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Theory of total internal reflection 
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Fig. S1. Schematic graph of tri-layered structure. The relative permittivity (ε) and    

permeability (µ) are shown in each layer. 

The concerned structure is shown in Fig. S1. The plane of incidence is assumed to 
be x, z-plane, and both the boundaries are perpendicular to z axis. Maxwell equations 
remain unchanged when E and H and simultaneously   and   are interchanged. 
Thus the theorem for transverse magnetic (TM) waves can be immediately deduced 
from the corresponding result for transverse electric (TE) waves. For TE waves, 

, , 0x z yE E H   and / 0y   , Maxwell equations deduced to (time dependence 

exp( )i t  being assumed) (Fig. S1) 
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   In each layer, the fields can be written as superpositions of positive- and 

negative-going secondary waves. Thus, yE  is given by 

 

1 1 ( )
1 1

( )

( ) , 0,

( ) , 0 ,

, .

iz iz x

xz z

tz x

ik z ik z ik x
i r

ik xik z ik z d
y

ik z d ik x
t

A e A e e z

E Pe Q e e z d

A e e z d



 



  
   
 

 (2) 

Here 0iz i zk n k , 1 1 0z zk n k , 0tz t zk n k , and 0x i xk n k , where 0k  is free space 

wavevector and r rn    is refractive index, r  and r  being relative permittivity 

and relative permeability respectively (Fig. s1). iA , rA , and tA  are defined as 
incident, reflected and transmitted amplitude coefficient. As a result of the boundary 



condition, x  component of wavevector of all the layers is equal to each other. 
According to Eqs. (1) and (2), the magnetic components are given by 
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   By applying the boundary condition of the continuities of yE  and xH , we have: 
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Here, 1 1/i i    and 1 1 /t t   . Thus, the relation between iA , rA  and tA  can be 
written as 
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where  
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   For TM waves, the relations between amplitude coefficients are all the same as 
those for TE waves, expect that the parameters 1i  and 1t  are defined by 1 1/i i    
and 1 1 /t t   . For nonmagnetic materials, the relative permeability is equal to one, so for TE 



waves, 1 1 1i t   , and for TM waves, 2 2
1 1/i in n   and 2 2

1 1 /t tn n  . 

   In particular, if 0d  , the structure reduces to two semi-infinite materials bounded 
by 0z  . Thus 1 tP A , 1 0Q  . So we have 
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where it  is equal to /i t   for TE waves, and /i t   for TM waves. It is noted that 
Eq. (9) is consistent with Fresnel formulae. 

   M  is a 2 1  matrix, whose elements are denoted by 1M  and 2M , respectively. 

Thus we have 2

1
r i

M
A A

M
  and 1/t iA A M . The light intensity is given by the 

amplitude of Poynting vector 

 2 2/ ./ES H     E H  (10) 

For TE waves, the amount of energy that is incident on a unit area of the boundary 
( 0z  ) per second is given by 
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Similarly, the energies that are reflected and transmitted from unit areas of the 
boundaries ( 0z   and z d ) per second are given by 
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Therefore, the reflectance R  and transmittance T  are given by 
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For TM waves, the reflectance and transmittance can be immediately known by 
interchanging   and   in Eqs. (14) and (15). We find that R  for TM waves is 
the same as that for TE waves (Eq. (14)), whereas for TM waves,  
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It can be proved that 1R T   for lossless materials, which means energy 
conservation of the waves.  

   Energy density of the electromagnetic field is defined by e mW W W  , where 
1

·
2eW  E D  and 

1
·

2mW  H B  are electric energy density and magnetic energy density, 

respectively.  

 

Fig. S2. Energy density distributions of a four-layer graphene. (a to b) Energy density 

distributions of a four-layer graphene (d = 1.36 nm, n1 = n' = 2.6 + 1.6i) sandwiched between two 

semi-infinite mediums (ni = 1.61 and nt = 1.41) under 633 nm illumination with incident angle θ = 

75 degrees. a: TE; b: TM. The incident energy densities of TE and TM waves are normalized 

equal. A, B are plotted with the same color sale. 

   For a system consisting a four-layer graphene (d = 1.36 nm, n1 = n' = 2.6 + 1.6i) 
sandwiched between two semi-infinite mediums (ni = 1.61 and nt = 1.41), the energy 
density is shown in Fig. S2a and S2b, for TE and TM waves, respectively. Apparently, 
the graphene layer stores more energy for TE waves than for TM waves. In Figs. S2a 
and b, the energy densities of incident waves are normalized equal. 

 



 

Fig. S3. Schematic of the derivative total reflection method setup. BS, beam splitter; P, 

polarizer; H, half wavelength plate; PD1, PD2, photodetector; D1, D2, aperture; θ is the 

incident angle and has a relation with θ' as sin(θ-60°)=n×sin(θ'-60°), where n is the refractive 

index of prism. 

 

 

Fig. S4. Optical transmittance of the graphene samples with different number of layers. 

The absorbance of graphene sample used in the experiment is about 9% in a broad 

wavelength range. 



 

 

 

 

Fig. S5. The Raman spectrum of multi-layer graphene. 

 

 



 

Fig. S6. Experimental and calculated angular dependence of optical reflectance of p- to s- 

polarized light for (a) Monolayer graphene (N=1), (b) Bilayer graphene (N=2), (c) Four-layer 

graphene (N=4) with 2.6n   and 1.6  . 
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Fig. S7. Schematic of preparing the GRIS with microfluid chanel. 

 

 

 

 

 

Fig. S8. The real diagram of GRIS with microfluid chanel. 

 

 

 



 

Table. S1. The list of refractive indexes of NaCl solution of different weight percentage of 

concentration. 

Concentration of NaCl solution (%) Refractive index 

0 1.33091 

0.1 1.33139 

1 1.33263 

2 1.33457 

5 1.33961 

10 1.34794 

15 1.35715 

20 1.36670 

25 1.37539 

 

Table. S2. The list of refractive indexes of glucose solution of different weight 
percentage of concentration. 

Concentration of glucose solution (%) Refractive index 

0 1.33091 

1 1.33192 

2 1.33367 

5 1.33713 

10 1.34308 

15 1.34911 

20 1.35574 

25 1.36203 

 

 


