Supporting Information

for

Engineering of indole-based tethered biheterocyclic alkaloid meridianin into β -carboline-derived tetracyclic polyheterocycles via amino functionalization/6-*endo* cationic π -cyclization

Piyush K. Agarwal, Meena D. Dathi, Mohammad Saifuddin and Bijoy Kundu*

Address: Division of Medicinal and Process Chemistry, Central Drug Research Institute, CSIR,

Lucknow, 226001, India, Phone: +91 522 2612411-18; Fax: +91 522 2623405.

E-mail: Bijoy Kundu – bijoy_kundu@yahoo.com

Experimental section, ¹H and ¹³C NMR spectra of the compounds 2a–c, 4a–7a, 4b–7b, 8, 9a–k, 12a–d, 14a–18a, 14b–16b, 17–18c, 17b–18b, 20a–l.

Experimental section

General consideration: All solvents were commercially available and used without purification. All products were characterized by ¹H NMR, ¹³C NMR, ESMS, IR and HPLC. Analytical TLC was performed using 2.5 x 5 cm plated coated with a 0.25 mm thickness of silica gel 60F-254 Merck, and visualization was accomplished with UV light and iodine. Column chromatography was performed using silica gel 60 Thomas Baker (100–200 mesh). ¹H NMR spectra (200/300 MHz) are reported as follows: chemical shifts in ppm downfield from TMS as internal standard (δ scale), multiplicity [br = broad, s = singlet, δ doublet, t = triplet, q = quartet, m = multiplet, o = overlapped, integration and coupling constant (Hz)]. All ¹³C NMR spectra (50/75/100 MHz) were recorded at 25 °C with complete proton decoupling and reported in ppm. The purity and characterization of these compounds were further established using HR/EI mass spectrometry. Elemental analyses were performed on a Carlo Erba 1108 microanalyzer or Elementar's Vario EL III microanalyzer. The micro-analyses were performed at Sophisticated Analytical Instrument Facility Division, CDRI. Analytical HPLC were performed on C-18 reversed-phase column (150 mm x 4.8 mm) (model number is LiChrospher 100, RP-18e (5 µm), Lot L552433). HRMS-EI mass spectra were done on JEOL-600H at 70 eV. Melting points reported are uncorrected.

Synthesis of 1*H*-benzo[*d*][1,2,3]triazol-1-yl-(1-methyl-1*H*-indol-3-yl)methanone (4a): To a solution of benzotriazole (22.8 mmol) in CH₂Cl₂ (20 mL) was added SOCl₂ (5.70 mmol) at 25 °C with stirring. After 0.5 h, 1-methyl-1*H*-indole-3-carboxylic acid (3a) (5.70 mmol) was added in one portion and stirring was continued for 2 h. The white precipitate was filtered off and washed with CH₂Cl₂ (2 × 25 mL). The combined organic solution was washed with aq 2 N NaOH (3 ×

20 mL), dried over Na_2SO_4 and the solvent was removed under reduced pressure. The reaction mixture was then subjected to column chromatography (100–200 silica gel) using ethyl acetate:hexane (4:1, v/v) as eluent.

Yield = 92%; white solid; mp 160–162 °C; R_f 0.60 (3:7 EtOAc:hexane); IR (KBr) v_{max} : 3063, 1592 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 8.82 (1H, s, ArH), 8.58-8.50 (2H, m, ArH), 8.14 (1H, d, J = 8.25 Hz, ArH), 7.69-7.64 (1H, m, ArH), 7.53-7.48 (1H, m, ArH), 7.46-7.37 (3H, m, ArH), 3.96 (3H, s, CH₃); ¹³C NMR (75 MHz, CDCl₃) δ 160.9, 145.6, 139.9, 136.9, 132.6, 129.9, 128.6, 125.7, 123.8, 123.2, 122.2, 119.8, 115.1, 110.1, 106.4, 33.9; ESMS m/z: 277.1 [M⁺ + 1]; Anal. calcd for C₁₆H₁₂N₄O: C, 69.55; H, 4.38; N, 20.28; found: C, 69.50; H, 4.34; N, 20.22.

Compounds 4b, 14a, and 14b were synthesized analogously to compound 4a starting from 3b, 13a and 13b, respectively.

1*H*-**Benzo**[*d*][**1**,**2**,**3**]**triazol-1-yl-(5-methoxy-1-methyl-1***H*-**indol-3-yl**)**methanone (4b):** Yield = 70%; orange solid; mp 164–166 ^{°C}; *R*_f 0.54 (3:7 EtOAc:hexane); IR (KBr) v_{max} : 3019, 2921, 1669, cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 8.77 (1H, s, ArH), 8.51 (1H, d, *J* = 8.34 Hz, ArH), 8.14 (1H, d, *J* = 8.25 Hz, ArH), 8.05 (1H, d, *J* = 2.28 Hz, ArH), 7.66 (1H, t, *J* = 7.27 Hz, ArH), 7.50 (1H, t, *J* = 7.29 Hz, ArH), 7.32 (1H, d, *J* = 8.91 Hz, ArH), 7.03 (1H, dd, *J*₁ = 2.34 Hz, *J*₂ = 8.85 Hz, ArH), 3.98 (3H, s, OCH₃), 3.93 (3H, s, CH₃); ¹³C NMR (75 MHz, CDCl₃) δ 161.1, 156.9, 145.6, 139.8, 132.6, 131.9, 129.8, 129.6, 125.7, 119.9, 115.1, 114.2, 110.9, 105.9, 103.6, 55.9, 34.1; ESMS *m*/*z*: 307.1 [M⁺ + 1]; Anal. calcd for C₁₇H₁₄N₄O₂: C, 66.66; H, 4.61; N, 18.29; found: C, 66.60; H, 4.65; N, 18.22.

1*H*-Benzo[*d*][1,2,3]triazol-1-yl-(3,4-dimethoxyphenyl)methanone (14a): Yield = 90%; white solid; mp 130-132 °C; *R*_f 0.75 (3:7 EtOAc:hexane); IR (KBr) ν_{max}: 2938, 1689, 1268 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 8.36 (1H, d, *J* = 8.25 Hz, ArH), 8.16 (1H, d, *J* = 8.19 Hz, ArH), 8.04 (1H, dd, $J_1 = 1.92$ Hz, $J_2 = 8.52$ Hz, ArH), 7.83 (1H, s, ArH), 7.72-7.67 (1H, m, ArH), 7.53 (1H, t, J = 7.68 Hz, ArH), 7.03 (1H, d; J = 8.55 Hz, ArH), 4.00 (3H, s, OCH₃), 3.99 (3H, s, OCH₃); ¹³C NMR (75 MHz, CDCl₃) δ 165.4, 153.9, 148.7, 145.5, 132.5, 130.1, 127.2, 126.0, 123.3, 119.9, 114.8, 114.1, 110.2, 56.1, 56.0; ESMS *m*/*z*: 284.1 [M⁺ + 1]; Anal. calcd for C₁₅H₁₃N₃O₃: C, 63.60; H, 4.63; N, 14.83; found: C, 63.65; H, 4.60; N, 14.85.

1*H***-Benzo[***d***][1,2,3]triazol-1-yl-(3,4,5-trimethoxyphenyl)methanone (14b):** Yield = 95%; white solid; mp 126-128 °C, R_f 0.70 (3:7 EtOAc:hexane); IR (KBr) v_{max} : 3010, 1572 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 8.39 (1H, d, J = 8.25 Hz, ArH), 8.19 (1H, d, J = 8.16 Hz, ArH), 7.73 (1H, t, J = 7.65 Hz, ArH), 7.59-7.55 (3H, m, ArH), 4.01 (3H, s, OCH₃), 3.97 (6H, s, 2 x OCH₃); ¹³C NMR (75 MHz, CDCl₃) δ 165.8, 152.9, 145.7, 143.2, 132.6, 130.4, 126.3, 125.9, 120.2, 114.9, 109.6, 61.1, 56.4; ESMS m/z: 314.1 [M⁺ + 1]; Anal. calcd for C₁₆H₁₅N₃O₄: C, 61.34; H, 4.83; N, 13.41; found: C, 61.31; H, 4.87; N, 13.43.

Synthesis of 1-(1-methyl-1*H*-indol-3-yl)-2-nitroethan-1-one (5a): A mixture of the nitromethane (5.43 mmol) and potassium *tert*-butoxide (5.43 mmol) in DMSO (10 mL) was stirred for 10 min, while the temperature was maintained at 10 °C. 1*H*-benzo[*d*][1,2,3]triazol-1-yl-(1-methyl-1*H*-indol-3-yl)methanone (4a) (3.62 mmol) in DMSO (10 mL) was added dropwise to the resulting solution, and the mixture was stirred for 2 h at 10 °C and then at room temperature for 6 h. The mixture was poured into water (20 mL), acidified with acetic acid 10%; and then extracted with ethyl acetate (3 x 10 mL). The extract was washed with water, dried over Na₂SO₄ and the solvent was removed under reduced pressure. The residue was placed in a silicagel column and eluted with hexanes/EtOAc 10:1 to give 1-(1-methyl-1*H*-indol-3-yl)-2-nitroethan-1-one (5a).

