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Supplementary Methods 

 

Section one: Theory and method of model construction 

Letting ( ) ( )s

ix t  be the transcriptional level of gene i at time t, the ordinary differential equation (ODE) of 

transcriptional kinetics can be written as [2]: 

( )

( )
( ) ( ) ( ) ( ) ( )( )

( ) ( ) ( )
s

i

s
s s s s si

i i i ij j

j R

dx t
r t x t x t

dt
 
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         (1) 

where ( ) ( )s
ir t  is the evolving rate of the expression of gene i  at time t , i is the mRNA turnover rate (i.e. 

i.e. the probability that mRNA will be degraded in a given time interval), iR is the set of regulators of the 

gene i , and ij  is the regulatory strength from gene j to gene i . Equation (1) is generally used to 

describe a dynamical gene regulatory network (GRN). (1) can be rewritten as a difference equation: 
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in which 1k k kt t t   . Equation (2) can be employed in a dynamical approach to reconstruct the dynamic 

network based on the time-course data.  

Suppose there are ( )sN samples obtained at unknown times of ( )1 2, , , , Sk N
t t t t  in stage s, and time 

span of which is denoted by 
( )sL . If we assume that these samples are independently and identically 

distributed (i.i.d.) within a stage, then the average time interval between two neighbouring samples can be 

expressed as ( ) ( )( 1)s st L N     , where   is of a zero-mean normal distribution, i.e. 2~ (0, )N  . 

Therefore, (2) can be converted to 
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After performing summation of all of the above equations in this stage, we get 
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where 1t  and ( )sN
t  are the starting and ending time of stage s, and 

( ) ( )[1, ]s sG N
  

denotes the set of 

samples in this stage. Since the distribution of 
( ) ( )s
i kr t  has no relationship with , the second item of the 

right side of (4),  ( ) ( ) ( )s
i k kr t t , should have a zero mean. Therefore, we get: 
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Substitutes (2) into (5), then we get: 
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where ( )
( )ˆ ( )s
s

i N
x t  and 

( )
1

ˆ ( )s
ix t  are the means of ( )

( ) ( )s
s

i N
x t  and 

( )
1( )s

ix t , respectively. 

According the intra-stage steady-rate assumption, we have 
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Meanwhile, we have ( 1)
( 1) ( )

1
ˆ ˆ( ) ( )s

s s
i iN

x t x t
   according to the continuity assumption. Thus (7) and (8) can be 

converted to: 
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Because ( 1)
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By letting
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where 
( 1, )s s
ia 

 is the inter-stage influence coefficient, ( 1, )s s
ijb   is proportional to the regulatory strength ( 1)s

ij  , 

and ( )s
ijb  is proportional to ( )s

ij . Cleary, equation (12) describes the average inter-stage dynamics of a 

GRN.  

Since gene expression varies linearly in a stage, so there have 1( ( ) ( )) 2i i N ix x t x t   and 

1( ( ) ( )) 2j j N jx x t x t   for each stage. Therefore, there have 
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Formula (13) will hold sufficiently if below conditions are true 
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In other words, by enforcing (12), (14) and (15), the linearity of gene evolving at the middle, starting 

and ending time of a stage will be ensured. In general, if we define  to be a fraction factor that is 

associated with the time t  in a stage e.g. ( 1)
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( 1)

( 1) ( 1) ( 1) ( 1)( 1) ( 1) ( 1) ( 1)
1 1( ) ( ) ( ( ) ( ))s

s s s ss s s s
i i i iN

x t x t x t x t  

         
    

(16) 

( )

( ) ( ) ( ) ( )( ) ( ) ( ) ( )
1 1( ) ( ) ( ( ) ( ))s

s s s ss s s s
i i i iN

x t x t x t x t    
     

(17) 

Similar relationships hold for ( 1)( 1) ( )
ss

jx t
 and ( )( ) ( )

ss
jx t in (14) and (15). By combining (16), (17) with (14) 

and (15), we get:  
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(18) 

in which   is a real number. Thus, equation (18) describes the inter-stage dynamical GRN. Note that (1) 

describes intra-stage dynamical GRN for each stage s. Also, (18) is referred as the model function of the 

dynamic cascaded method (DCM). Multiple equations of (18) can be generated on different settings of . 

The model coefficients can be solved by a linear regression approach such as LASSO.  

 

Section two: Gene evolving trend analysis 

Gene evolving trend analysis is to determine the gene evolving trend in each stage. Suppose there are S 

stages in a biological process. Let 
( )
1

s
t and ( )

( )
s

s

N
t are the starting and ending times of stage s, 

( )
1( )

s
x t and

( )

( )
( )s

s

N
x t are the gene expressions at the corresponding times. According to the continuity assumption, the 

gene expression profiles of two neighbouring stages should be continuous, i.e. ( 1)

( 1)
( )s

s

N
x t 


should be equal to

( )
1( )

s
x t . In practice, there could be error at the connecting point of two stages, i.e. ( 1)

( ) ( 1)

1( ) ( )s

s s

N
x t x t 

 . The 

overall connecting error can thus be defined as the L1-norm of all the individual connecting errors:

( 1)

( 1) ( )

12
( ) ( )s

S s s

Ns
x t x t




 , as shown in Figure S4 (a).  

