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Model Equations
Our deterministic SIR model extends a framework presented in Keeling and Rohani (2008). The model
equations are as follows, where S, I, and R denote the susceptible, infectious and recovered classes of each
species and mj indicates mosquito species j and pi indicates primate species i (parameters are defined in
Table 1 in the main text):

S′mj
(t) = µmj (Smj (t) + (1− ρ)Imj (t))−

∑
i

rmjpiβpimj (t)Ipi(t)Smj (t)/Nj(t)− νmjSmj (t) (1)

I ′mj
(t) = µmjρImj (t) +

∑
i

rmjpiβpimj (t)Ipi(t)Smj (t)/Nj(t)− νmjImj (t) (2)

S′pi(t) = µpiNpi(t)−
∑
j

rmjpiβmjpi(t)Imj (t)Spi(t)/Nj(t)− νpiSpi(t) (3)

I ′pi(t) = ιNpi(t) +
∑
j

rmjpiβmjpi(t)Imj (t)Spi(t)/Nj(t)− γpiIpi(t)− νpiIpi(t) (4)

R′pi(t) = γpiIpi(t)− νpiRpi(t), (5)

with

βpimj (t) = bpimj [1 + cj · cos(t ∗ 2π/365)] (6)

βmjpi(t) = bmjpi [1 + cj · cos(t ∗ 2π/365)] (7)

Nmj = Smj + Imj (8)

Npi = Spi + Ipi +Rpi (9)

Nj(t) =
∑
k

(
rmjpk∑
k rmjpk

)
Npk . (10)

Figure S1 shows a diagram of the SIR model.

Analytical Calculation of R0

To calculate R0, we follow the formulation as laid out in Diekmann et al. [2]. We focus on the two-host,
two-vector system, but it should be noted that this is easily extended to the n-host, n-vector system by
adding the appropriate rows and columns to the proceeding matrices.

Following Diekmann, R0 is the spectral radius of the Next Generation Matrix, K, (i.e., R0 = ρ(K) =
sup{| λ |: λ ∈ σ(K)} where σ(·) denotes the spectrum of matrix K). We will decompose K into two
matrices: T, the transmission matrix, where Tij is the rate at which infected individuals in state j infect
individuals in state i; and Σ, the transition matrix, where Σij is the rate an individual in state j transitions
to state i. Diekmann et al. show that

K = −ETTΣ−1E (11)

Where T−1 is the inverse of matrix T and E is a matrix of unit column vectors eij for all i such that the
ith row of T is not identically zero.
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Figure S1: Diagram of SIR Model

We start by linearizing the system about the disease free equilibrium: S∗mj
= Nmj , S

∗
pi = Npi , with

I∗mj
= I∗pi = R∗pi = 0. Using the model equations given in the main text, we formulate the infection

subsystem as:

I ′mj
=

∑
i

rmjpibpimjIpiNmj/Nj − νmjImj (12)

I ′pi =
∑
j

rmjpibmjpiImNpi/Nj − (γpi + µpi)Ipi , (13)

where the (t)s have been dropped for clarity, the seasonal forcing functions (βpjmi(t)) have been replaced

by the baseline transmission probabilities (bpjmi) and Nj =
∑

i

(
rmjpi∑
i rmjpi

)
Npi . We do not include vertical

transmission.
For the infection subsystem above with two mosquito species, two primate species, the rate of trans-

mission from primate i to mosquito j is given by

∂

∂Ipi
(I ′mj

) = rmjpiβmjpi

Nmj

Nj
.

For i = j = 1, this is the (1,3) entry in T. Continuing in this manner, we find the transmission matrix to
be:

T =


0 0 rm1p1bm1p1

Nm1
N1

rm1p2bm1p2
Nm1
N1

0 0 rm2p1bm2p1
Nm2
N2

rm2p2bm2p2
Nm2
N2

rm1p1bp1m1

Np1
N1

rm2p1bp1m2

Np1
N2

0 0

rm1p2bp2m1

Np2
N1

rm2p2bp2m2

Np2
N2

0 0

 . (14)
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As is expected, the diagonals of this matrix are 0: there is no direct transmission between species, all
transmission is mediated by a vector. Next we calculate the transition matrix, Σ, where the (i, j) entry
is the rate at which an individual in state j transitions to state i (excluding infection transitions). Since
there are no transitions between infectious states in our infection subsystem, the transition matrix is a
diagonal matrix with the entries equal to the demographic and recovery rates of change for each infected
species:

