ІТЕМ ТО СНЕСК	IMPORTANCE	CHECKLIST	COMMENTS/ WHERE?
EXPERIMENTAL DESIGN			
Definition of experimental and control groups	E	YES	Materials and
Number within each group	E	YES	Materials and
		¥50	Methods
Assay carried out by core lab or investigator's lab?	D	YES	Investigator's Lab
Acknowledgement of authors contributions	D	NO	journal
SAMPLE			
Description	E	N/A	
Volume/mass of sample processed	D	N/A	
Microdissection or macrodissection	E	N/A	
Processing procedure	E	N/A	
If frozen - how and how quickly?	E	N/A	
If fixed - with what, how quickly?	E	N/A	
Sample storage conditions and duration (especially	E	N/A	
NUCLEIC ACID EXTRACTION			
Procedure and/or instrumentation	E	YES	Materials and
		¥50	Methods
Name of kit and details of any modifications	E	YES	Materials and Methods
Source of additional reagents used	D	YES	Materials and
Details of DNase or RNAse treatment	F	VES	Methods Sup Table 2
Contamination assessment (DNA or RNA)	F	YES	Sup Fig 1
Nucleic acid quantification	F	VES	Materials and
	–	123	Methods
			Sup. Fig. 1
Instrument and method	E	YES	Materials and Methods
			Sup. Fig. 1
Purity (A260/A280)	D	YES	Sup. Fig. 1
Yield	D	YES	Sup. Fig. 1
RNA integrity method/instrument	E	YES	Agarose gel Sup, Fig, 1
RIN/RQI or Cq of 3' and 5' transcripts	E	NO	
Electrophoresis traces	D	N/A	
Inhibition testing (Cq dilutions, spike or other)	E	YES	Cq dilutions
REVERSE TRANSCRIPTION			Sup. Fig. 3
Complete reaction conditions	E	YES	Sup. Table 3

Amount of RNA and reaction volume	E	YES	Materials and
			Methods
			Sup. Table 3
Priming oligonucleotide and concentration	E	YES	Materials and
			Methods
			Sup. Table 3
Reverse transcriptase and concentration	E	YES	Sup. Table 3
Temperature and time	E	YES	Sup. Table 3
Manufacturer of reagents and catalogue numbers	D	YES	Sup. Table 3
Cqs with and without RT	D	NO	
Storage conditions of cDNA	D	YES	Sup. Table 3
qPCR TARGET INFORMATION			
If multiplex, efficiency and LOD of each assay.	E	N/A	
Sequence accession number	E	YES	CDC6:NM_001254 SDHA:NM_004168
Location of amplicon	D	YES	Sup. Figure 2
Amplicon length	E	YES	Materials and Methods Sup. Figure 2
In silico specificity screen (BLAST, etc)	E	YES	BLAST and <i>In</i> silico PCR Sup. Figure 2
Pseudogenes, retropseudogenes or other homologs?	D	YES	None detected by BLASTn
Sequence alignment	D	YES	Sup. Figure 2
Secondary structure analysis of amplicon	D	NO	
Location of each primer by exon or intron (if applicable)	E	YES	Sup. Figure 2
What splice variants are targeted?	E	N/A	
qPCR OLIGONUCLEOTIDES			
Primer sequences	E	YES	Materials and Methods
RTPrimerDB Identification Number	D	N/A	
Probe sequences	D	N/A	
Location and identity of any modifications	E	N/A	
Manufacturer of oligonucleotides	D	YES	Materials and Methods
Purification method	D	YES	HPLC

