Regulation of the chaperone effects on a yeast prion by the cochaperone Sgt2

Denis A. Kiktev, Jesse C.Patterson, Susanne Müller, Bhawana Bariar, Tao Pan and Yury O. Chernoff[#]

School of Biology and Parker H. Petit Institute for Bioengineering & Bioscience, Georgia Institute

of Technology, Atlanta, GA 30332

[#]Corresponding author.

List of Supplementary materials

Table S1. Yeast strains constructed in this study

 Table S2. Oligonucleotide primers used in this study

FIG. S1. Phenotypes of get deletions and comparisons to strains containing other aggregates

FIG. S2. Aggregation of the Get and Sgt2 proteins

Name	Genotypic background	Mating type	Genetic alteration	Prion composition
GT905	74-D694	MATa	get2-473	$[PSI^+ PIN^+]$
GT982	74-D694	MATa	$get2\Delta$:: HIS3MX6	$[PSI^+ PIN^+]$
GT1300-2D	GT81	MATa	$get3\Delta$::HIS3MX6	$[PSI^+ PIN^+]$
GT1301-8C	GT81	ΜΑΤα	$get2\Delta::hphNT1$	$[PSI^+ PIN^+]$
GT1316-1B	GT81	MATa	$get1\Delta$:: HIS3MX6	$[PSI^+ PIN^+]$
GT1308	GT81	ΜΑΤα	$get4\Delta$::HIS3MX6	$[PSI^+ PIN^+]$
GT1309	GT81	ΜΑΤα	$get5\Delta$::HIS3MX6	$[PSI^+ PIN^+]$
GT1448	GT81	MATa	sgt2 Δ ::HIS3MX6	$[PSI^+ PIN^+]$
GT1450	GT81	MATa	sgt2 Δ ::kanMX6	$[PSI^+ PIN^+]$
GT1468-14A	GT81	MATa	$get4\Delta$::HIS3MX6 $sgt2\Delta$::kanMX6	$[PSI^+ PIN^+]$
GT1469-2B	GT81	MATa	$get5\Delta$::HIS3MX6 $sgt2\Delta$::kanMX6	$[PSI^+ PIN^+]$
GT1476-1A	GT81	MATa	$get1\Delta$::HIS3MX6 $sgt2\Delta$::kanMX6	$[PSI^+ PIN^+]$
GT1477-1C	GT81	MATa	get3A::HIS3MX6 sgt2A::kanMX6	$[PSI^+PIN^+]$