Σ =


−νm1 0 0 0

0 −νm2 0 0
0 0 −(γp1 + µp1) 0
0 0 0 −(γp2 + µp2)

 . (15)

This makes finding the inverse of Σ trivial, it is simply the reciprocal of each non-zero entry. Now, since
none of the rows of T are identically zero, E is simply the 4-by-4 identity matrix and our next generation
matrix (NGM), is K = −ETTΣ−1E = −TΣ−1 =

0 0
rm1p1bm1p1Nm1
(γp1+µp1 )N1

rm1p2bm1p2Nm1
(γp2+µp2 )N1

0 0
rm2p1bm2p1Nm2
(γp1+µp1 )N2

rm2p2bm2p2Nm2
(γp2+µp2 )N2

rm1p1bp1m1Np1
νm1N1

rm2p1bp1m2Np1
νm2N2

0 0
rm1p2bp2m1Np2

νm1N1

rm2p2bp2m2Np2
νm2N2

0 0

 . (16)

Finding the eigenvalues of K can be done symbolically using a computer algebra program such as
Mathematica. The final equation for R0 is algebraically unwieldily, and is not presented here. Fortunately,
it can easily be evaluated numerically and it helps characterize the behavior of the system under study
and narrow the parameter space to key areas of interest.
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Additional Parameter Exploration
The following sections report the results of exploring additional parameters not explored in the main

text.

Inclusion of Constant Introduction of Infection
The addition of a constant rate of introduction of infected primates into both populations causes the
multi-annual cycles to shorten to periods of a maximum of 4 years. Supplemental Figure S2 is identical
to Figure 4 in the main text, but with a constant introduction rate of 1/100, 000 ·N per year.
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Figure S2: Prevalence in Large and Small Primates in the Coupled and Uncoupled Systems
with Constant Introduction Figure shows the effect of adding a constant introduction of infection
to the systems. Panels A and B are for the large and small primates, respectively, coupled at 1/500th
of baseline, E and F are large and small primates uncoupled. Panels C, D, G and H are time series for
both large and small primates in the coupled and uncoupled systems (Np1 = 1000 and Np2 = 5500).
Parameters are: 1/µp1 = 60, 1/µp2 = 15, 1/γp1 = 1/γp2 = 4, bp1m1 = bm1p1 = bp2m2 = bm2p2 = 0.15,
cj = 0.05, and Nmj = 25000, 1/100, 000 ·N per year rate of infection introduction.
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Synchrony
Supplemental Figures S3 and S4 show coupling holding over a broad range of parameter values. Fig-
ure S3 shows the correlation between large and small primate prevalence time series and demonstrates
that coupling causes phase synchrony over a broad range of parameters, and Figure S4 shows the effects
of coupling hold under very small cross-species biting rates.

-1.0

-0.5

0.0

0.5

1.0

0
2

4
6

8
1
0  

 
 

  
1 

A

N
u
m

b
er

 o
f 

S
m

al
l 

P
ri

m
at

es
 (

1
0
0
0
s)

 
 

 
  

1 

B

0 2 4 6 8 10

0
2

4
6

8
1
0  

 
 

  
1 

C

Number of Large Primates (1000s)

0 2 4 6 8 10

 
  