qPCR PROTOCOL			
Complete reaction conditions	E	YES	Materials and
			Methods
			Sup. Table 4
Reaction volume and amount of cDNA/DNA	E	YES	Materials and
			Methods
		NE0	Sup. Table 3
Primer, (probe), Mg++ and dNTP concentrations	E	YES	Materials and
Dolymoroop identity and concentration	E	VEQ	Methods
Polymerase identity and concentration	E	TES	Mothodo
Buffor/kit identity and manufacturor	E	VES	Materials and
Bullel/Kit identity and manufacturer	E	TES	Methods
Exact chemical constitution of the huffer	D	NO	Manufactures
	D		proprietary
Additives (SYBR Green I, DMSO, etc.)	E	N/A	propriotary
Manufacturer of plates/tubes and catalog number	D	YES	Sup. Table 3
Complete thermocycling parameters	E	YES	Materials and
	-		Methods
Reaction setup (manual/robotic)	D	YES	Manual setup
Manufacturer of gPCR instrument	E	YES	Materials and
·			Methods
qPCR VALIDATION			
Evidence of optimization (from gradients)	D		
Specificity (gel, sequence, melt, or digest)	E	YES	Melt analysis
			Sup. Figure 3
For SYBR Green I, Cq of the NTC	E	YES	Sup. Figure 3
Standard curves with slope and y-intercept	E	YES	Sup. Figure 3
PCR efficiency calculated from slope	E	YES	Sup. Figure 3
Confidence interval for PCR efficiency or	D	N/A	
standard error			
r2 of standard curve	E	YES	Sup. Figure 3
Linear dynamic range	E	YES	Sup. Figure 3
Cq variation at lower limit	E	YES	Sup. Figure 3
Confidence intervals throughout range	D	N/A	
Evidence for limit of detection	E	NO	
If multiplex, efficiency and LOD of each assay.	E	N/A	
DATA ANALYSIS			
		VEO	Motoriala and
qPCR analysis program (source, version)	E	TES	Materials and
On mothed determination	F	VEC	Ivietnous
Cq method determination	E	TES	Materials and
Outlier identification and diaposition	E	NI/A	Methods
Populta of NTCo	E	IN/A VES	Sup Eiguro 2
Incours ULINE Co		VEQ	Materials and
	E	163	Mothodo
yenes			INIELIIUUS
Description of normalization method	F	VEG	Standard
	L		CUNA
			quantification
Number and concordance of biological replicates	D	YES	Materials and
rianizer and concordance of biological replicates	5	. 20	materiale and

			Methods
Number and stage (RT or qPCR) of technical	E	YES	Materials and
replicates			Methods
Repeatability (intra-assay variation)	E	YES	Materials and
			Methods
Reproducibility (inter-assay variation, %CV)	D	NO	
Power analysis	D	NO	
Statistical methods for result significance	E	YES	Biological
			replicates
Software (source, version)	E	YES	Materials and
			Methods
Cq or raw data submission using RDML	D	N/A	

E: Essential information, D: Desirable information, N/A: Not applicable

Supplementary Table 2. DNase Treatment

Components	Amount
Total RNA	10 µg
10X Incubation Buffer	10 µL
(400 mM Tris-HCl, 100 mM NaCl, 60 mM MgCl ₂ , 10 mM CaCl ₂ , pH 7.9)	-
DNase I recombinant, RNase-free (10 units/µI)	1 µL
Roche Applied Sciences Cat. No. 04 716 728 001	
RiboLock™ RNase Inhibitor (20u/µL)	1 µL
Fermentas #EO0381	
*One unit of RiboLock™ RNase Inhibitor inhibits the activity of 5 ng RNase A by 50%	
RNase-free Water	To 100 µL
DNase treatment was done at 37° C for 60 min. Reaction was terminated by phenol/chloroform	extraction.

Supplementary Table 3. Reaction Conditions of Reverse Transcription

Components	Amount
Total RNA	2 µg
Oligo(dT) ₁₈ primer (100 μM 0.5 μg/μl (15 A260 u/ml))	1 µL
5X Reaction Buffer	4 µL
(250 mM Tris-HCI (pH 8.3), 250 mM KCI, 20 mM MgCI ₂ , 50 mM DTT)	
10 mM dNTP mix	2 µL
RiboLock™ RNase Inhibitor (20u/µL)	1 μL
*One unit of RiboLock™ RNase Inhibitor inhibits the activity of 5 ng RNase A by 50%	
RevertAid™ M-MuLV Reverse Transcriptase (200u/µL)	1 μL
*One unit of RevertAid [™] M-MuLV RT incorporates 1 nmol of dTMP into a polynucleotide	
fraction (adsorbed on DE-81) in 10 min at 37°C	
Nuclease-free water	to 20 µL
cDNA was synthesized at 42° C for 60 minutes. Reaction was terminated by keeping at minutes. cDNA samples were stored at -20° C.	70° C for 5

Supplementary Table 4. Reaction Conditions for RT-qPCR

Components	Amount
Fast Start SYBR Green Master	10 µL
Forward Primer (5 µM)	1.2 µL
Reverse Primer (5 µM)	1.2 µL
cDNA (1:49 diluted from stock cDNA)	4 µL
PCR Grade water	3.6 µL
Total volume	20 µL
PCR tubes (0.2 mL, thin wall, flat cap, Greiner catalog number Z617687).	