GT1487-4A	GT81	ΜΑΤα	get2A::hphNT1 sgt2A:: HIS3MX6	$[PSI^+ PIN^+]$
GT1550	GT81	MATa	SGT2-HA::kanMX6	$[PSI^+ PIN^+]$
GT1585-2A	GT81	MATa	ssb1::HIS3 ssb2::ura3 get2::hphNT1	$[PSI^+ PIN^+]$
GT1589-4A	GT81	MATa	SGT2-HA::kanMX6 get2::hphNT1	$[PSI^+PIN^+]$
GT1624	GT81	MATa	SGT2-HA::kanMX6	[psi pin]
GT1635	GT81	MATa	cpr7∆::hphNT1	$[PSI^+ PIN^+]$
GT1642	GT81	MATa	sti1A::kanMX6	$[PSI^+PIN^+]$
GT1651-1A	GT81	MATa	$ubc4\Delta$:: $his3MX6$ get 2Δ :: $hphNT1$	$[PSI^+PIN^+]$
GT1657-2B	GT81	MATa	get2A::hphNT1 cpr7A::hphNT1	$[PSI^+PIN^+]$
GT1670	GT81	ΜΑΤα	get2A::hphNT1 sti1A::kanMX6	$[PSI^+PIN^+]$
GT1719	GT81	ΜΑΤα	get2A::HIS3MX6	$[PSI^+PIN^+]$
GT1726-2A	GT81	ΜΑΤα	get2A::HIS3MX6 sgt2A::HIS3MX6	$[PSI^+PIN^+]$
GT1732	GT81	MATa	SGT2-HA::kanMX6	$[psi PIN^+]$
GT1733	GT81	MATa	$SGT2$ -HA::kanMX6 get2 Δ ::hphNT1	$[psi PIN^+]$
GT1747-5A	GT81	MATa	get2∆::HIS3MX6 sgt2∆::kanMX6 GET4- GFP::HIS3MX	$[PSI^+ PIN^+]$
GT1747-25C	GT81	MATa	get2 <i>∆</i> ::HIS3MX6 GET4-GFP::HIS3MX	$[PSI^+PIN^+]$
GT1748-6A	GT81	MATa	get2 <i>∆</i> ::HIS3MX6 sgt2 <i>∆</i> ::kanMX6 GET5- GFP::HIS3MX	$[PSI^+ PIN^+]$
GT1748-6D	GT81	ΜΑΤα	get24::HIS3MX6 GET5-GFP::HIS3MX	$[PSI^+PIN^+]$
GT1929-1C	GT81	MATa	kanMX6::P _{GAL} -GFP-SBH1	$[PSI^+PIN^+]$
GT1939-3D	GT81	ΜΑΤα	sgt2∆:: HIS3MX6 kanMX6::P _{GAL} -GFP-SBH1	$[PSI^+ PIN^+]$
GT1960	GT81	ΜΑΤα	$get2\Delta::hphNT1 kanMX6::P_{GAL}-GFP-SBH1$	$[PSI^+ PIN^+]$
GT1961	GT81	MATα	get2∆::hphNT1 sgt2∆:: HIS3MX6 kanMX6::P _{GAL} -GFP-SBH1	$[PSI^+ PIN^+]$