Yield = 82%; yellow solid; mp 192–194 °C; R_f 0.16 (3:7 EtOAc:hexane); IR (KBr) v_{max} : 3060, 2951 cm⁻¹; ¹H NMR (300 MHz, DMSO- d_6) δ 8.42 (1H, s, ArH), 8.13 (1H, d, J = 6.69 Hz, ArH), 7.61 (1H, d, J = 7.41 Hz, ArH), 7.38-7.28 (2H, m, ArH), 6.15 (2H, s, CH₂), 3.90 (3H, s, CH₃); ¹³C NMR (75 MHz, DMSO- d_6) δ 180.7, 139.2, 137.5, 125.6, 123.7, 123.0, 121.1, 112.3, 111.2, 82.0, 33.6; ESMS m/z: 219.0 [M⁺ + 1]; Anal. calcd for C₁₁H₁₀N₂O₃: C, 60.55; H, 4.62; N, 12.84; found: C, 60.59; H, 4.65; N, 12.87.

Compounds **5b**, **15a**, and **15b** were synthesized analogously to compound **5a** starting from **4b**, **14a** and **14b**, respectively.

1-(5-Methoxy-1-methyl-1*H***-indol-3-yl)-2-nitroethan-1-one (5b):** Yield = 75% yellow solid; mp 170–172 °C; R_f 0.20 (3:7 EtOAc:hexane); IR (KBr) v_{max} : 3117, 1642, 1216 cm⁻¹; ¹H NMR (300 MHz, DMSO- d_6) δ 8.34 (1H, s, ArH), 7.62 (1H, d, J = 2.31 Hz, ArH), 7.52 (1H, d, J =8.91 Hz, ArH), 6.97 (1H, dd, $J_1 = 2.43$ Hz, $J_2 = 8.91$ Hz, ArH), 6.12 (2H, s, CH₂), 3.86 (3H, s, OCH₃), 3.79 (3H, s, CH₃); ¹³C NMR (75 MHz, DMSO- d_6) δ 180.6, 156.5, 139.1, 132.5, 126.6, 113.4, 112.2, 112.1, 103.0, 82.0, 55.5, 33.8; ESMS m/z: 249.0 [M⁺ + 1]; Anal. calcd for C₁₂H₁₂N₂O₄: C, 58.06; H, 4.87; N, 11.29; found: C, 58.00; H, 4.84; N, 11.34.

1-(3,4-Dimethoxyphenyl)-2-nitroethan-1-one (**15a**): Yield = 75%; yellow solid; mp 136– 138 °C R_f 0.42 (3:7 EtOAc:hexane); IR (KBr) v_{max} : 3444, 1683, 1268 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 7.49 (1H, d, J = 1.29 Hz, ArH), 7.40 (1H, d, J = 8.97 Hz, ArH), 6.92 (1H, d, J =9.31 Hz, ArH), 5.84 (2H, s, CH₂), 3.97 (3H, s, OCH₃), 3.94 (3H, s, OCH₃); ¹³C NMR (75 MHz, CDCl₃) δ 184.2, 154.9, 149.7, 126.5, 123.1, 110.4, 110.1, 81.0, 56.2, 56.1; ESMS *m/z*: 226.0 [M⁺ + 1]; Anal. calcd for C₁₀H₁₁NO₅: C, 53.33; H, 4.92; N, 6.22; found: C, 53.37; H, 4.90; N, 6.25. **2-Nitro-1-(3,4,5-trimethoxyphenyl)ethan-1-one (15b):** Yield = 76%; yellow solid; mp 134– 136 °C; R_f 0.10 (3:7 EtOAc:hexane); IR (KBr) v_{max} : 3053, 1559 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 7.09 (2H, s, ArH), 5.86 (2H, s, CH₂), 3.94 (3H, s, OCH₃), 3.91 (6H, s, 2 x OCH₃); ¹³C NMR (75 MHz, CDCl₃) δ 184.8, 153.5, 144.4, 128.5, 105.9, 81.4, 61.2, 56.5; ESMS *m/z*: 256.0 [M⁺ + 1]; Anal. calcd for C₁₁H₁₃NO₆: C, 51.77; H, 5.13; N, 5.49; found: C, 51.74; H, 5.17; N, 5.51.

Synthesis of (*E*)-3-(dimethylamino)-1-(1-methyl-1*H*-indol-3-yl)-2-nitroprop-2-en-1-one (6a): A mixture of 1-(1-methyl-1*H*-indol-3-yl)-2-nitroethan-1-one (5a) (4.57 mmol) and DMF-DMA (4.57 mmol) in DCM (10 mL) was stirred at rt for 6 h. The solvent was evaporated and the crude product was triturated with ether to get pure (*E*)-3-(dimethylamino)-1-(1-methyl-1*H*-indol-3-yl)-2-(nitromethyl)prop-2-en-1-one (6a).

Yield = 95%; yellow solid; mp 170–172 °C; R_f 0.15 (3:7 EtOAc:hexane); IR (KBr) v_{max} : 3010, 2951; ¹H NMR (300 MHz, DMSO- d_6) δ 8.41 (1H, s, ArH), 8.12-8.11 (2H, m, ArH), 7.55 (1H, d, J = 7.32 Hz, ArH), 7.34-7.24 (2H, m, ArH), 3.85 (3H, s, CH₃), 3.31 (3H, s, CH₃), 2.73 (3H, s, CH₃); ¹³C NMR (75 MHz, DMSO- d_6) δ 181.8, 150.9, 139.1, 137.7, 125.6, 124.3, 123.2, 122.5, 120.9, 117.4, 110.9, 47.1, 33.2; ESMS m/z: 274.0 [M⁺ + 1]; Anal. calcd for C₁₄H₁₅N₃O₃: C, 61.53; H, 5.53; N, 15.38; found: C, 61.50; H, 5.54; N, 15.36.

Compounds **6b**, **16a**, and **16b** were synthesized analogously to compound **6a** starting from **5b**, **15a** and **15b**, respectively.

(*E*)-3-(Dimethylamino)-1-(5-methoxy-1-methyl-1*H*-indol-3-yl)-2-nitroprop-2-en-1-one (6b): Yield = 85%; brown solid; mp 138–140 °C; R_f 0.08 (3:7 EtOAc:hexane); IR (KBr) v_{max} : 3229, 2365, 1638 cm⁻¹; ¹H NMR (300 MHz, DMSO- d_6) δ 8.39 (1H, s, ArH), 8.03 (1H, s, ArH), 7.63 (1H, d, J = 1.86 Hz, ArH), 7.45 (1H, d, J = 8.88 Hz, ArH), 6.94 (1H, dd, $J_1 = 2.37$ Hz, $J_2 =$ 8.85 Hz, ArH), 3.82 (3H, s, OCH₃), 3.81 (3H, s, CH₃), 3.20 (3H, s, CH₃), 2.73 (3H, s, CH₃); ¹³C NMR (75 MHz, DMSO- d_6) δ 182.1, 156.5 151.2, 139.7, 133.1, 126.8, 124.6, 117.5, 113.2, 112.2, 103.3, 55.8, 33.8; ESMS *m*/*z*: 304.1 [M⁺ + 1]; Anal. calcd for C₁₅H₁₇N₃O₄: C, 59.40; H, 5.65; N, 13.85; found: C, 59.44; H, 5.69; N, 13.82.

(*E*)-1-(3,4-Dimethoxyphenyl)-3-(dimethylamino)-2-nitroprop-2-en-1-one (16a): Yield = 78%; yellow solid; mp 154–156 °C; R_f 0.16 (3:7 EtOAc:hexane); IR (KBr) v_{max} : 3010, 1652, cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 8.34 (1H, s, ArH), 7.46-7.44 (2H, m, ArH), 6.87 (1H, d, J = 8.2 Hz, ArH), 3.93 (3H, s, OCH₃), 3.93 (3H, s, OCH₃), 3.33 (3H, s, CH₃), 2.76 (3H, s, CH₃); ¹³C NMR (400 MHz, CDCl₃) δ 186.9, 153.4, 152.6, 149.2, 131.3, 124.2, 123.9, 110.4, 110.2, 56.0, 55.9, 47.9, 41.5; ESMS *m*/*z*: 281.1 [M⁺ + 1]; Anal. calcd for C₁₃H₁₆N₂O₅: C, 55.71; H, 5.75; N, 9.99; found: C, 55.69; H, 5.72; N, 9.94.

(*E*)-3-(Dimethylamino)-2-nitro-1-(3,4,5-trimethoxyphenyl)prop-2-en-1-one (16b): Yield = 90%; yellow solid; mp 132–134 °C; R_f 0.10 (3:7 EtOAc:hexane); IR (KBr) v_{max} : 3410, 1653 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 8.35 (1H, s, ArH), 7.10 (2H, s, ArH), 3.89 (9H, s, CH₃), 3.37 (3H, s, CH₃), 2.78 (3H, s, CH₃); ¹³C NMR (75 MHz, CDCl₃) δ 187.0, 153.2, 152.8, 142.6, 133.5, 123.9, 107.0, 106.1, 60.9, 56.3, 48.0, 41.9; ESMS *m/z*: 311.1 [M⁺ + 1]; Anal. calcd for C₁₄H₁₈N₂O₆: C, 54.19; H, 5.85; N, 9.03; found: C, 54.25; H, 5.81; N, 9.00.

Compounds 7a,b and 17a-c were synthesized in a similar manner as described in reference [57].