On the other hand, according to intra-stage steady-rate assumption, gene evolves linearly in a stage, 

so 1( )x t  and ( )Nx t
 
should be corresponding to either the minimal or the maximal gene expression of the 

stage. With the sample-based data of a gene, we can obtain a set of minimal and maximal expressions of 

each individual stage, ( ) ( )

min max{ , [1, ]}s sx x s S . Gene evolving trend analysis is to find an optimal path of 

travelling from the first stage to the last stage that can minimize the overall connecting error, as shown in 

Figure S4 (b). Once 1( )x t and ( )Nx t are assigned to the minimal or maximal value, the gene evolving trend 
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is determined. For example, if 1( )x t is the minimal value, and ( )Nx t is the maximal one, then the gene 

evolving trend is ascending, or vice versa.  

 

The codes are downloadable at: http://www.comp.hkbu.edu.hk/~hlzhu/NAR_codes.html  
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Supplementary Table 

 
Table S1. Enrichment analysis result of dynamic cascaded modelling on the HCC progression 
 

 Normal Cirrhotic Dysplastic Early HCC Advance HCC 

Proportion of known interactions 

 PER =0.01 46.2 61.5 42.3 50.0 46.2 

 PER =0.02 36.5 42.3 44.2 42.3 36.5 

 PER =0.03 35.4 39.2 38.0 38.0 35.4 

 PER =0.04 31.4 36.2 33.3 37.1 36.2 

 PER =0.05 28.8 36.4 31.1 34.1 35.6 

 PER =0.10 25.3 31.3 28.7 27.8 30.0 

 PER =0.25 24.9 26.8 26.5 25.2 28.4 

       

Enrichment of known interactions 

 PER =0.01 100.7 167.5 83.9 117.4 100.7 

 PER =0.02 58.9 83.9 92.3 83.9 58.9 

 PER =0.03 54.1 70.6 65.1 65.1 54.1 

 PER =0.04 36.6 57.3 44.9 61.5 57.3 

 PER =0.05 25.2 58.1 35.0 48.2 54.8 

 PER =0.10 9.9 36.2 24.7 20.9 30.3 

 PER =0.25 8.2 16.5 15.2 9.3 23.4 

       

P-values of significance tests 

 PER =0.01 0.0179 0.0001 0.0463 0.0059 0.0179 

 PER =0.02 0.0427 0.0048 0.0021 0.0048 0.0427 

 PER =0.03 0.0208 0.0031 0.0061 0.0061 0.0208 

 PER =0.04 0.0629 0.0049 0.0247 0.0027 0.0049 

 PER =0.05 0.1421 0.0014 0.0454 0.0072 0.0025 

 PER =0.10 0.3926 0.0035 0.0410 0.0794 0.0130 

 PER =0.25 0.2597 0.0268 0.0408 0.2020 0.0021 
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Supplementary Figures 

 

 

 

 
 
 
Figure S1. The topological structure of the in silico gene regulatory networks in four consecutive stages. 
The nodes represent genes and the arrows represent the regulatory relationships. 
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Figure S2. The time-course gene profiles generated from the in silico networks. The initial expression 
levels of all genes were set to 1.0 at the beginning of the process. The time spans of the four stages were 
set to 20, 30, 20 and 30, respectively. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

-3

-2

-1

0

1

2

3

4

5

0 20 40 60 80 100

A
rb

it
ra

ry
 e

x
p

re
ss

io
n

 l
ev

el
 

Time line → 

G1
G2
G3
G4
G5
G6

Stage I Stage II Stage III Stage IV 



   9 

 

 
 

 

 

Figure S3. The GRNs reconstructed from the sample-based data by DCM with 10-fold cross validation. 
The edges in solid black are correct predictions, while the edges in grey are wrong predictions. 
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Figure S4. (a) Definition of connecting error in between two neighbouring stages. The arrow shows the 
evolving direction of a biological process, the white circle represents the starting point of a stage and the 
black circle represents the ending point. The overall connecting error is defined as the L1-norm of the 
individual connecting errors. (b) Possible traveling paths in gene evolving trend analysis. All possible 
traveling paths are shown with dash lines. Gene evolving trend analysis can be done by finding the 
optimal path of travelling from the first stage to the last stage that can minimize the overall connecting 
error. 
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Figure S5. The stage-wise gene evolving trends of some hub genes. X-axis represents the gene evolving 
direction of cancer progression along five consecutive stages (I: normal, II: cirrhotic, III: dysplastic, IV: 
early HCC, and V: advance HCC), Y-axis represents the level of gene expression. The minimal and 
maximal gene expressions of each stage are marked with the symbols of “ ” and “ ”. The gene evolving 

trends of different stages are shown with solid blue lines.  
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