Supplementary Figure 1. DNA contamination, quantification and integrity assessment

A. Lack of DNA contamination in RNA samples was assessed and shown by PCR using *GAPDH* specific primers. GAPDH_F: 5'-GGGAGCCAAAAGGGTCATCA-3' and GAPDH_R: 5'-TTTCTAGACGGCAGGTCA GGT-3' (product size: 409 bp). Following conditions were used for the PCR reactions: incubation at 94°C for 10 minutes, 40 cycles of 94°C for 30 seconds, 56°C for 30 seconds, and 72°C for 30 seconds, and final extension at 72°C for 5 minutes. MCF7 cDNA was used as a positive control. **B.** RNA concentrations (A260) were determined using NanoDrop ND1000 (Thermo Scientific). Purity was determined by A260/A280 and A260/A230 ratios (all RNA samples were around 2.0 for A260/A280, and A260/A230 ratios) **C**. RNA integrity was assessed by running the RNA samples on a 0.7 % Formaldehyde RNA Gel (10X MOPS, 37% Formaldehyde, DEPC-water)

A. > ref INM_001254.31 UEGM Homo sapiens cell division cycle 6 homolog (S. cerevisiae) (CDC6), mRNA Length=3053

UCSC In-Silico PCR >chr17:384558283+38455467 15500 TCCAGCTGGCATTTAGAGAGCtacagtottoatttagtgotttacacat tcoggoctgaaacaatatgacctttttacttgagcocatgaattt aatotatagattotttaatattagcacagaataatotttgggtottac tattttacccatAAAAGTGACCAGGTAGACCCTT Primer Melting Temperatures Forward: 59.7 C ttcagctggcatttagagac Reverse: 58.2 C aagggtotacctggtcatttt

The temperature calculations are done assuming 50 mM salt and 50 nM annealing oligo concentration. The code to calculate the melting temp comes from Primer3.

	>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>	3x 10x base zoom out	1.5x 3x 10x
position/search chr17:38,458,2	83-38,458,467 gene	jump clear size 18	5 bp. configure
chr17 (q21.2)	17p1217p11.2 q11.2 17q12	17q22	.325.1 q25.3

><u>ref|NM_001254.3|</u> UEGM Homo sapiens cell division cycle 6 homolog (S. cerevisiae) (CDC6), mRNA Length=3053

<u>GENE</u> [Homo	<u>ID: 99</u> sapien	<u>0 CDC6</u> cell division cycle 6 homolog (S. cerevisiae) s] (Over 10 PubMed links)	
Score Ident Stran	= 64 ities d=Plus	5 bits (349), Expect = 0.0 = 349/349 (100%), Gaps = 0/349 (0%) /Plus	
Query	1	TTCAGCTGGCATTTAGAGAGCTACAGTCTTCATTTTAGTGCTTTACACATTCGGGCCTGA	60
Sbjct	1923	TTCAGCTGGCATTTAGAGAGCTACAGTCTTCATTTTAGTGCTTTACACATTCGGGCCTGA	1982
Query	61	AAACAAATATGACCTTTTTTACTTGAAGCCAATGAATTTTAATCTATAGATTCTTTAATA	120
Sbjct	1983	AAACAAATATGACCTTTTTTACTTGAAGCCAATGAATTTTAATCTATAGATTCTTTAATA	2042
Query	121	TTAGCACAGAATAATATCTTTGGGTCTTACTATTTTTACCCATAAAAGTGACCAGGTAGA	180
Sbjct	2043	TTAGCACAGAATAATATCTTTGGGTCTTACTATTTTTACCCATAAAAGTGACCAGGTAGA	2102
Query	181	$\tt CCCTTTTTAATTACATTCACTACTTCTACCACTTGTGTATCTCTAGCCAATGTGCTTGCA$	240
Sbjct	2103	$\tt CCCTTTTTAATTACATTCACTACTTCTACCACTTGTGTATCTCTAGCCAATGTGCTTGCA$	2162
Query	241	AGTGTACAGATCTGTGTAGAGGAATGTGTGTATATTTACCTCTTCGTTTGCTCAAACATG	300
Sbjct	2163	AGTGTACAGATCTGTGTAGAGGAATGTGTGTATATTTACCTCTTCGTTTGCTCAAACATG	2222
Query	301	AGTGGGTATTTTTTGTTGTTGTTGTTGTTGTTGTTGAGGCG 349	
Sbjct	2223	AGTGGGTATTTTTTGTTTGTTTGTTTGTTGTTGTTGTTTTTGAGGCG 2271	