4-(1-Methyl-1*H*-indol-3-yl)-5-nitropyrimidin-2-amine (7a):

Yield = 76%; yellow solid; mp >250 °C; $R_f 0.17$ (3:7 EtOAc:hexane); IR (KBr) v_{max} : 3015, 2960; ¹H NMR (300 MHz, DMSO- d_6) δ 8.85 (1H, s, ArH), 7.97-7.94 (2H, m, ArH), 7.76 (2H, s, NH₂), 7.53 (1H, d, J = 8.04 Hz, ArH), 7.28 (1H, t, J = 7.09 Hz, ArH), 7.17 (1H, t, J = 7.10 Hz, ArH), 3.87 (3H, s, CH₃); ¹³C NMR (75 MHz, DMSO- d_6) δ 162.9, 156.8, 156.6, 136.8, 134.6, 133.5, 126.1, 122.3, 121.4, 121.2, 110.6, 109.3, 33.1; ESMS *m*/*z*: 270.1 [M⁺ + 1]; Anal. calcd for C₁₃H₁₁N₅O₂: C, 57.99; H, 4.12; N, 26.01; found: C, 57.92; H, 4.17; N, 26.05.

4-(5-Methoxy-1-methyl-1*H***-indol-3-yl)-5-nitropyrimidin-2-amine (7b):** Yield = 77% yellow solid; mp 210–212 °C; $R_{\rm f}$ 0.15, (3:7 EtOAc:hexane); IR (KBr) v_{max} : 3018, 1641, 1216 cm⁻¹; ¹H NMR (300 MHz, DMSO- d_6) δ 8.83 (1H, s, ArH), 7.89 (1H, s, ArH), 7.74 (2H, s, NH₂) 7.47-7.42 (2H, m, ArH), 6.90 (1H, dd, J_1 = 2.28 Hz, J_2 = 8.82 Hz, ArH), 3.84 (3H, s, OCH₃), 3.80 (3H, s, CH₃); ¹³C NMR (75 MHz, DMSO- d_6) δ 162.9, 156.7, 156.6, 155.1, 134.87, 133.3, 131.9, 126.8, 112.0, 111.3, 108.7, 103.7, 55.4, 33.2; ESMS *m/z*: 300.1 [M⁺ + 1]; Anal. calcd for C₁₄H₁₃N₅O₃: C, 56.18; H, 4.38; N, 23.40; found: C, 56.15; H, 4.40; N, 23.43.

4-(3,4-Dimethoxyphenyl)-5-nitropyrimidin-2-amine (**17a**): Yield = 86%; yellow solid; mp 236–238 °C; R_f 0.21 (3:7 EtOAc:hexane); IR (KBr) v_{max} : 3093, 2365, 1647 cm⁻¹; ¹H NMR (300 MHz, DMSO- d_6) δ 8.92 (1H, s, ArH), 7.99 (2H, s, NH₂), 7.11 (1H, d, J = 1.20 Hz, ArH), 7.07-7.00 (2H, m, ArH), 3.81 (3H, s, OCH₃), 3.75 (3H, s, OCH₃); ¹³C NMR (50 MHz, DMSO- d_6) δ 163.0, 162.2, 156.9, 150.5, 148.2, 134.4, 128.1, 121.3, 111.7, 111.1, 55.6, 55.5; ESMS m/z: 277.0 [M⁺ + 1]; Anal. calcd for C₁₂H₁₂N₄O₄: C, 52.17; H, 4.38; N, 20.28; O; found: C, 52.19; H, 4.39; N, 20.32.

5-Nitro-4-(3,4,5-trimethoxyphenyl)pyrimidin-2-amine (**17b**): Yield = 72%; yellow solid; mp >250 °C; $R_f 0.30 (3:7 \text{ EtOAc:hexane})$; IR (KBr) v_{max} : 3150, 1576 cm⁻¹; ¹H NMR (300 MHz, DMSO- d_6) δ 8.92(1H, s, ArH), 6.73 (2H, s, ArH), 5.82 (2H, s, NH₂), 3.90 (3H, s, OCH₃), 3.87 (6H, s, 2 x OCH₃); ¹³C NMR (75 MHz, DMSO- d_6) δ 163.1, 162.3, 156.7, 153.3, 140.3, 136.2, 130.3, 105.5, 60.9, 56.3; ESMS *m*/*z*: 307.1 [M⁺ + 1]; Anal. calcd for C₁₃H₁₄N₄O₅: C, 50.98; H, 4.61; N, 18.29; found: C, 50.92; H, 4.65; N, 18.30. *N*,*N*-Dimethyl-5-nitro-4-(3,4,5-trimethoxyphenyl)pyrimidin-2-amine (17c): Yield = 85%; yellow solid; mp 164–166 °C; R_f 0.12 (3:7 EtOAc:hexane); IR (KBr) v_{max} : 3015, 2926, 1612 cm⁻¹; ¹H NMR (300 MHz, DMSO- d_6) δ 9.05 (1H, s, ArH), 6.84 (2H, s, ArH), 3.77 (6H, s, 2 x OCH₃), 3.73 (3H, s, OCH₃), 3.28 (6H, s, 2 x CH₃); ¹³C NMR (75 MHz, DMSO- d_6) δ 161.9, 160.3, 156.5, 152.6, 139.1, 133.4, 131.8, 105.8, 60.1, 56.1, 37.3; ESMS *m*/*z*: 335.1 [M⁺ + 1]; Anal. calcd for C₁₅H₁₈N₄O₅: C, 53.89; H, 5.43; N, 16.76; found: C, 53.91; H, 5.45; N, 16.79.

Synthesis of 2-amino-4-(1-methyl-1*H***-indol-3-yl)pyrimidin-5-ylamine (2a):** To a solution of 4-(1-methyl-1*H*-indol-3-yl)-5-nitropyrimidin-2-ylamine (**7a**) (3.71 mmol) in methanol (20 mL) was added 10% Pd on charcoal (0.1 g) and the reaction mixture was placed in hydrogenation assembly at ambient temperature for 2 h at a hydrogen pressure of 4 bar. After completion of the reaction as evident by TLC analysis, the reaction mixture was filtered over celite and the filtrate was concentrated and triturated with diethyl ether to furnish 4-(1-methyl-1*H*-indol-3-yl)pyrimidine-2,5-diamine (**2a**) as a light-yellow solid.

Yield = 93%; yellow solid; mp 158–160 °C; R_f 0.10 (3:7 EtOAc:hexane); IR (KBr) v_{max} : 3020, 2975 cm⁻¹; 1H NMR (300 MHz, DMSO- d_6) δ 8.68 (1H, d, J = 7.83 Hz, ArH), 8.16 (1H, s, ArH), 7.88 (1H, s, ArH), 7.48 (1H, d, J = 8.04 Hz, ArH), 7.26-7.21 (1H, m, ArH), 7.14 (1H, t, J = 7.11 Hz, ArH), 5.67 (2H, s, NH₂), 4.28 (2H, s, NH₂), 3.86 (3H, s, CH₃); ¹³C NMR (75 MHz, DMSO- d_6) δ 157.5, 149.2, 146.4, 136.4, 132.5, 129.4, 126.8, 123.5, 122.1, 120.0, 111.1, 109.6, 32.9; ESMS *m*/*z*: 240.1 [M⁺ + 1]; Anal. calcd for C₁₃H₁₃N₅: C, 65.25; H, 5.48; N, 29.27; found: C, 65.20; H, 5.49; N, 29.31.

Compounds 2b, 18a and 18b were synthesized analogously to compound 2a starting from 7b, 17a and 17b, respectively.

4-(5-Methoxy-1-methyl-1*H***-indol-3-yl)pyrimidine-2,5-diamine** (**2b**): Yield = 95%; yellow solid; mp 216–218 °C; $R_{\rm f}$ 0.02 (3:7 EtOAc:hexane); IR (KBr) v_{max} : 3316, 3019, 1216 cm⁻¹; ¹H NMR (300 MHz, DMSO-*d*₆) δ 8.17 (1H, d, *J* = 2.31 Hz, ArH), 8.10 (1H, s, ArH), 7.85 (1H, s, ArH), 7.37 (1H, d, *J* = 8.76 Hz, ArH), 6.87 (1H, dd, *J*₁ = 2.61 Hz, *J*₂ = 8.85 Hz, ArH), 5.65 (2H, s, NH₂), 4.24 (2H, s, NH₂), 3.82 (6H, s, OCH₃, CH₃); ¹³C NMR (75 MHz, DMSO-*d*₆) δ 157.6, 154.4, 149.6, 146.4, 133.0, 131.9, 129.3, 127.4, 111.9, 110.7, 110.4, 105.5, 55.5, 33.1; ESMS *m/z*: 270.0 [M⁺ + 1]; Anal. calcd for C₁₄H₁₅N₅O: C, 62.44; H, 5.61; N, 26.01; found: C, 62.40; H, 5.63; N, 26.04.

4-(3,4-Dimethoxyphenyl)pyrimidine-2,5-diamine (18a): Yield = 92%; yellow solid; mp 198–200 °C; $R_f 0.15$ (3:7 EtOAc:hexane); IR (KBr) v_{max} : 3153, 2367, 1633 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 7.91 (1H, s, ArH), 7.40 (2H, d, $J_1 = 4.9$ Hz, ArH), 7.03 (1H, d, J = 8.82 ArH), 5.73 (2H, s, NH₂), 4.29 (2H, s, NH₂), 3.80 (3H, s, OCH₃), 3.79 (3H, s, OCH₃); ¹³C NMR (75 MHz, DMSO- d_6) δ 157.5, 149.9, 149.3, 148.4, 147.5, 130.4, 129.9, 121.0, 111.8, 111.3, 55.5, 55.4; ESMS m/z: 247.1 [M⁺ + 1]; Anal. calcd for C₁₂H₁₄N₄O₂: C, 58.53; H, 5.73; N, 22.75; found: C, 58.50; H, 5.75; N, 22.79.