Designations:

HIS3MX6 - HIS5 gene of *Schizosaccharomyces pombe* (orthologous to *S. cerevisiae HIS3*) *kanMX6-* bacterial gene that determines resistance to kanamycin in *E. coli* and G418 in yeast *hphNT* - bacterial gene that confers resistance to hygromycin B *HA* - hemagglutinin tag *GFP* - green fluorescent protein

Table S2. Oligonucleotide primers used in this study

Number	Sequence 5'-3'	Gene	Direction	Application
457	GCAATCCTTGAACTACGTCTAGTTGATTGAAATAGGAGAACGGATCCC CGGGTTAATTAA	GET1	Forward	Deletion
458	TACATAAACATATTATATATACGTACATAATGTAATAACAGAATTCGA GCTCGTTTAAAC	GETI	Reverse	Deletion
459	AAACGTACGACAAGAACAAGAAGATCATCACATTGTAATTCGGATCCC CGGGTTAATTAA	GET3	Forward	Deletion
460	TTATATGTCGTATGTATCTATTTATGGTATTCAGGGGGCTTGAATTCGAG CTCGTTTAAAC	GET3	Reverse	Deletion
668	TTTGCTGGGACAAAAGAACAAGAATAGGAACATGAAAAGATTTGAGA ATTCGAGCTCGTTAAAGC	GET2	Forward	Deletion
669	GGAATAATGTCGGGTTATGAGAACAATGTATTATATTACTGAACTGCA GGTCGACGGATCCCCGG	GET2	Reverse	Deletion
678	AACCAAGTAAACATCATAAAGGGACATAAATAATAATAACAAGCTCG GATCCCCGGGTTAATTAA	GET4	Forward	Deletion
679	GCCACCGCAAACATATTTATCTATTCCTTCGCAAATATGCTCTTTGAAT TCGAGCTCGTTTAAAC	GET4	Reverse	Deletion
680	CAGAGATAAACTAGCGAAGAATAATAACTTTATACAAAATTAATCCGG ATCCCCGGGTTAATTAA	GET5	Forward	Deletion
681	CAACTGTGTAAAAATAACAAGTATGTACGTACTAACTATACTAATCGAA TTCGAGCTCGTTTAAAC	GET5	Reverse	Deletion
684	CACCAAGATCTTCACATTGTAATTATGG	GET3	Forward	Cloning
685	GGGGCCGCGGTTCCTTATCTTCTAACTC	GET3	Reverse	Cloning/tagging
739	CTTCTGACCAAGTGATATCTTATTAATACAAATCTACTGTACGCGGATC CCCGGGTTAATTAA	SGT2	Forward	Deletion
740	TATCTACATAACATGTATTGCATTAAAGGCTTATTTCAGTCCAGAATTC GAGCTCGTTTAAAC	SGT2	Reverse	Deletion
751	ACAAGGATCCTGTACGATGTCAGCATC	SGT2	Forward	Cloning
752	AGTGAGCTCCGAAAATCGACG	SGT2	Reverse	Cloning
753	TTCAGTCCGCGGTTGCTTGTTCTCATTGTC	SGT2	Reverse	Cloning/tagging
766	TAAGGATCCTCTACTGTACGATGTCAGCATC	SGT2	Forward	Cloning
767	ATGCTCGAGATTAAAGGCTTATTTCAGTCC	SGT2	Reverse	Cloning
876	TCAGCCCGGGATTGCTTGCTTGTTCTCATTGTC	SGT2	Reverse	Cloning
900	TCTGAAAGGTGTTCGGCAGCAACAACCTACATCCAACGCGGAATTCGA GCTCGTTAAAGC	CPR7	Forward	Deletion
901	GGGTTATTTAATCTCAAATTTCAGCCTTACAAGTAACTAAGCAGGTCG ACGGATCCCCGG	CPR7	Reverse	Deletion
909	AAGCCCAAAAGTCTGCTCCC	STI1	Forward	Deletion
910	ATCTTCAAGTTCCGATTTCTC	STI1	Reverse	Deletion
938	CCTACAAGACATGATGTCGGGGATTCCTGGGCGGATCGAAGCGGATCCC CGGGTTAATTAA	GET4	Forward	Tagging
939	GCACATACATATATATGTATATACGTCATGGTCGTCAAGCGAATTCGA GCTCGTTTAAAC	GET4	Reverse	Tagging
940	AGTCATGGAGCGTATACAAAAAGGCTGGTCTCTGGCCAAACGGATCCC CGGGTTAATTAA	GET5	Forward	Tagging
941	CGCCCAAAGGAAAGAAGAAATAGTAAGCGCAACCGTGATGAATTCGA GCTCGTTTAAAC	GET5	Reverse	Tagging
1042	AAAGGATCCAAATGGCTGAGGACTTGAAAAATGC	SGT2	Forward	Cloning of the MC region
1044	GATCCCGGGATTGCTCAACCTTCTTCTTGGC	SGT2	Reverse	Cloning of the NM region
1045	CCACTCGAGACTATTGCTCAACCTTCTTCTTGGC	SGT2	Reverse	Cloning of the NM region
1057	AAGGGATCCTTATGCAATCTTTGAATCTGGAGAAAACC	SGT2	Forward	Cloning of the C region
1065	CTCTTCCATGTTTGTAGCATCAGCAACGTAGCTCTAGGAACGGATCCCC GGGTTAATTAA	GET2	Forward	Deletion
1066	CCTGAAAAGAAAGCCGGGAATAATGTCGGGTTATGAGAACGAATTCG AGCTCGTTTAAAC	GET2	Reverse	Deletion