1 

D

C
o
rrelatio

n

Figure S3: Synchrony of prevalence in Coupled Systems Over a Range of Parameter Values
with and without Constant Introduction This figure shows the correlation between the two primate
species in the coupled (A & C) and uncoupled (B & D) systems, with other parameters held fixed. Panel
A is coupled at 1/500th of baseline without constant introduction of 1/100000 ·N , B is uncoupled without
introduction, C is coupled at 1/500th with constant introduction and D is uncoupled with introduction.
The other parameter values are: 1/µp1 = 60, 1/µp2 = 15, 1/γp1 = 1/γp2 = 4, bp1m1 = bm1p1 = bp2m2 =
bm2p2 = 0.15, cj = 0.05, and Nmj = 25000, and Np1 = Np2 = 1000.
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Figure S4: Example Time Series with Increasing Coupling without Constant Introduction
This figure shows the effect of increasing off-diagonal biting rates (rm2p1 = rm1p2), with other parameters
held fixed. Panel A is uncoupled, panels B, C, D and E are coupled at 1/10,000th, 1/1,000th, 1/100th and
1 of the on-diagonal biting rates (rm1p1 = rm2p2), respectively. Other parameter values are: 1/µp1 = 60,
1/µp2 = 15, 1/γp1 = 1/γp2 = 4, bp1m1 = bm1p1 = bp2m2 = bm2p2 = 0.15, cj = 0.05, and Nmj = 25, 000, and
Np1 = 2, 100, Np2 = 1, 500.
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Mosquito Dynamics
Supplemental Figures S5 and S6 are analogous to Figures 4 and 5 in the main text and show the transmis-
sion dynamics in the mosquito populations and highlight regions in parameter space where long period
cycles occur. We find long period cycles in the coupled system when R0 for the primary mosquito for the
larger primate (“large primate mosquito”) is less than one. Addition of a constant rate of introduction
removes the long period cycles (results not shown).
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Figure S5: Prevalence in Primary Mosquitoes for Large and Small Primates in the Coupled
and Uncoupled Systems without Constant Introduction Panels A and B show results for models
with coupling, E and F for uncoupled models. Panel A and E characterize the dynamics of dengue in
the large primate mosquito species, B and F, dengue dynamics in the small primate mosquito species.
Coupled models (A, B, C and D) are coupled at 1/500th of the on-diagonal biting rates. Panels C, D, G
and H show time series for large (C, G) and small primate mosquitoes (D, H) with parameters indicated
by the circles in panels A, B, E and F (Np1 = 1, 000 and Np2 = 5, 500). The only parameter difference
between panels A–D and panels E–H are the off-diagonal biting rates. Other parameters are: 1/µp1 = 60,
1/µp2 = 15, 1/γp1 = 1/γp2 = 4, bp1m1 = bm1p1 = bp2m2 = bm2p2 = 0.15, cj = 0.05, and Nmj = 25, 000,
j = {1, 2}.
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Figure S6: Example Time Series of Long-Period Isolations in Mosquitoes This figure indicates
the regions of model parameter space that exhibit multiannual dynamics consistent with the observed
periodicity of mosquito isolations of dengue in Senegal. The blue dots highlight areas of panel A in Figure
4 in the main text where the Fourier spectrum has a maximum between 5 and 12 years. The figure also
shows an example time series of long-period, synchronized cycles in the large primate mosquito (panel B)
and small primate mosquito (panel C). The arrow and green dot indicate the position in parameter space
that was used to generate the time series in panels B and C. Here, Np1 = 1, 000 and Np2 = 5, 500 are
coupled at 1/500th of the on-diagonal biting rates. Other parameter values are: 1/µp1 = 60, 1/µp2 = 15,
1/γp1 = 1/γp2 = 4, bp1m1 = bm1p1 = bp2m2 = bm2p2 = 0.15, cj = 0.05, and Nmj = 25, 000, j = {1, 2}.
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Biting Rates
Supplemental Figure S7 shows the effects of changing biting rates on the dynamics of the system. We
find long period cycles in the coupled system when R0 for the smaller primate is less than one. Addition
of a constant rate of introduction removes the long period cycles (results not shown).
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Figure S7: Exploration of Mosquito Biting Rates on Large and Small Primates without
Constant Introduction This figure shows the effects of varying biting rates on the periodicities of the
system. Panels A and B are for the large and small primates, respectively, coupled at 1/500th of baseline,
E and F are large and small primates uncoupled. Panels C, D, G and H are example time series. The other
parameter values are: 1/µp1 = 60, 1/µp2 = 15, 1/γp1 = 1/γp2 = 4, bp1m1 = bm1p1 = bp2m2 = bm2p2 = 0.15,
cj = 0.05, and Nmj = 25000, and Np1 = Np2 = 1000.
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Transmission Rates
Supplemental Figure S8 shows the effects of changing transmission rates on the dynamics of the system.
Again, we find long period cycles in the coupled system when R0 for the smaller primate is less than one.
Addition of a constant rate of introduction removes the long period cycles (results not shown).
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Figure S8: Exploration of Mosquito Transmission Rates on Large and Small Primates without
Constant Introduction This figure shows the effects of varying transmission rates on the periodicities
of the system. Panels A and B are for the large and small primates, respectively, coupled at 1/500th of
baseline, E and F are large and small primates uncoupled. Panels C, D, G and H are example time series.
The other parameter values are: 1/µp1 = 60, 1/µp2 = 15, 1/γp1 = 1/γp2 = 4, rpimj = 0.5, bp1m1 = bm1p1 ,
bp2m2 = bm2p2 , cj = 0.05, and Nmj = 25000, and Np1 = Np2 = 1000.
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Seasonal Forcing Rates
Supplemental Figure S9 shows the effects of increasing the seasonal forcing rates from 5% a year to 10%
a year, and Supplemental Figure S10 shows the effects of chaining forcing to 1% a year. The results are
qualitatively similar to those found in the main text. Addition of a constant rate of introduction removes
the long period cycles (results not shown).
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Figure S9: Effects of High Seasonal Forcing Top panels (A, B, C and D) are coupled at 1/500th of the
on-diagonal biting rates. Bottom panels (E, F, G and H) are uncoupled. Panels C, D, G and H are time
series for both large and small primates in the coupled and uncoupled systems. Seasonal forcing, cj = 0.1.
Other parameters are: 1/µp1 = 60, 1/µp2 = 15, 1/γp1 = 1/γp2 = 4, bp1m1 = bm1p1 = bp2m2 = bm2p2 = 0.15,
and Nmj = 25000.
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Figure S10: Effects of Low Seasonal Forcing Top panels (A, B, C and D) are coupled at 1/500th of the
on-diagonal biting rates. Bottom panels (E, F, G and H) are uncoupled. Panels C, D, G and H are time
series for both large and small primates in the coupled and uncoupled systems. Seasonal forcing, cj = 0.01.
Other parameters are: 1/µp1 = 60, 1/µp2 = 15, 1/γp1 = 1/γp2 = 4, bp1m1 = bm1p1 = bp2m2 = bm2p2 = 0.15,
and Nmj = 25000.
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Alternative Formulation of Seasonal Forcing
Supplemental Figure S11 shows the effects of changing the seasonal forcing from the transmission proba-
bility, βpimj (t) = bpimj [1 + cj · cos(t ∗ 2π/365)], to the mosquito birthrate,