4-(3,4,5-Trimethoxyphenyl)pyrimidine-2,5-diamine (18b): Yield = 96%; yellow solid; mp 216–218 °C; $R_{\rm f}$ 0.10 (3:7 EtOAc:hexane); IR (KBr) v_{max} : 3197, 1624 cm⁻¹; ¹H NMR (300 MHz, DMSO- d_6) δ 7.93 (1H, s, ArH), 7.08 (2H, s, ArH), 5.74 (2H, s, NH₂), 4.38 (2H, s, NH₂), 3.82 (6H, s, 2 X OCH₃), 3.71 (3H, s, OCH₃); ¹³C NMR (75 MHz, DMSO- d_6) δ 157.5, 152.7, 149.5, 147.8, 137.9, 132.9, 130.6, 105.7, 60.1, 55.9; ESMS m/z: 277.1 [M⁺ + 1]; Anal. calcd for C₁₃H₁₆N₄O₃: C, 56.51; H, 5.84; N, 20.28; found: C, 56.55; H, 5.80; N, 20.30.

General Procedure for the synthesis of pyrimido-β-carbolines (9a–e and 12a–d): In a similar manner as described in a procedure from reference **[57]**.

6-(4-Chlorophenyl)-7-methyl-7*H*-pyrimido[4',5':5,6]pyrido[3,4-*b*]indol-2-amine (9a): Yield = 73%; yellow solid; mp >250 °C; R_f 0.20 (3:7 EtOAc:hexane); IR (KBr) v_{max} : 3020, 2850 cm⁻¹; ¹H NMR (300 MHz, DMSO-*d*₆) δ 9.11 (1H, s, ArH), 8.89 (1H, d, *J* = 7.68 Hz, ArH), 7.77-7.69 (3H, m, ArH), 7.65-7.62 (3H, m, ArH), 7.44 (1H, t, *J* = 7.26 Hz, ArH), 7.13(2H, s, NH₂), 3.54 (3H, s, CH₃); ¹³C NMR (75 MHz, DMSO-*d*₆) δ 161.3, 161.2, 145.3, 142.3, 140.9, 138.1, 135.7, 133.4, 131.4, 128.8, 128.1, 127.0, 123.6, 121.0, 120.9, 118.6, 110.7, 33.1; ESMS *m/z*: 360.1 [M⁺ + 1]; Anal. calcd for C₂₀H₁₄ClN₅: C, 66.76; H, 3.92; N, 19.46; found: C, 66.78; H, 3.95; N, 19.47.

6-(**4**-Ethoxyphenyl)-7-methyl-7*H*-pyrimido[**4**',**5**':**5**,**6**]pyrido[**3**,**4**-*b*]indol-2-amine (9b): Yield = 82%; yellow solid; mp >250 °C; $R_{\rm f}$ 0.16 (3:7 EtOAc:hexane); IR (KBr) v_{max} : 3010, 1590 cm⁻¹; ¹H NMR (300 MHz, DMSO-*d*₆) δ 9.10 (1H, s, ArH), 8.89 (1H, d, *J* = 7.74 Hz, ArH), 7.76 (1H, d, *J* = 8.34 Hz, ArH), 7.66-7.59 (3H, m, ArH), 7.44 (1H, t, *J* = 7.20 Hz, ArH), 7.12 (2H, s, NH₂), 7.08 (2H, d, *J* = 5.04 Hz, ArH), 4.14 (2H, q, *J* = 6.90 Hz, ArH), 3.56 (3H, s, CH₃), 1.40 (3H, t, *J* = 6.90 Hz, CH₃); ¹³C NMR (75 MHz, DMSO-*d*₆) δ 161.1, 158.8, 145.3, 143.7, 140.9, 136.0, 131.4, 130.8, 128.9, 126.9, 123.7, 121.2, 120.9, 118.5, 113.9, 110.8, 63.2, 33.0, 14.7; ESMS *m*/z: 370.1 [M⁺ + 1]; Anal. calcd for C₂₂H₁₉N₅O: C, 71.53; H, 5.18; N, 18.96; found: C, 71.50; H, 5.19; N, 18.98.

6-(4-Methoxyphenyl)-7-methyl-7*H*-pyrimido[4',5':5,6]pyrido[3,4-*b*]indol-2-ylamine (9c): Yield = 78%; yellow solid; mp >250 °C; R_f 0.16 (3:7 EtOAc:hexane); IR (KBr) v_{max} : 3010, 2851 cm⁻¹; ¹H NMR (300 MHz, DMSO-*d*₆) δ 9.10 (1H, s, ArH), 8.89 (1H, d, *J* = 7.83 Hz, ArH), 7.74 (1H, d, *J* = 8.34 Hz, ArH), 7.65-7.60 (3H, m, ArH), 7.43 (1H, t, *J* = 7.20 Hz, ArH), 7.12 (2H, d, *J* = 8.67 Hz, ArH), 7.07(2H, s, NH₂), 3.87 (3H, s, OCH₃), 3.55 (3H, s, CH₃); ¹³C NMR (75 MHz, DMSO-*d*₆) δ 161.1, 159.5, 156.6, 145.3, 143.7, 141.0, 136.1, 131.5, 130.8, 130.3, 128.9, 126.9, 123.7, 121.2, 120.9, 118.5, 114.4, 113.5, 110.8, 55.2, 33.0; ESMS m/z: 356.1 [M⁺ + 1]; Anal. calcd for C₂₁H₁₇N₅O: C, 70.97; H, 4.82; N, 19.71; found: C, 70.92; H, 4.83; N, 19.74.

6-(4-Bromophenyl)-7-methyl-7*H*-pyrimido[4',5':5,6]pyrido[3,4-*b*]indol-2-ylamine (9d): Yield = 85%; yellow solid; mp >250 °C; R_f 0.21 (3:7 EtOAc:hexane); IR (KBr) v_{max} : 3010, 2855 cm⁻¹; ¹H NMR (300 MHz, DMSO-*d*₆) δ 9.13 (1H, s, ArH), 8.89 (1H, d, *J* = 7.56 Hz, ArH), 8.01 (1H, d, *J* = 1.71 Hz, ArH), 7.85-7.62 (5H, m, ArH), 7.45 (1H, t, *J* = 7.41 Hz, ArH), 7.16 (2H, s, NH₂), 3.58 (3H, s, CH₃); ¹³C NMR (75 MHz, DMSO-*d*₆) δ 161.4, 161.2, 145.3, 140.9, 140.9, 139.7, 135.7, 131.4, 130.9, 130.2, 129.9, 128.7, 123.7, 121.0, 118.8, 110.8, 33.1; ESMS *m/z*: 404.1 [M⁺ + 1]; Anal. calcd for C₂₀H₁₄BrN₅: C, 59.42; H, 3.49; N, 17.32; found: C, 59.40; H, 3.46; N, 17.35.

6-(3,4-Dichlorophenyl)-7-methyl-7*H*-pyrimido[4',5':5,6]pyrido[3,4-*b*]indol-2-amine (9e): Yield = 80%; yellow solid; mp >250 °C; R_f 0.24 (3:7 EtOAc:hexane); IR (KBr) v_{max} : 3050, 1586 cm⁻¹; ¹H NMR (300 MHz, DMSO-*d*₆) δ 9.11 (1H, s, ArH), 8.88 (1H, d, *J* = 7.62 Hz, ArH), 7.83-7.61 (3H, m, ArH), 7.67-7.61 (3H, m, ArH), 7.43 (1H, t, *J* = 7.32 Hz, ArH), 7.14 (2H, s, NH₂), 3.53 (3H, s, CH₃); ¹³C NMR (75 MHz, DMSO-*d*₆) δ 161.3, 161.2, 145.3, 142.4, 140.9, 138.5, 135.7, 131.7, 131.0, 128.8, 127.0, 123.7, 122.1, 121.1, 118.7, 110.8, 33.2; ESMS *m/z*: 394.1 [M⁺ + 1]; Anal. calcd for C₂₀H₁₃Cl₂N₅: C, 60.93; H, 3.32; N, 17.76; found: C, 60.90; H, 3.30; N, 17.78.

10-Methoxy-7-methyl-6-(4-chlorophenyl)-6,7-dihydro-5H-pyrimido[4',5':5,6]pyrido[3,4-

b]indol-2-amine (12a): Yield = 90% yellow solid; mp 244–246 °C; R_f 0.30 (5:5 EtOAc:hexane); IR (KBr) v_{max} : 3194, 1624, 1455 cm⁻¹; ¹H NMR (300 MHz, DMSO- d_6) δ 7.95 (1H, s, ArH), 7.59 (1H, s, ArH), 7.45 (1H, d, J=8.91 Hz, ArH), 7.17 (2H, d, J = 8.43 Hz, ArH), 7.03 (1H, d, J = 8.91 Hz, ArH), 6.85 (2H, d, J = 8.43 Hz, ArH), 5.94 (2H, s, NH₂), 5.66 (1H, s, CH), 5.66 (1H, s, NH), 3.90 (3H, s, OCH₃), 3.74 (3H, s, CH₃); ¹³C NMR (50 MHz, DMSO- d_6) δ 158.6, 152.3, 150.2, 149.2, 142.1, 132.7, 131.1, 130.8, 129.5, 128.1, 127.9, 125.9, 121.1, 113.2, 109.7, 107.8, 56.8, 55.7, 33.1; ESMS m/z: 392.1 [M⁺ + 1]; Anal. calcd for C₂₁H₁₈ClN₅O: C, 64.37; H, 4.63; N, 17.87; found: C, 64.35; H, 4.60; N, 17.85.