UCSC In-Silico PCR

><u>chr17:38458283+38458631</u> 349bp TTCAGCTGGCATTTAGAGAGC CGCCTCAAAAACAACAACAA TTCAGCTGGCATTTAGAGAGCtacagtcttcatttagtgctttacacat tcgggcctgaaacacaatagaccttttacttgagccatgaatttt aactatagattctttaatattagcacagaataatacttttgggtcttac tattttacccataaagtgaccaggtagacccttttaattacattcac tacttctaccactggtgtattactctagccaagtgtacaga tctggtgagggaatgtgtgtatatttaccttcgttgccaagatacaga tcggggtatttttttgtttgtttttttgTTGTTGTTGTTTTGAGGCG

Primer Melting Temperatures

Forward: 59.7 C ttcagctggcatttagagagc Reverse: 59.7 C cgcctcaaaaacaacaacaa

The temperature calculations are done assuming 50 mM salt and 50 nM annealing oligo concentration. The code to calculate the melting temp comes from Primer3.

r Milest	UCSC Genome Browser on Human Feb. 2009 (GRCh37/hg19) Assembly	1
	move <<< < > >> >>> zoom in 1.5x 3x 10x base zoom out 1.5x 3x 10x	
	position/search chr17:38,458,283-38,458,631 gene jump clear size 349 bp. configure	
	chr17 (q21.2) 13.1 17p1217p11.2 q11.2 17q12 17q22 24.325.1 q25.3	
	Scale	
	CDC6 🚓	

Supplementary Figure 2. In silico specificity screens.

In silico specificity of PCRs was assessed by BLAST (NCBI), amplicon lengths were confirmed using USCS *in silico* PCR tool, and chromosomal locations of amplicons are shown with Genome Browser of USCS for **A.** *CDC6* Short primers, **B.** *CDC6* Long primers, and **C.** *SDHA* primers (*SDHA* primers were designed from exon-exon boundaries)

No	r Colou	Name	Genot ype	Peak 1	Peak 2	Peak 3	Peak 4	Peak 5	Peak 6	Peak 7	Peak 8	Peak 9	Peak 10
1		CDC6 Short		55,5	62,5	67,5	74,8	87,0	97,0				
2		CDC6 Short NTC		51,7	57,0	61,7	67,2	72,7	76,0	81,8	87,0	92,5	97,0

Raw Data For Cycling A.Green

Quantitation data for Cycling A.Green

Standard Curve

No.	Colour	Name	Туре	Ct	Given Conc (copies/ul)	Calc Conc (copies/ul)	% Var
18		Std 1_CDC6 Short	Standard	22,84	100.000	100.501	0,5%
19		Std 2_CDC6 Short	Standard	23,85	50.000	48.956	2,1%
20		Std 3_CDC6 Short	Standard	24,75	25.000	25.689	2,8%
21		Std 4_CDC6 Short	Standard	25,77	12.500	12.362	1,1%
34		NTC_CDC6 Short	NTC				

Quantitation Information

Threshold	0,1232
Left Threshold	1,000
Standard Curve Imported	No
Standard Curve (1)	conc= 10^(-0,311*CT + 12,108)
Standard Curve (2)	CT = -3,215*log(conc) + 38,925
Reaction efficiency (*)	1,04669 (* = 10^(-1/m) - 1)
М	-3,21489
В	38,92467
R Value	0,99972
R^2 Value	0,99945
Start normalising from cycle	1
Noise Slope Correction	No
No Template Control Threshold	0%
Reaction Efficiency Threshold	Disabled
Normalisation Method	Dynamic Tube Normalisation
Digital Filter	Light
Sample Page	Page 1
Imported Analysis Settings	