µmj (t) = Mmj [1 + c · cos(t ∗ 2π/365)],

where Mmj is the baseline birthrate for mosquito j (= 1/7 days), and c is the percent seasonality (= 5%).
The results are qualitatively similar to those found in the main text. Addition of a constant rate of
introduction removes the long period cycles (results not shown).
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Figure S11: Effects of a Seasonal Birthrate Top panels (A, B, C and D) are coupled at 1/500th of
the on-diagonal biting rates. Bottom panels (E, F, G and H) are uncoupled. Panels C, D, G and H are
time series for both large and small primates in the coupled and uncoupled systems. Other parameters
are: 1/µp1 = 60, 1/µp2 = 15, 1/γp1 = 1/γp2 = 4, bp1m1 = bm1p1 = bp2m2 = bm2p2 = 0.15, cj = 0.05, and
Nmj = 25000.
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2-Vector/1-Host System
Supplemental Figure S12 shows the results of modeling a 2-vector, 1-host system. The results are quali-
tatively similar to those found in the main text. Addition of a constant rate of introduction removes the
long period cycles.
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Figure S12: 2-Vector, 1-Host Systems with and without Constant Introduction This figure
displays the effects of changing transmission probabilities (x-axis) and 1/primate birth rates (y-axis).
Panels A and B are heat maps of period of peak Fourier spectral densities for the host in the 2-host,
1-vector systems, with and without 1/100, 000 ·N per year rate of infection introduction. Panels C-H are
the corresponding example epidemic time series of prevalence (per 100,000). Circles indicate example time
series below. Other parameters held fixed: rp = 0.5, 1/γp = 4, cj = 0.05, Nm = 25, 000, and Np = 1, 000.
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Stochastic Model Without Coupling
Supplemental Figure S13 shows the results of a stochastic formulation of the model without coupling. In
accordance with our hypotheses, stochastic realizations without coupling show little to no synchrony.
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Figure S13: Stochastic Formulation of the Model Without Coupling Heatmap of the period of
maximum Fourier spectra with corresponding example epidemic time series of prevalence. Panels A, B
and C compare transmission probabilities (x-axis) and 1/birth rate (y-axis) for the large primate (A)
and the small primate (B). Birthrates for the small primate are 1/4th of those of the large. Panel A
shows periods of oscillations for large primates, B, periods of oscillations for small primates and C the
correlation of the mean number of cases in a year (all panels are averaged over 25 runs). D is an example
realization of the model with long periodicity. Fourier spectra for the large and small primate time series
are shown in panels E and F, respectively. Panels G and H are scatterplots of the number of primate
infections versus number of mosquito infections for the large and small primates and their corresponding
mosquitoes, respectively. There is no coupling; other parameters are: µ1 = 1/70 and µ2 = 1/17.5,
ι = 1/500, rpimj = 0.5, βpimj = 0.16, 1/γpi = 4, cj = 0.05, Nmj = 150, 000, and Npi = 10, 000, i = {1, 2},
j = {1, 2}.
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Alternative Formulation of Frequency Dependent Transmission
The force of infection for primate i as presented in the main text is