10-Methoxy-7-methyl-6-(4-fluorophenyl)-6,7-dihydro-5H-pyrimido[4',5':5,6]pyrido[3,4-

b]indol-2-amine (12b): Yield = 91%; yellow solid; mp 238–240 °C; R_f 0.025 (5:5 EtOAc:hexane); IR (KBr) v_{max} : 3464, 2925, 1212 cm⁻¹; ¹H NMR (300 MHz, DMSO- d_6) δ 7.94 (1H, s, ArH), 7.59 (1H, s, ArH), 7.44 (1H, d, J = 8.91Hz, ArH), 7.03 (1H, d, J = 8.88 Hz, ArH), 6.95-6.83 (4H, m, ArH), 5.94 (2H, s, NH₂), 5.64 (1H, s, CH), 5.64 (1H, s, NH,), 3.89 (3H, s, OCH₃), 3.74 (3H, s, CH₃); ¹³C NMR (50 MHz, DMSO- d_6) δ 158.6, 152.3, 150.3, 149.2, 139.3, 132.8, 131.1, 129.6, 129.4, 128.2, 125.9, 121.5, 114.9, 114.4, 113.3, 109.7, 107.9, 56.8, 55.6, 33.1; ESMS *m/z*: 376.2 (M⁺+1); Anal. calcd for C₂₁H₁₈FN₅O: C, 67.19; H, 4.83; N, 18.66; found: C, 67.2; H, 4.82; N, 18.64.

10-Methoxy-7-methyl-6-(4-methoxyphenyl)-6,7-dihydro-5H-pyrimido[4',5':5,6]pyrido[3,4-

b]indol-2-amine (12c): Yield = 87%; yellow solid; mp 214–216 °C; R_f 0.05 (5:5 EtOAc:hexane); IR (KBr) v_{max} : 3458, 3019, 1216 cm⁻¹; ¹H NMR (300 MHz, DMSO-*d*₆) δ 7.93 (1H, s, ArH), 7.59 (1H, s, ArH), 7.42 (1H, d, J = 8.88 Hz, ArH), 7.02 (1H, d, J = 8.91 Hz, ArH), 6.75 (2H, d, J = 8.64 Hz, ArH), 6.64 (2H, d, J = 8.7 Hz, ArH), 5.89 (2H, s, NH₂), 5.61 (1H, s, CH), 5.61 (1H, s, NH), 3.89 (3H, s, OCH₃), 3.72 (3H, s, OCH₃) 3.60 (3H, s, CH₃); ¹³C NMR (50 MHz, DMSO-*d*₆) δ 158.52, 157.5, 152.2, 150.2, 149.1, 135.0, 132.8, 130.9, 128.7, 128.6, 126.0, 122.2, 113.5, 113.2, 109.4, 108.0, 56.8, 55.7, 54.8, 33.1; ESMS *m*/*z*: 388.2 [M⁺ + 1]; Anal. calcd for C₂₂H₂₁N₅O₂: C, 68.20; H, 5.46; N, 18.08; found: C, 68.21; H, 5.47; N, 18.06.

10-Methoxy-7-methyl-6-(3,4-dimethoxyphenyl)-6,7-dihydro-5H-pyrimido[4',5':5,6]pyr-

ido[3,4-*b*]indol-2-amine (12d): Yield = 88%; yellow solid; mp >250 °C; R_f 0.02 (5:5 EtOAc:hexane); IR (KBr) v_{max} : 3098, 2363, 16636 cm⁻¹; ¹H NMR (300 MHz, DMSO-*d*₆) δ 7.92 (1H, s, ArH), 7.66 (1H, s, ArH), 7.43 (1H, d, J = 8.94 Hz, ArH), 7.03 (1H, d, J = 8.85 Hz, ArH), 6.94 (1H, s, ArH), 6.52 (1H, d, J = 8.4 Hz, ArH), 5.92 (1H, s, ArH), 5.89 (2H, s, NH₂), 5.56 (1H, s, CH), 5.56 (1H, s, NH), 3.90 (3H, s, OCH₃), 3.75 (3H, s, OCH₃) 3.64 (3H, s, OCH₃) 3.59 (3H, s, CH₃); ¹³C NMR (50 MHz, DMSO-*d*₆) δ 158.5, 152.1, 150.2, 149.2, 148.4, 147.1, 135.4, 132.7, 130.8, 128.6, 126.0, 121.9, 119.2, 113.4, 112.1, 110.6, 109.3, 107.8, 56.8, 55.9, 55.3, 55.1, 33.0; ESMS *m*/*z*: 418.2 [M⁺ + 1]; Anal. calcd for C₂₃H₂₃N₅O₃: C, 66.17; H, 5.55; N, 16.78; found: C, 66.19; H, 5.57; N, 16.76.

Synthesis of *N*,*N*-dimethyl-4-(1-methyl-1*H*-indol-3-yl)-5-nitropyrimidin-2-amine (8): To a stirred solution of dimethylguanidine sulfate salt (17.34 mmol) and sodium methoxide (17.34 mmol) in methanol (20 mL) was added (*E*)-3-(dimethylamino)-1-(1-methyl-1*H*-indol-3-yl)-2-(nitromethyl)prop-2-en-1-one (**6a**) (5.78 mmol) and the reaction mixture was heated under reflux for 16 h. After completion of the reaction as evident by TLC analysis, ethanol was distilled off, water (20 mL) was added, and the title compound was extracted with ethyl acetate (3 x 15 mL). The organic layer was washed with brine, dried over Na₂SO₄ and concentrated in vacuo. The obtained residue was triturated with diethyl ether to furnish pure compound **8** as a light-yellow solid.

Yield = 76%; yellow solid; mp 132–134 °C; R_f 0.62 (3:7 EtOAc:hexane); IR (KBr) v_{max} : 2990, 2851 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 8.96 (1H, s, ArH), 8.08 (1H, d, J = 7.59 Hz, ArH), 7.77 (1H, s, ArH), 7.38-7.22 (3H, m, ArH), 3.85 (3H, s, CH₃), 3.38 (3H, s, CH₃), 3.35 (3H, s, CH₃); ¹³C NMR (75 MHz, CDCl₃) δ 160.9, 156.4, 137.2, 134.4, 132.9, 126.8, 122.8, 121.8,

121.6, 110.6, 109.9, 37.9, 33.4; ESMS m/z: 298.1 [M⁺ + 1]; Anal. calcd for C₁₅H₁₅N₅O₂: C, 60.60; H, 5.09; N, 23.56; found: C, 60.64; H, 5.05; N, 23.59.

Compounds 2c and 18c were synthesized analogously to compound 2a starting from 8 and 17c, respectively.

 N^2 , N^2 -Dimethyl-4-(1-methyl-1*H*-indol-3-yl)pyrimidine-2,5-diamine (2c):Yield = 95%; yellow solid; mp 164–166 °C; R_f 0.40 (3:7 EtOAc:hexane); IR (KBr) v_{max} : 3060, 2850 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 8.49 (1H, d, J = 7.71 Hz, ArH), 7.97 (1H, s, ArH), 7.88 (1H, s, ArH), 7.38-7.22 (3H, m, ArH), 3.85 (3H, s, CH₃), 3.23 (6H, s, 2 X CH₃); ¹³C NMR (75 MHz, CDCl₃) δ 158.6, 150.4, 146.5, 137.2, 131.2, 126.9, 122.8, 122.7, 120.7, 112.4, 109.4, 37.8, 33.2; ESMS m/z: 268.2 [M⁺ + 1]; Anal. calcd for C₁₅H₁₇N₅: C, 67.39; H, 6.41; N, 26.20; found: C, 67.44; H, 6.40; N, 26.16

 N^2 , N^2 -Dimethyl-4-(3,4,5-trimethoxyphenyl)pyrimidine-2,5-diamine (18c): Yield = 92%; yellow solid; mp 126–128 °C; R_f 0.46 (3:7 EtOAc:hexane); IR (KBr) v_{max} : 3320, 2930, 1596 cm⁻¹; ¹H NMR (300 MHz, DMSO- d_6) δ 8.06 (1H, s, ArH), 7.18 (2H, s, ArH), 4.45 (2H, s, NH₂), 3.82 (6H, s, 2 x OCH₃), 3.72 (3H, s, OCH₃), 3.05 (6H, s, 2 x CH₃); ¹³C NMR (75 MHz, DMSO- d_6) δ 156.9, 152.7, 148.9, 147.7, 138.0, 133.2, 129.9, 105.7, 60.0, 55.8, 37.2; ESMS m/z: 305.3 [M⁺ + 1]; Anal. calcd for C₁₅H₂₀N₄O₃: C, 59.20; H, 6.62; N, 18.41; found: C, 57.20; H, 6.65; N, 18.45.