No.	Colour	Name	Genotype	Peak 1	Peak 2	Peak 3	Peak 4	Peak 5	Peak 6
1		CDC6 Long		55,3	60,5	77,0	83,0	90,3	95,5
2		CDC6 Long NTC		68,0	74,8	82,5	87,0	91,2	94,5

Raw Data For Cycling A.Green

Quantitation data for Cycling A.Green

Standard Curve

No.	Colour	Name	Туре	Ct	Given Conc (copies/ul)	Calc Conc (copies/ul)	% Var
1		Std 1_CDC6 Long	Standard	16,39	100.000	99.959	0,0%
2		Std 2_CDC6 Long	Standard	17,29	50.000	49.894	0,2%
3		Std 3_CDC6 Long	Standard	18,19	25.000	25.137	0,5%
4		Std 4_CDC6 Long	Standard	19,10	12.500	12.463	0,3%
36		NTC	NTC				

Quantitation Information

Threshold	0,0554
Left Threshold	1,000
Standard Curve Imported	No
Standard Curve (1)	conc= 10^(-0,333*CT + 10,465)
Standard Curve (2)	CT = -2,999*log(conc) + 31,384
Reaction efficiency (*)	1,15494 (* = 10^(-1/m) - 1)
М	-2,99908
В	31,3844
R Value	0,99999
R^2 Value	0,99998
Start normalising from cycle	1
Noise Slope Correction	No
No Template Control Threshold	0%
Reaction Efficiency Threshold	Disabled
Normalisation Method	Dynamic Tube Normalisation
Digital Filter	Light
Sample Page	Page 1
Imported Analysis Settings	

No.	Colour	Name	Genotype	Peak 1	Peak 2	Peak 3	Peak 4	Peak 5	Peak 6	Peak 7
1		SDHA		58,0	76,0	85,0				
2		SDHA NTC		55,3	66,7	75,3	81,5	85,5	90,3	96,5

Raw Data For Cycling A.Green

Quantitation data for Cycling A.Green

C.

Standard Curve

No.	Colour	Name	Туре	Ct	Given Conc (copies/ul)	Calc Conc (copies/ul)	% Var
1		Std 1	Standard	16,54	100.000	100.703	0,7%
2		Std 2	Standard	17,58	50.000	48.899	2,2%
3		Std 3	Standard	18,50	25.000	25.594	2,4%
4		Std 4	Standard	19,54	12.500	12.397	0,8%
5		NTC	NTC				

Quantitation Information

Threshold	0,111
Left Threshold	1,000
Standard Curve Imported	No
Standard Curve (1)	conc= 10^(-0,303*CT + 10,019)
Standard Curve (2)	CT = -3,298*log(conc) + 33,039
Reaction efficiency (*)	1,01023 (* = 10^(-1/m) - 1)
М	-3,29766
В	33,03911
R Value	0,99976
R^2 Value	0,99952
Start normalising from cycle	1
Noise Slope Correction	No
No Template Control Threshold	0%
Reaction Efficiency Threshold	Disabled
Normalisation Method	Dynamic Tube Normalisation
Digital Filter	Light
Sample Page	Page 1
Imported Analysis Settings	

Supplementary Figure 3. RT-qPCR assay performance in accordance with MIQE guidelines.

Specificity of primers and the amplified PCR products was examined by melt analysis, raw data, quantitation data, standard curves, and quantitation information calculated by Rotor Gene Software for **A.** *CDC6* Short primers, **B.** *CDC6* Long primers, and **C.** *SDHA* primers. PCR efficiencies were calculated from slope, and r^2 .

Supplementary Figure 4. *TFF1* is an E2 upregulated gene.

MCF7 and T47D cells were treated with ethanol or 10 nM E2 for indicated time points and RNA was isolated. Following DNase treatment, cDNA was synthesized for RT-PCR analysis. E2 treatment resulted with the upregulation of *TFF1* expression detected by RT-PCR

CDC6 1959 AGTGCTTTACACATTCGGGCCTGAAAACAAATATGACCTTTTTACTTGAAGCCAATGAA CDC6 2019 TTTTAATCTATAGATTCTTTAATATTAGCACAGAATAATATCTTTGGGTCTTACTATTTT CDC6 2079 TACCCATAAAAGTGACCAGGTAGACCCTTTTTAATTACATTCACTACTACTTCTACCACTTGT CDC6 2139 GTATCTCTAGCCAATGTGCTTGCAAGTGTACAGATCTGTGTAGAGGAATGTGTGTATATT CDC6 2199 TACCTCTTCGTTTGCTCAAACATGAGTGGGTA<u>T</u>TTTTTGTNN**AAAAAAAAAAAAAAAAA**

Supplementary Figure 5. Sequencing of the 3' RACE product (size: 355 bp) revealed the existence of the proximal polyA tail.

