Direct Cross-coupling of Organic Halides with Allylic Acetates

Lukiana L. Anka-Lufford, Michael R. Prinsell and Daniel J. Weix* Department of Chemistry, University of Rochester, Rochester, NY, USA 14627-0216

Supporting Information

Table of Contents

l.	Supplemental Tables	S2
II.	Example GC Yield Calculation	S8
III.	NMR spectra (separate document)	S10

Table S1: Selectivity Data for the Coupling Reactions of Iodoarenes with Cinnamyl Acetate in Table 2^a

^a GC area% ratios are uncorrected. The high molecular weight of both the product and the aryl dimer for entry 5 prevented GC analysis. The similarly, the high MW for the aryl dimer of entries 6, 7 &8 prevented detection by GC.

Entry Ar-X		product	yield ^b	
		Ph Ph (3a)		
1	I	1 mmol scale, set up in glovebox	88	
2	I	10 mmol scale, set up on benchtop	81	
		Ph R		
3	I	R = C(O)Me (3b)	71	
4	I	R = CHO(3c)	70	
6	I	$R = NHC(O)CF_3 (3e)$	64	
7	I	$R = CH_2OTBS (3f)$	80	
8	I	$R = NMe_2 (3g)$	55	
9	I	R = Me (3h)	86	
10	I	R = OMe(3i)	83	
11	I	R = Br(3j)	64	
16	I	Ph Me $(3n)$	78	
		Ph		
17	I	R = CN (3o)	86	
18	I	R = OMe(3p)	80	

^b Isolated yields from Table 2.

Table S2: Selectivity Data for the Coupling Reactions of Bromoarenes with Cinnamyl Acetate in Table 2^a

^aGC area% ratios are uncorrected.

Entry	Ar-X	product	yield ^b
		Ph	
12	Br	$R = CO_2Me (3k)$	65
13	Br	R = C(O)Me (3b)	48
14	Br	$R = CF_3 (31)$	51
15	Br	R = CN (3m)	77

^b Isolated yields from Table 2.

Table S3: Selectivity Data for the Coupling Reactions of Substituted Allylic Acetates with Iodoarenes in Table 3^a

^aGC area% ratios are uncorrected.

Entry	allylic acetate	Product	yield ^b
1	OAc (2b)	Ph (4a)	81
2	$\overset{OAc}{\vdash}_{Ph}\overset{OAc}{\longleftarrow}_{(\mathbf{2c})}$	Ph $^{ ho}$ Ph $_{(3a)}$	52
3	PhOAc (2d)	Ph $^{ ho}$ Ph $_{(3a)}$	75
4	c-C ₆ H ₁₁ OAc (2e)	c-C ₆ H ₁₁ Ph (4b)	97
5	OAc (2f)	Ac (4c)	55
6	OAc (2g)	Ph (4d)	65
7	OAc (2h)	Ph (4e)	52
8	OAc (2i)	Ph (4f)	80
9	OAc	Ph	73
. 1 . 11 . 6	Ph $Me(2j)$	Ph Me (4g)	

^b Isolated yields from Table 3.

Table S4: Selectivity Data for the Coupling Reactions of Allylic Acetates with Alkyl Bromides in Table 4a

^aGC area% ratios are uncorrected. All entries except entry 3 are an average of 2 runs. The alkyl reduction products of entries 2-4 were too low boiling and would elute with solvent, preventing detection by GC analysis. The allyl dimer for entry 6 was too high boiling for GC analysis on our instrument.

Entry	product	yield ^b
1	Ph \sim CH(CH ₃)C ₅ H ₁₁ (5a)	79
2	Ph c-C ₆ H ₁₁ (5b) Set up in glovebox	88
3	Set up in the benchtop ^c	90
4	Ph $c \cdot C_5 H_{11}$ (5c)	68
5	Ph	78
6	H (5d)	70
6	Ar $CH(CH_3)C_5H_{11}$ Ar = p -MeO-C ₆ H ₄ (5e)	79
7	$Ar = p-F_3C-C_6H_4$ (5f)	66

^b Isolated yields from Table 4.

Table S5: Selectivity Data for the Coupling Reactions of Allylic Substrates with a Vinyl Bromide in Tables 5 and 6a

^aGC area% ratios are uncorrected.

Entry	Starting Material	Product	Yield ^b
Table 5, Entry 3	AcO Ph (2c)	O Ph (7a)	78
Table 6, Entry 3	MeO ₂ CO (2m)	(7b)	51
Table 6, Entry 4	$MeO_2CO \overset{Ph}{\longleftarrow} (2n)$	O Ph (7c)	67

^b Isolated yields from Tables 5 and 6.

Table S6: Control reactions for the coupling of cinnamyl acetate with iodobenzene^a

entry	alterations from scheme	time (h)	yield 3a (%) ^b	yield D (%) ^b
1	No alterations	22	90	18
2	No NiCl ₂ (dme)	48	0	2
3	No NiCl ₂ (dme) and no L1	48	0	2
4	No Zn	48	0	0

^a Reactions were run on a 0.5 mmol scale in 1 ml of 3:1 THF:NEP. ^b Corrected GC yields vs. an internal standard (dodecane). Amount of **4** and **5** produced was negligable in all cases but the standard reaction.

II. Example GC Yield Calculation

GC chromatogram from Table 1, Entry 1 (with terpyridine L1):

Sorted By : Retention Time Multiplier: : 1.0000 Dilution: : 1.0000

Do not use Multiplier & Dilution Factor with ISTDs

Signal 1: FID1 A, Front Signal

Peak :	RetTime [min]	Sig	Туре	Area [pA*s]	Height [pA]	Area %

1	0.819	1	BB	64.71152	201.13582	10.38658
2	2.018	1	BB	72.92727	231.00208	11.70526
3	2.235	1	BB	37.65450	112.79506	6.04377
4	2.674	1	BB	5.44882	14.77481	0.87457
5	3.390	1	BB	431.64377	1054.72852	69.28137
6	3.755	1	BB	2.40078	5.21727	0.38534
7	4.099	1	MM	8.24344	24.97758	1.32312
Wet = 1				623 03010	1644 63113	

 $mmol\ Product = \frac{(Area\ Product) \times (mmol\ Internal\ Standard)}{(Area\ Internal\ Standard) \times (Correction\ Factor)}$

$$mmol\ Product = \frac{431.64377 \times 0.044}{37.65450 \times 1.12}$$

 $mmol\ Product = 0.45$

$$\textit{GC Yield} = \frac{mmol\ Product}{mmol\ Theoretical} \times 100\%$$

GC Yield =
$$\left(\frac{0.45}{0.50}\right) \times 100\%$$

$GC \ Yield = 90\%$

GC chromatogram from Table 1, Entry 2 (with bipyridine L2):

Area Percent Report

Sorted By : Retention Time
Multiplier: : 1.0000

Dilution: : 1.0000
Do not use Multiplier & Dilution Factor with ISTDs

Signal 1: FID3 B, Back Signal

Peak #	RetTime [min]	Sig	Туре	Area [pA*s]	Height [pA]	Area %	
1	0.827	1	VB	14.26214	38.55714	2.38767	
2	2.022	1	BB	79.97160	214.97862	13.38831	
3	2.239	1	BB	38.76766	123.18441	6.49022	
4	2.684	1	BB	114.61913	344.47751	19.18877	
5	2.792	1	BB	23.92602	59.99182	4.00553	
6	3.413	1	BB	309.75629	675.46704	51.85733	
7	4.145	1	BB	16.02118	34.36098	2.68216	
Total	c .			597 32401	1491 01752		

Similar to above, the calculated GC Yield is 62%.