General Procedure for the synthesis of pyrimido-β-carbolines (9f–k and 20a–l): In a similar manner as described in a procedure from reference [57].

6-(4-Bromophenyl)-*N*,*N*,7-trimethyl-7*H*-pyrimido[4',5':5,6]pyrido[3,4-*b*]indol-2-amine (9f): Yield = 72%; yellow solid; mp 230–232 °C; R_f 0.70 (3:7 EtOAc:hexane); IR (KBr) v_{max} : 3010, 2851 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 9.26 (1H, s, ArH), 8.93 (1H, d, *J* = 7.71 Hz, ArH), 7.70 (2H, d, J = 8.31 Hz, ArH), 7.65-7.44 (5H, m, ArH), 3.56 (3H, s, CH₃), 3.47 (6H, s, 2 x CH₃); ¹³C NMR (75 MHz, CDCl₃) δ 161.0, 159.9, 145.7, 142.6, 141.5, 138.7, 136.4, 131.7, 131.1, 128.9, 127.1, 124.5, 123.2, 122.1, 121.4, 120.2, 109.8, 37.7, 33.3; ESMS *m*/*z*: 432.2 [M⁺ + 1]; Anal. calcd for C₂₂H₁₈BrN₅: C, 61.12; H, 4.20; N, 16.20; found: C, 61.10; H, 4.24; N, 16.23.

N,*N*,7-Trimethyl-6-(4-nitrophenyl)-7*H*-pyrimido[4',5':5,6]pyrido[3,4-*b*]indol-2-amine (9g): Yield = 76%; yellow solid; mp 234–236 °C; R_f 0.62 (3:7 EtOAc:hexane); IR (KBr) v_{max} : 3000, 2910 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 9.26 (1H, s, ArH), 8.95 (1H, d, J = 7.77 Hz, ArH), 8.43 (2H, d, J = 8.58 Hz, ArH), 7.90 (2H, d, J = 8.58 Hz, ArH), 7.67-7.63 (1H, m, ArH), 7.54-7.47 (2H, m, ArH), 3.56 (3H, s, CH₃), 3.48 (6H, s, 2 x CH₃); ¹³C NMR (75 MHz, CDCl₃) δ 161.3, 160.0, 148.0, 146.3, 145.7, 141.6, 130.6, 129.1, 127.5, 124.6, 123.8, 122.2, 121.7, 116.0, 109.9, 37.8, 33.7, 29.8; ESMS *m*/*z*: 399.2 [M⁺ + 1]; Anal. calcd for C₂₂H₁₈N₆O₂: C, 66.32; H, 4.55; N, 21.09; found: C, 66.35; H, 4.50; N, 21.05.

6-(4-Methoxyphenyl)-N,N,7-trimethyl-7H-pyrimido[4',5':5,6]pyrido[3,4-b]indol-2-amine

(**9h**): Yield = 79%; yellow solid; mp 200–202 °C; R_f 0.22 (3:7 EtOAc:hexane); IR (KBr) v_{max} : 3060, 2850, 1590 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 9.27 (1H, s, ArH), 8.94 (1H, d, J =7.77 Hz, ArH), 7.60 (3H, d, J = 8.49 Hz, ArH), 7.51-7.43 (2H, m, ArH), 7.08 (2H, d, J = 8.58 Hz, ArH), 3.91 (3H, s, OCH₃), 3.56 (3H, s, CH₃), 3.46 (6H, s, 2 x CH₃); ¹³C NMR (75 MHz, CDCl₃) δ 160.8, 160.1, 159.8, 145.7, 144.0, 141.4, 136.7, 132.2, 130.7, 128.9, 126.8, 124.4, 122.1, 121.4, 119.9, 113.9, 109.8, 55.5, 37.7, 33.1; ESMS *m*/*z*: 384.1 [M⁺ + 1]; Anal. calcd for C₂₃H₂₁N₅O: C, 72.04; H, 5.52; N, 18.26; found: C, 72.00; H, 5.50; N, 18.28.

6-(3,4-Dimethoxyphenyl)-N,N,7-trimethyl-7H-pyrimido[4',5':5,6]pyrido[3,4-b]indol-2-

amine (9i): Yield = 81%; yellow solid; mp 214–216 °C; R_f 0.12 (3:7 EtOAc:hexane); IR (KBr) v_{max} : 3010, 1590 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 9.28 (1H, s, ArH), 8.95 (1H, d, J = 7.89 Hz, ArH), 7.64-7.59 (1H, m, ArH), 7.53-7.44 (2H, m, ArH), 7.20 (2H, d, J = 7.38 Hz, ArH), 7.03 (1H, d, J = 8.10 Hz, ArH), 3.98 (3H, s, OCH₃), 3.95 (3H, s, OCH₃), 3.58 (3H, s, CH₃), 3.47 (6H, s, 2 x CH₃); ¹³C NMR (75 MHz, CDCl₃) δ 160.9, 159.9, 149.6, 149.0, 145.8, 143.9, 141.5, 136.7, 132.3, 128.8, 126.9, 124.5, 122.2, 121.3, 119.9, 112.5, 111.1, 109.8, 56.1, 37.7, 33.0; ESMS *m*/*z*: 414.2 [M⁺ + 1]; Anal. calcd for C₂₄H₂₃N₅O₂: C, 69.72; H, 5.61; N, 16.94; found: C, 69.70; H, 5.54; N, 16.97.

6-(**4**-Chlorophenyl)-*N*,*N*,7-trimethyl-7*H*-pyrimido[**4**',**5**':**5**,**6**]pyrido[**3**,**4**-*b*]indol-2-amine (**9**j): Yield = 86%; yellow solid; mp 224–226 °C; R_f 0.46 (3:7 EtOAc:hexane); IR (KBr) v_{max} : 3063, 2851, 1690 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 9.26 (1H, s, ArH), 8.93 (1H, d, *J* = 7.77 Hz, ArH), 7.64-7.61 (3H, m, ArH), 7.55-7.44 (4H, m, ArH), 3.55 (3H, s, CH₃), 3.47 (6H, s, 2 x CH₃); ¹³C NMR (75 MHz, CDCl₃) δ 160.9, 159.8, 145.6, 142.5, 141.4, 138.2, 136.4, 134.9, 130.8, 128.8, 128.7, 127.0, 124.4, 122.0, 121.4, 120.1, 109.7, 37.6, 33.2; ESMS *m*/*z*: 388.2 [M⁺ + 1]; Anal. calcd for C₂₂H₁₈ClN₅: C, 68.13; H, 4.68; N, 18.06; found: C, 68.13; H, 4.64; N, 18.00.

6-(2-Chlorophenyl)-*N*,*N*,7-trimethyl-7*H*-pyrimido[4',5':5,6]pyrido[3,4-*b*]indol-2-amine (9k): Yield = 78%; yellow solid; mp 198–200 °C; R_f 0.45 (3:7 EtOAc:hexane); IR (KBr) v_{max} : 3063, 2851, 1690 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 9.29 (1H, s, ArH), 8.95 (1H, d, *J* = 7.74 Hz, ArH), 7.64-7.44 (7H, m, ArH), 3.52 (3H, s, CH₃), 3.48 (6H, s, 2 x CH₃); ¹³C NMR (75 MHz, CDCl₃) δ 161.2, 160.1, 146.1, 141.3, 141.2, 138.7, 136.7, 134.2, 131.6, 130.5, 129.7, 128.8, 127.4, 127.0, 124.5, 122.1, 121.4, 119.6, 109.8, 37.8, 31.0; ESMS *m/z*: 388.2 [M⁺ + 1]; Anal. calcd for C₂₂H₁₈ClN₅: C, 68.13; H, 4.68; N, 18.06; found: C, 68.15; H, 4.67; N, 18.02.

6-(4-Fluorophenyl)-8,9-dimethoxypyrimido[5,4-*c*]isoquinolin-2-amine (20a): Yield = 86%; yellow solid; mp 246–248 °C; $R_{\rm f}$ 0.05 (3:7 EtOAc:hexane); IR (KBr) v_{max} : 2889, 2368, 1651 cm⁻¹; ¹H NMR (400 MHz, DMSO- d_6) δ 9.04 (1H, s, ArH), 8.25 (1H, s, ArH), 7.83-7.78 (2H, m, ArH), 7.43-7.37 (2H, m, ArH), 7.32 (1H, s, ArH), 7.11 (2H, s, NH₂), 4.02 (3H, s, OCH₃), 3.82 (3H, s, OCH₃); ¹³C NMR (100 MHz, DMSO- d_6) δ 161.9, 161.7, 154.0, 152.7, 152.3, 145.8, 136.2, 132.0, 132.0, 130.0, 127.4, 124.3, 115.8, 115.5, 108.0, 103.8, 56.4, 56.2, 55.2; ESMS *m*/*z*: 351.3 [M⁺ + 1]; Anal. calcd for C₁₉H₁₅FN₄O₂: C, 65.14; H, 4.32; F, 5.42; N, 15.99; found: C, 65.12; H, 4.30; F, 5.40; N, 15.98.