FIG. S1. Phenotypes of get deletions and comparisons to strains containing other aggregates. (A) Get deletions cause sensitivity to high temperature and to translational antibiotics hygromycin B and paromomycin. Decimal serial dilutions of mid-exponential cultures, grown in YPD, were spotted either onto YPD plates incubated at different temperatures, as specified, or onto YPD plates supplemented with either 40 µg/ml of hygromycin B (Hyg B) or 600 µg/ml of paromomycin (Par), as indicated, and incubated for 2 days at 30°C. (B) and (C) Extra copy of the YDJ1 gene under its endogenous promoter decreases [PSI⁺] curing in the wild-type (WT) strain but has little to no effect on the get2 Δ strain, as detected in the plate assay (**B**) after 48 hrs of induction, and in the liquid assay (**C**). (**D**) and (**E**) Extra copy of the SIS1 gene under its endogenous promoter slightly increases $[PSI^+]$ curing in both wild-type and $get2\Delta$ strains in both plate (**D**) and liquid (**E**) assays. On panel **D**, HSP104 was induced for 24 hrs in the wild type strain but for 48 hrs in the get2 Δ strain, in order to minimize the impact of the get2 Δ mediated differences in the efficiency of $[PSI^+]$ curing. In both (C) and (E), cultures were grown in liquid medium (selective for plasmids) with raffinose and galactose to induce P_{GAL} -HSP104. Aliquots were taken and plated onto plasmid-selective medium after specified periods of time. Presence or absence of [PSI⁺] was detected after replica-plating to -Ade medium. At least three experiments were performed for each culture; standard deviations are shown by error bars. WT refers to wild-type, Control to an empty vector. (F) Strains expressing 103QP (fused to GFP) do not exhibit a defect of [PSI+] curing by excess Hsp104, in contrast to get2\Delta strains. 25QP (fused to GFP) was used as a non-aggregating control. All constructs were under P_{GAL} promoter. Image was taken after 4 days of incubation on -Ade, following three days of incubation on galactose medium. Experiment was performed in the conditions selective for 103QP (or 25QP) and HSP104 (or control) plasmids. (G) Get2 deletion slightly increases an average size of Sup35 polymers, that is ameliorated by $sgt2\Delta$. Sup35 polymers in the [PSI⁺] extracts were fractionated by SDD-AGE and detected by Western blotting. (H) Hsps levels in the cells lacking any of the Get proteins are increased, as detected by Western blotting. Ade2 protein was used as a loading control. (I) Temperature sensitivity of the $get2\Delta$ strain is not reversed by $sgt2\Delta$, while sensitivities to hygromycin B and paromomycin are reversed by $sgt2\Delta$. Decimal serial dilutions of midexponential cultures, grown in YPD, were spotted either onto YPD plated incubated at different temperatures as specified, or onto YPD plates supplemented with antibiotics as indicated on panel A (incubated at 30^oC). Plate images were taken after 2 days.

FIG. S2. Aggregation of the Get and Sgt2 proteins. (A) Get3 (tagged by RFP) and Get5 (tagged by GFP) are colocalized to the same aggregates in the *get2* Δ strain. (B) Get/TA aggregates, marked by Get3, do not colocalize with the P-body marker Edc3. (C) and (D) *Sgt2* Δ abolishes aggregation of cytosolic Get4 (C) and Get5 (D) proteins, tagged by GFP, in the *get2* Δ strains. (E) and (F) Formation of Get3-GFP foci in the *get2* Δ strain (E) is abolished upon addition of 10 µg/ml of benomyl. Formation of 103QP-GFP deposits, which is known to be inhibited by benomyl (see Wang *et al.* 2009 FASEB J **23**:451-63, ref. 67), is shown as a control in the same strain (F). Images were taken at 8 hours after the induction of tagged constructs and (where indicated) addition of benomyl. (G) Aggregates of Sup35 (marked with Sup35NM-dsRed) are colocalized with Get/TA aggregates (marked with Get3-GFP) in 15% of *get2* Δ [*PSI*⁺] cells containing both types of aggregates. (H) Aggregates of Sup35 (marked with Sup35NM-dsRed) are colocalized clumps of the GFP-tagged 103QP also contain foci of the RFP labeled Get3, which are overlapping with or juxtaposed to 103QP clumps in about 80% of the cases. (J) Foci of the GFP-labeled Sgt2 overlap with or are juxtaposed to the clumps of RFP-tagged 103QP in 12% of the cells bearing both types of aggregates in the *get2* Δ strain.