Supplementary Figure 6. E2 treatment induced increased BrdU incorporation. Asynchronous MCF7 and T47D cells were grown in phenol red-free media supplemented with 10% dextran-coated-charcoal stripped FBS for 48 hours. Then, cells were treated with BrdU (10 nM) and E2 (10 nM) for the indicated time points along with the ethanol treated controls (EtOH). Incorporated BrdU was detected using the Turner Biosystems Luminometer. Values are given as relative light units (RLU) per sec at respective time points. *** indicates statistical significance, p<0.001 (One way ANOVA followed by Tukey's multiple comparison test).

Supplementary Figure 7. ER protein levels detected in cell lines used in the study. MCF7_EV cells were stably transfected with empty vector (pSR), MCF7_CO cells were transfected with control shRNA (20), and MCF7_shER α cells were transfected with ER α shRNA (18). MDA-66 cells are MDA-MB-231 cells that were stably transfected with ER (18, 19). MCF7, MDA-MB-231 and T47D cells were used throughout the study as ER+ cells. 50 ug lysate were loaded on 8% PAGE. β -actin was used as a protein loading control.

Supplementary Figure 8. *PCNA* expression detected by RT-qPCR after ICI and CHX treatments. MCF7 cells were grown in phenol red-free medium supplemented with 10% dextran-coated-charcoal stripped FBS, pre-treated with 1 μ M ICI or 10 μ g/mL CHX (Cycloheximide) for 1 hour, then with 10 nM E2 for 12 hours. The baseline for the control treated samples was set to 1. *PCNA* (NM_002592) was amplified using the following primer set; PCNA_F: 5'-TGCAGATGTACCCCTTGTTG-3', PCNA_R: 5'-GCTGGCATCTTAGAAGCAGTT-3'. Following conditions were used: incubation at 94°C for 10 minutes, 40 cycles of 94°C for 15 seconds, 56°C for 30 seconds, and 72°C for 30 seconds.

В.

23

Supplementary Figure 9. A. Relative quantification of *CDC6* 3' UTR short and long isoforms in MDA-66 cells (ER transfected MDA-MB-231) (19). Cells were treated with E2 as described in the Methods section. E2 is known not to have a growth proliferative effect on ER transfected MDA-MB-231 cells (34-37). **B.** E2 treatment did not induce increased BrdU incorporation. Asynchronous MDA-66 cells were grown in phenol red-free media supplemented with 10% dextran-coated-charcoal stripped FBS for 48 hours. Then, cells were treated with BrdU (10 nM) and E2 (10 nM) for the indicated time points along with the ethanol treated controls (EtOH). Incorporated BrdU was detected using the Turner Biosystems Luminometer. Values are given as relative light units (RLU) per sec at respective time points. **C.** *TFF1* is an E2 upregulated gene. MDA-66 cells were treated with ethanol or 10 nM E2 for indicated time points and RNA was isolated. Following DNase treatment, cDNA was synthesized for RT-PCR analysis. E2 treatment resulted with the upregulation of *TFF1* expression.

Supplementary Figure 10. *E2F1*, *E2F2* and 3' UTR processing gene transcripts (*CSTF2* (cleavage stimulation factor, 3' pre-RNA, subunit 2), *CSTF3* (cleavage stimulation factor, 3' pre-RNA, subunit 3) and *CPSF2* (cleavage and polyadenylation specific factor 2) are upregulated in response to E2 treatment in MCF7 cells. Cells were treated with E2 and cDNA was prepared as described in Methods. The fold change for the transcripts was normalized against the reference gene; *SDHA*. Quantification was done using the reaction efficiency correction and $\Delta\Delta$ Cq method. The baseline for each transcripts' in untreated samples were set to 1. Experiment was repeated two independent times with 3 replicas. One-way ANOVA with Tukey's multiple comparison post test was performed using GraphPad Prism (California, USA). * (p≤ 0.05), ** (p≤ 0.01), and *** (p≤ 0.001) indicates statistical significance.