6-(**4**-Bromophenyl)-8,9-dimethoxypyrimido[5,4-*c*]isoquinolin-2-amine (20b): Yield = 82%; yellow solid; mp >250 °C; R_f 0.06 (3:7 EtOAc:hexane); IR (KBr) v_{max} : 3182, 2850, 1645 cm⁻¹; ¹H NMR (300 MHz, DMSO-*d*₆) δ 9.04 (1H, s, ArH), 8.23 (1H, s, ArH), 7.79-7.70 (4H, m, ArH), 7.31 (1H, s, ArH), 7.10 (2H, s, NH₂) 4.00 (3H, s, OCH₃), 3.82 (3H, s, OCH₃); ¹³C NMR (100 MHz, DMSO-*d*₆) δ 161.1, 160.9, 152.9, 151.9, 151.4, 144.9, 138.1, 131.2, 130.9, 129.2, 126.6, 123.3, 121.6, 107.1, 102.9, 55.6, 55.4; ESMS *m*/*z*: 411.1 [M⁺ + 1]; Anal. calcd for C₁₉H₁₅BrN₄O₂: C, 55.49; H, 3.68; N, 13.62; found: C, 55.47; H, 3.66; N, 13.60.

6-(**4**-Chlorophenyl)-8,9-dimethoxypyrimido[5,4-c]isoquinolin-2-amine (20c): Yield = 80%; yellow solid; mp >250 °C; R_f 0.05 (3:7 EtOAc:hexane); IR (KBr) v_{max} : 3166, 2370, 1648 cm⁻¹; ¹H NMR (300 MHz, DMSO- d_6) δ 9.04 (1H, s, ArH), 8.24 (1H, s, ArH), 7.78 (2H, d, J = 8.31, ArH), 7.63 (2H, d, J = 8.22, ArH), 7.31 (1H, s, ArH), 7.12 (2H, s, NH₂), 4.00 (3H, s, OCH₃), 3.82 (3H, s, OCH₃); ¹³C NMR (100 MHz, CDCl₃) δ 161.2, 161.0, 153.0, 152.0, 151.5, 145.0, 137.8, 133.2, 131.0, 129.2, 128.1, 126.6, 123.4, 114.2, 107.1, 103.0, 55.6, 55.4, 54.4; ESMS *m/z*: 367.3 [M⁺ + 1]; Anal. calcd for C₁₉H₁₅ClN₄O₂: C, 62.21; H, 4.12; N, 15.27; ; found: C, 62.20; H, 4.10; N, 15.28.

7,8,9-Trimethoxy-6-(4-methoxyphenyl)pyrimido[**5,4-***c*]isoquinolin-2-amine (**20d**): Yield = 89%; yellow solid; mp >250 °C; $R_{\rm f}$ 0.21 (3:7 EtOAc:hexane); IR (KBr) v_{max} : 3021, 1598 cm⁻¹; ¹H NMR (300 MHz, DMSO- d_6) δ 9.01 (1H, s, ArH), 8.21 (1H, s, ArH), 7.60 (2H, d, J = 8.31 Hz,

S18

ArH), 7.40 (2H, d, J = 8.31 Hz, ArH), 7.17 (2H, s, NH₂), 4.05 (3H, s, OCH₃), 3.84 (3H, s, OCH₃), 3.31 (3H, s, OCH₃), 3.28 (3H, s, OCH₃); ¹³C NMR (75 MHz, DMSO-*d*₆) δ 161.4, 161.2, 158.5, 155.9, 153.2, 150.4, 144.7, 135.7, 129.7, 129.3, 118.5, 112.2, 99.6, 60.9, 60.8, 56.1, 55.1; ESMS *m*/*z*: 393.2 [M⁺ + 1]; Anal. calcd for C₂₁H₂₀N₄O₄: C, 64.28; H, 5.14; N, 14.28; found: C, 64.30; H, 5.12; N, 14.25.

7,8,9-Trimethoxy-6-(4-chlorophenyl)pyrimido[**5,4-***c***]isoquinolin-2-amine (20e):** Yield = 83%; yellow solid; mp >250 °C; R_f 0.23 (3:7 EtOAc:hexane); IR (KBr) v_{max} : 3063, 1626 cm⁻¹; ¹H NMR (300 MHz, DMSO-*d*₆) δ 9.02 (1H, s, ArH), 8.22 (1H, s, ArH), 7.47 (4H, s, ArH), 7.20 (2H, s, NH₂), 4.05 (3H, s, OCH₃), 3.84 (3H, s, OCH₃), 3.27 (3H, s, OCH₃); ¹³C NMR (75 MHz, DMSO-*d*₆) δ 162.0, 161.8, 156.6, 152.5, 150.5, 145.3, 145.1, 142.7, 132.1, 130.6, 129.7, 129.3, 127.3, 118.8, 100.1, 61.2, 61.2, 56.6; ESMS *m*/*z*: 397.1 [M⁺ + 1]; Anal. calcd for C₂₀H₁₇ClN₄O₃: C, 60.53; H, 4.32; N, 14.12; found: C, 60.50; H, 4.35; N, 14.17.

7,8,9-Trimethoxy-6-(4-fluorophenyl)pyrimido[5,4-*c***]isoquinolin-2-amine (20f):** Yield = 85%; yellow solid; mp >250 °C; R_f 0.22 (3:7 EtOAc:hexane); IR (KBr) v_{max} : 3022, 1621 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 9.01 (1H, s, ArH), 8.21 (1H, s, ArH), 7.50-7.46 (2H, m, ArH), 7.26-7.16 (2H, m, ArH), 7.16 (2H, s, NH₂), 4.04 (3H, s, OCH₃), 3.84 (3H, s, OCH₃), 3.25 (3H, s, OCH₃); ¹³C NMR (75 MHz, CDCl₃) δ 161.5, 161.3, 156.1, 152.4, 150.1, 144.8, 144.7, 139.8, 139.7, 130.4, 130.2, 129.2, 128.8, 118.5, 113.9, 113.4, 99.7, 60.76, 56.1; ESMS *m*/*z*: 381.2 [M⁺ + 1]; Anal. calcd for C₂₀H₁₇FN₄O₃: C, 63.15; H, 4.50; N, 14.73; found: C, 63.12; H, 4.53; N, 14.75.

7,8,9-Trimethoxy-6-(4-bromophenyl)pyrimido[**5,4-***c*]isoquinolin-2-amine (**20g**): Yield = 87%; yellow solid; mp >250 °C; $R_{\rm f}$ 0.19 (3:7 EtOAc:hexane); IR (KBr) v_{max} : 3021, 1608 cm⁻¹; ¹H NMR (300 MHz, DMSO-*d*₆) δ 9.07 (1H, s, ArH), 8.27 (1H, s, ArH), 7.66 (2H, d, *J* = 8.34 Hz,

ArH), 7.46 (2H, d, J = 8.34 Hz, ArH), 7.23 (2H, s, NH₂), 4.11 (3H, s, OCH₃), 3.90 (3H, s, OCH₃), 3.34 (3H, s, OCH₃); ¹³C NMR (75 MHz, DMSO-*d*₆) δ 161.6, 161.3, 156.2, 152.1, 150.0, 144.9, 144.6, 142.6, 130.4, 129.8, 129.2, 128.8, 120.2, 118.3, 99.6, 60.8, 60.7, 56.1; ESMS *m*/*z*: 441.1 [M⁺ + 1]; Anal. calcd for C₂₀H₁₇BrN₄O₃: C, 54.44; H, 3.88; N, 12.70; found: C, 54.40; H, 3.89; N, 12.73.

N,*N*-Dimethyl-*N*-(7,8,9-trimethoxy-6-(4-nitrophenyl)pyrimido[5,4-*c*]isoquinolin-2-yl)amine

(20h): Yield = 81%; yellow solid; mp 186–188 °C; R_f 0.62 (3:7 EtOAc:hexane); IR (KBr) v_{max} : 3016, 2941, 1599 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 9.19 (1H, s, ArH), 8.36-8.33 (3H, m, ArH), 7.68 (2H, d, J = 8.64 Hz, ArH), 5.53 (2H, s, NH₂), 4.18 (3H, s, OCH₃), 3.97 (3H, s, OCH₃), 3.37 (3H, s, CH₃); ¹³C NMR (75 MHz, CDCl₃) δ 161.7, 161.4, 156.4, 151.1, 150.1, 149.6, 146.3, 144.9, 144.5, 129.4, 129.1, 128.7, 122.2, 118.1, 99.6, 60.7, 60.6, 56.1; ESMS m/z: 408.2 [M⁺ + 1]; Anal. calcd for C₂₀H₁₇N₅O₅: C, 58.97; H, 4.21; N, 17.19; found: C, 58.93; H, 4.24; N, 17.15.

N,N-Dimethyl-N-(7,8,9-trimethoxy-6-(3,4-dimethoxyphenyl)pyrimido[5,4-c]isoquinolin-2-

yl)amine (20i): Yield = 84%; yellow solid; mp 126–128 °C; R_f 0.32 (3:7 EtOAc:hexane); IR (KBr) v_{max} : 3020, 2933, 1595 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 9.18 (1H, s, ArH), 8.33 (1H, s, ArH), 7.10-7.08 (2H, m, ArH), 6.97-6.94 (1H, m, ArH), 4.14 (3H, s, OCH₃), 3.95 (6H, s, 2 x OCH₃), 3.91 (3H, s, OCH₃), 3.41 (6H, s, 2 x CH₃), 3.38 (3H, s, OCH₃); ¹³C NMR (75 MHz, CDCl₃) δ 161.0, 159.8, 156.2, 153.9, 150.9, 148.5, 147.9, 145.3, 145.2, 136.4, 130.3, 128.6, 120.9, 119.4, 112.1, 110.4, 99.9, 61.3, 61.1, 56.0, 55.9, 37.4; ESMS *m/z*: 451.1 [M⁺ + 1]; Anal. calcd for C₂₄H₂₆N₄O₅: C, 63.99; H, 5.82; N, 12.44; found: C, 63.97; H, 5.80; N, 12.40.