∑
j rmjpiβmjpi(t)Imj (t)/Nj(t): the

number of infectious bites from mosquito j to primate i, times the probability of mosquito j infecting
primate i times the number of infectious mosquitoes j, divided by sum of all available primates weighted
by the on– and off–diagonal biting rates. This models an extreme of mosquito behavior: the mosquito
hones in on meals with great efficiency. Here we model the other extreme of poor efficiency where
mosquitoes might have innate preferences but be confused by the environmental cues of other species
(e.g. carbon dioxide, organic volatile body odors, air movement, heat) used to find preferred hosts, and
feed on whatever host it first encounters [3]. This is modeled by replacing Nj with N , the total primate
population size, in the force of infection.

There is little consensus on the formulation of this term in previous modeling studies. An examination
of previous multi-host models (predominantly of West Nile Virus) reveals a divide between the “weighted”
frequency dependence form (as presented in the main text) [4, 5, 6, 7, 8] and the “unweighted” frequency
dependence form presented here [9, 10, 11, 12, 13, 14]. Additionally, several studies [15, 16, 17] have
modeled the transmission in a density dependent manner for both hosts and vectors.

Supplemental Figures S14–S16 are analogous to those in the main text, but with the new force of
infection. In the poor efficiency case we find qualitatively similar results. Again, we find long period
cycles when transmission probabilities are low that are lost when constant introduction in included (Sup-
plemental Figures S14 and S15). We also find the smaller primate dictating the periodicity of outbreaks
when its R0 > 1 (Supplemental Figure S16) and again, the long period cycles are removed when constant
introduction is included (Supplemental Figure S17).
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Figure S14: Effect of Demographics on Model Dynamics without Constant Introduction and
New Force of Infection Heat map of period of maximum Fourier spectra peak (Panel A) with corre-
sponding example epidemic time series of prevalence per 100,000 (Panels B, C and D). Figure compares
transmission probabilities (x-axis) and 1/birth rate (y-axis). Circles indicate example time series on right.
Other parameters held fixed: rp = 0.5, 1/γp = 4, cj = 0.05, Nm = 25000, and Np = 1000.
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Figure S15: Effect of Demographics on Model Dynamics with Constant Introduction and New
Force of Infection Heat map of period of maximum Fourier spectra peak (Panel A) with corresponding
example epidemic time series of prevalence per 100,000 (Panels B, C and D). Same parameters as in
Figure S14 with 1/100, 000 ·N per year rate of infection introduction.
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Figure S16: Prevalence in Large and Small Primates in the Coupled and Uncoupled Systems
without Constant Introduction and New Force of Infection Top panels (A, B, C and D) are
coupled at 1/500th of the on-diagonal biting rates. Bottom panels (E, F, G and H) are uncoupled. Note
the dominance of the higher birth rate primate on the period of oscillations in the coupled simulations.
This indicates that the higher birth rate species determines the period of epidemic oscillation only when
its R0 is greater than one (this area is delineated in panel F). Panels C, D, G and H are time series for
both large and small primates in the coupled and uncoupled systems (Np1 = 1000 and Np2 = 5500).
Other parameters are: 1/µp1 = 60, 1/µp2 = 15, 1/γp1 = 1/γp2 = 4, bp1m1 = bm1p1 = bp2m2 = bm2p2 = 0.3,
cj = 0.05, and Nmj = 25000.
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Figure S17: Prevalence in Large and Small Primates in the Coupled and Uncoupled Systems
without Constant Introduction Top panels (A, B, C and D) are coupled at 1/500th of the on-diagonal
biting rates. Bottom panels (E, F, G and H) are uncoupled. Panels 1 through 4 are time series for both
large and small primates in the coupled and uncoupled systems (Np1 = 5500 and Np2 = 1000). Note
the only parameter difference between panels A, B, 1 & 2 and panels C, D, 3 & 4 are the off-diagonal
biting rates. Other parameters are: 1/µp1 = 60, 1/µp2 = 15, 1/γp1 = 1/γp2 = 4, bp1m1 = bm1p1 = bp2m2 =
bm2p2 = 0.3, cj = 0.05, and Nmj = 25000.
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