mean and standard deviation
for the parameters ws and wm that appear in our Bayesian ideal observer model, averaged over all
models (weighted by the model posterior probability). Ideally, the couples of parameters (ws, w

′
s) and

(wm, w
′
m) reflected the same objective features of the subjects measured in distinct, indepedent tasks.

The parameters are compared in the figure, (ws, w
′
s) to the left and (wm, w

′
m) to the right, each circle

is a participant’s parameters mean ±1 s.d. We also plotted the group mean (crosses, shaded area 95%
confidence interval). The group means are ws = 0.157± 0.002, w′s = 0.166± 0.009; wm = 0.072± 0.001,
w′m = 0.078± 0.001.

4.2 Internal knowledge of estimation variability

Our modelling framework allowed us to ask whether subjects ‘knew’ their own sensory (estimation)
variability in the task [3–5]. We extended our original model by introducing a distinction between the
objective sensory variability ws and the subjective estimate the Bayesian observer had of its value, w̃s.
The computation of the optimal action was modified accordingly,

u∗(y) = arg min
u

∫
ps(y|x; w̃s)q(x)pm(r|u;wm)f̃2(x, r) dx dr (S6)

which is identical to Eq. 1 but note that the expected loss depends now on the subjective value w̃s instead
of ws. The other equations of the model remained unchanged as they depend on the objective sensory
noise.
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We performed a full Bayesian model comparison with the extended model, where all components
(likelihoods, prior, loss function) were free to vary as per the basic model comparison (see paper); the
only difference being the presence of three continuous parameters (ws, wm, w̃s) and Eq. S6. We limited
our analysis to Experiment 1 and 2, as they had two distinct blocks per subject and therefore more data
and reduced ambiguity and risk of overfitting. Results of the model comparison showed that the extended
models did not gain a significant advantage in terms of marginal likelihood (data not shown), i.e. the
distinction between objective and subjective sensory variability did not appear to be a relevant feature
in explaining our data. This result suggests that most subjects had a reasonably accurate estimate of
their own sensory variability.

Note that an analogous study for the motor (reproduction) variability is not feasible with our dataset
as the problem becomes in this case under-constrained. In fact, if we separate the objective motor
variability wm from its subjective estimate w̃m, some observer models do not even depend on w̃m (e.g.
an observer with constant motor likelihood and Standard loss function), and others show only a weak
dependence. In order to meaningfully test whether people ‘knew’ their own motor variability a much
stronger asymmetry in the loss function is needed, along with some other experimental manipulations
(see for instance [3]).

4.3 Generalized law for motor noise

A recent study has shown violations of the scalar property for motor timing [6]; see also [7] for a review.
The scalar property, taken literally, entails that motor variability decreases to zero for vanishing time
intervals, which is quite unlikely; a more realistic assumption is that motor noise must reach a lower
bound. The fact that many studies in time interval reproduction have shown a good agreement with the
scalar property may simply mean that the lower bound was negligible for the considered interval ranges.

To verify whether this is the case for our work, we considered a 2-parameters model for the motor
variability which consists of two independent noise sources, one of which is constant and the other which
follows the scalar property. In this model, the equation for the motor variance is

σ2
m(u) = σ2

0 + w2
mu

2 (generalized motor variability) (S7)

where u is the desired reproduction interval, wm is the scalar coefficient (Weber’s fraction) and σ0
represents the lower bound for the motor noise.

We ran a full Bayesian model comparison on all datasets (including the new ones), adding the ‘gen-
eralized’ motor variability as a possible choice for the motor likelihood component, in addition to the
basic constant and scalar motor components considered before. All other components (sensory likelihood,
prior, loss function) were free to vary as per the basic model comparison (see paper).

We found that observer models with generalized motor variability obtained slightly better fits in some
cases (Figure S4), but they performed better in terms of marginal likelihood (with respect to the scalar
or constant models) only for two subjects in Experiment 1. For all remaining subjects and experiments
the extended model did not represent an improvement in marginal likelihood – that is, the minimal gain
in model fitting was hampered by the ‘cost’ of the additional parameter σ0, meaning that in general the
model does not represent a better explanation for the data.

It is not surprising that the subjects who gained some benefit from the addition of the constant noise
term belonged to Experiment 1, since this experiment included a Short block and therefore might be
more sensitive to the presence of a constant error for short intervals. These results show that while Eq.
S7 probably applies to small intervals [6], it seems that in our study the lower bound σ0 is not relevant
for explaining the data and can therefore be ignored with a good approximation.
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Figure S4. Experiment 1: comparison between basic models and models with generalized
motor variability. Very top: Experimental distributions for Short Uniform (red) and Long Uniform
(green) blocks, repeated on top of both columns. Left column: Mean response bias (average difference
between the response and true interval duration, top) and standard deviation of the response (bottom)
for a representative subject in both blocks (red: Short Uniform; green: Long Uniform). Error bars
denote s.e.m. Continuous lines represent the Bayesian model ‘fit’ obtained averaging the predictions
of the most supported basic model components (scalar or constant); dashed lines are model fits which
include the generalized motor variability in the model comparison. The subject shown is the one who
gained the most by the introduction of the general linear motor likelihood. Right column: Mean response
bias (top) and standard deviation of the response (bottom) across subjects in both blocks (mean ±
s.e.m. across subjects). Continuous lines represent the Bayesian model ‘fit’ obtained averaging the
predictions of the most supported basic models across subjects; dashed lines are model fits which include
the generalized motor variability. Although providing slightly better fits, the extended model did not
represent a substantial improvement over the 1-parameter motor noise models.
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