N,*N*-Dimethyl-*N*-(7,8,9-trimethoxy-6-(3,4-dichlorophenyl)pyrimido[5,4-c]isoquinolin-2-

yl)amine (20j): Yield = 83%; yellow solid; mp 122–124 °C; R_f 0.63 (3:7 EtOAc:hexane); IR

(KBr) v_{max} : 3063, 2851, 1590 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 9.15 (1H, s, ArH), 8.31 (1H, s, ArH), 7.63 (1H, d, J = 1.38 Hz, ArH), 7.51 (1H, d, J = 8.19 Hz, ArH), 7.37-7.34 (1H, m, ArH), 4.13 (3H, s, OCH₃), 3.95 (3H, s, OCH₃), 3.42 (3H, s, OCH₃), 3.41 (6H, s, 2 x CH₃); ¹³C NMR (75 MHz, CDCl₃) δ 156.6, 151.6, 150.4, 145.5, 145.2, 143.7, 135.9, 131.4, 131.4, 130.4, 130.3, 129.3, 128.7, 128.3, 128.0, 125.6, 119.0, 100.1, 61.2, 61.0, 56.2, 37.6; ESMS *m/z*: 459.2 [M⁺ + 1]; Anal. calcd for C₂₂H₂₀Cl₂N₄O₃: C, 57.53; H, 4.39; N, 12.20; found: C, 57.57; H, 4.41; N, 12.25.

N,*N*-Dimethyl-*N*-(7,8,9-trimethoxy-6-(4-bromophenyl)pyrimido[5,4-*c*]isoquinolin-2-

yl)amine (20k): Yield = 87%; yellow solid; mp 190–192 °C; R_f 0.62 (3:7 EtOAc:hexane); IR (KBr) v_{max} : 3018, 2944, 1596 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 9.15 (1H, s, ArH), 8.32 (1H, s, ArH), 7.57 (2H, d, J = 8.25 Hz, ArH), 7.40 (2H, d, J = 8.22 Hz, ArH), 4.13 (3H, s, OCH₃), 3.95 (3H, s, OCH₃), 3.40 (6H, s, 2 x CH₃), 3.36 (3H, s, OCH₃); ¹³C NMR (75 MHz, CDCl₃) δ 161.2, 159.9, 156.4, 153.0, 150.6, 145.4, 145.2, 142.6, 130.5, 130.1, 128.7, 119.2, 100.1, 61.2, 61.1, 56.1, 37.5; ESMS *m/z*: 469.2 [M⁺ + 1]; Anal. calcd for C₂₂H₂₁BrN₄O₃; C, 56.30; H, 4.51; N, 11.94.; found C, 56.32; H, 4.55; N, 11.96

N,N-Dimethyl-N-(7,8,9-trimethoxy-6-(4-methoxyphenyl)pyrimido[5,4-c]isoquinolin-2-

yl)amine (201): Yield = 95%; yellow solid; mp 154–156 °C; R_f 0.37 (3:7 EtOAc:hexane); IR (KBr) v_{max} : 3010, 2942, 1606 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 9.17 (1H, s, ArH), 8.33 (1H, s, ArH), 7.47 (2H, d, J = 8.55 Hz, ArH), 6.98 (2H, d, J = 8.52 Hz, ArH), 4.13 (3H, s, OCH₃), 3.96 (3H, s, OCH₃), 3.88 (6H, s, 2 x OCH₃), 3.40 (6H, s, 2 x CH₃); ¹³C NMR (75 MHz, CDCl₃) δ 161.1, 159.9, 159.1, 156.2, 154.1, 152.6, 151.0, 148.7, 145.3, 136.2, 130.4, 129.8, 128.8, 119.5, 114.3, 112.9, 107.9, 100.1, 61.3, 56.1, 55.4, 37.6; ESMS *m*/*z*: 421.2 [M⁺ + 1]; Anal. calcd for C₂₃H₂₄N₄O₄: C, 65.70; H, 5.75; N, 13.33; found: C, 65.72; H, 5.78; N, 13.30.

Figure 1: ¹H NMR of 4a.

Figure 2: ¹³C NMR of 4a.

Figure 3: ¹H NMR of 5a.

Figure 4: ¹³C NMR of 5a.

Figure 5: ¹H NMR of 6a.

Figure 6: ¹³C NMR of 6a.

Figure 7: ¹H NMR of 7a.

Figure 8: ¹³C NMR of 7a.

BKPK-800

Figure 9: ¹H NMR of 2a.

Figure 10: ¹³C NMR of 2a.

Figure 11: ¹H NMR of 9a.

Figure 12: ¹³C NMR of 9a.

Figure 13: ¹H NMR of 9b.

Figure 14: ¹³C NMR of 9b.

Figure 15: ¹H NMR of 9c.

Figure 16: ¹³C NMR of 9c.

Figure 17: ¹H NMR of 9d.

Figure 18: ¹³C NMR of 9d.

Figure 19: ¹H NMR of 9e.

Figure 20: ¹³C NMR of 9e.

Figure 21: ¹H NMR of 8.

Figure 22: ¹³C NMR of **8**.

Figure 23: ¹H NMR of 2c.

Figure 24: ¹³C NMR of 2c.

Figure 25: ¹H NMR of 9g.

Figure 26: ¹³C NMR of 9g.

Figure 27: ¹H NMR of 9h.

Figure 28: ¹³C NMR of 9h.

Figure 29: ¹H NMR of 9i.

Figure 30: ¹³C NMR of 9i.

Figure 31: ¹H NMR of 9f.

Figure 32: ¹³C NMR of 9f.

Figure 33: ¹H NMR of 9j.

Figure 34: ¹³C NMR of 9j.

Figure 35: ¹H NMR of 9k.

Figure 36: ¹³C NMR of 9k.

Figure 37: ¹H NMR of 4b.

Figure 38: ¹³C NMR of 4b.

Figure 39: ¹H NMR of 5b.

Figure 40: ¹³C NMR of **5b**.

Figure 41: ¹H NMR of 6b.

Figure 42: ¹³C NMR of 6b.

Figure 43: ¹H NMR of 7b.

Figure 44: ¹³C NMR of **7b**.

Figure 45: ¹H NMR of 2b.

Figure 46: ¹³C NMR of **2b**.

Figure 47: ¹H NMR of 12a.

Figure 48: ¹³C NMR of **12a**.

Figure 49: ¹H NMR of 12b.

Figure 50: ¹³C NMR of **12b**.

Figure 51: ¹H NMR of 12c.

Figure 52: ¹³C NMR of 12c.

Figure 53: ¹H NMR of 12d.

Figure 54: ¹³C NMR of **12d**.

Figure 55: ¹H NMR of 14a.

Figure 56: ¹³C NMR of 14a.

Figure 57: ¹H NMR of 15a.

Figure 58: ¹³C NMR of 15a.

BKPK 100 1H

Figure 59: ¹H NMR of 16a.

Figure 60: ¹³C NMR of 16a.

Figure 61: ¹H NMR of **17a**.

Figure 62: ¹³C NMR of **17a**.

Figure 63: ¹H NMR of 18a.

Figure 64: ¹³C NMR of 18a.

Figure 65: ¹H NMR of 20c.

Figure 66: ¹³C NMR of **20c**.

Figure 67: ¹H NMR of 20a.

Figure 68: ¹³C NMR of **20a**.

Figure 69: ¹H NMR of 20b.

Figure 70: ¹³C NMR of **20b**.

Figure 71: ¹H NMR of 14b.

Figure 72: ¹³C NMR of **14b**.

Figure 73: ¹H NMR of 15b.

Figure 74: ¹³C NMR of **15b**.

Figure 75: ¹H NMR of 16b.

Figure 76: ¹³C NMR of **16b**.

Figure 77: ¹H NMR of **17c**.

Figure 78: ¹³C NMR of **17c**.

Figure 79: ¹H NMR of 18c.

Figure 80: ¹³C NMR of **18c**.

Figure 81: ¹H NMR of **201**.

Figure 82: ¹³C NMR of **201**.

Figure 83: ¹H NMR of 20k.

Figure 84: ¹³C NMR of **20k**.

Figure 85: ¹H NMR of 20j.

Figure 86: ¹³C NMR of **20j**.

Figure 87: ¹H NMR of **20i**.

Figure 88: ¹³C NMR of **20i**.

ppm^{PC}

50 40 30

20 10 0

Figure 90: ¹³C NMR of **17b**.

180 170 160 150 140 130 120 110 100 90 80 70 60

Figure 91: ¹H NMR of 18b.

Figure 92: ¹³C NMR of **18b**.

Figure 93: ¹H NMR of 20h.

Figure 94: ¹³C NMR of **20h**.

Figure 95: ¹H NMR of 20g.

Figure 96: ¹³C NMR of **20g**.

Figure 97: ¹H NMR of 20e.

Figure 98: ¹³C NMR of **20e**.

Figure 99: ¹H NMR of 20d.

Figure 100: ¹³C NMR of **20d**.

Figure 101: ¹H NMR of 20f.

Figure 102: ¹³C NMR of **20f**.