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SI Text
Numerical Model. The carbon nanotube (CNT) is modeled as
a discretized finite element structure—a linear chain of masses
with tensional and flexural springs joining neighboring masses.
For N masses, this yields a system of 3N second-order or 6N
first-order differential equations describing the time dynamics
in 3D of all masses. For a given single-wall CNT, the tube’s lin-
ear mass density μ is related to graphene’s 2D mass density
σ ¼ 7:67× 10−25 kgm2 by μ = πdσ. Thus, for a given discretization
length Δx, this gives a mass of m = μΔx = πσdΔx. The linear
spring constant between masses is then related to the rigidity K
by kstretch ¼ K

Δx. Finally, there is a torque applied proportional to
the angle between two adjoining segments related to the bending
rigidity κ: jtj ¼ κ

Δxjθj. With these values, the initial conditions are
solved for by numerically approaching a steady-state solution
using the Newton–Raphson method to find the zero of the 3N ×
3N force constant matrix ∂2U

∂xn∂xm.
The resonance modes are thermalized by including a global

damping coefficient γ, and applying stochastic momentum kicks
to each mass in all directions, with amplitudes set by γ, the
temperature T, and the time-step size Δt:

Δp
Δt

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6πσdγkBT

ΔxΔt

r
Uð−1; 1Þ; [S1]

whereU (−1, 1) denotes a uniform random distribution in the range
from −1 to 1. In all reported data, γ ≤ 250 kHz, which is smaller
than all observed line widths, and thus not the dominant source of
apparent broadening. With the equations of motion set, time series
are computed using the fourth-order Runge–Kutta method.

Q vs. e0. The Q of a CNT resonator changes with e0 because it
influences the coupling between resonance modes, both by mod-
ifying thermal amplitudes and by changing equilibrium geometry.
Under tension, the resonance widths narrow with increasing ten-
sion, because all modes decrease their thermal amplitudes and
thus tend to couple less strongly among one another. In addition
to this effect, the bare frequencies increase as ∼e

1
2
0, leading to an

additional increase in Q with e0. Eq. 2 accounts for these two ef-
fects, and when expressed with the full dependence on e we see

Q∼ e
7
4: [S2]

Solving for Eq. 2 at 100 K over a range of positive strain gives
the blue line shown in Fig. S1A, which is plotted along with
simulation results.
Under compression, the bare frequencies of most modes do not

vary significantly with strain; however, the coupling between
resonance modes goes inversely with jej as seen in the derivation
of Eq. 4 in Eqs. S30–S37. Eq. 4, computed over a range of
negative strain, gives the blue line in Fig. S1B, which is similarly
plotted along with simulation results.

Calculation of Q for Tensioned NT. The tension of the resonator is
affected quadratically by the deflection of each resonance mode,
thus the time-averaged tension is nontrivially modified by the rms
amplitude of each resonance mode:

hei≈ e0 þ
X
n;a

  βna

�
a2n
�

2L2 : [S3]

Assuming Maxwell–Boltzmann statistics, we can substitute for
the rms amplitude of the nth mode:

�
a2n
�¼ kBT

kna
≈

kBT

βna
Ke
L

þαna
κ

L3

; [S4]

where kna is the effective spring constant and αna ≡
R 1
0 ξna″ ðxÞ2dx

parameterizes the bending associated with the nth eigenmode.
Combining Eqs. S3 and S4 yields

hei≈ e0þ kBT
2NL

X
n;a

1

1þ αna
βna

κ

NL2

: [S5]

In the case of a tensioned string, βna ∼ n2π2 and αna ∼ n4π4.
Therefore, in the high-tension limit, the argument in the series in
Eq. S5 is of order unity for small n, which leads to the conclusion
that all low-n modes contribute equally to the shifts in strain.
Consequently, we aim to carry out this sum, and relate it to the
total number of fluctuating degrees of freedom that contribute to
the tension shift. In the high-tension limit, the series argument is
slowly varying, so it can be approximated by an integral:

X
n;a

1

1þ αna
βna

κ

NL2

≈ 2
Z∞
0

1

1þ n2π2κ
NL2

dn; [S6]

where the 2 is due to the sum over the a index. Solving the integral
yields

2
Z∞
0

1

1þ n2π2κ
NL2

dn ¼ 2
π

ffiffiffiffiffiffiffiffiffi
NL2

κ

s Z∞
0

1
1þ n′2

dn′ ¼
ffiffiffiffiffiffiffiffiffi
NL2

κ

s
; [S7]

which we define as nf, the apparent number of fluctuating degrees
of freedom affecting the tension. With nf calculated, we have
a solution for the strain shift:

Δe ¼hei− e0 ≈
kBT
2NL

nf ¼ L
2nf ℓp

: [S8]

Because nf is dependent on e, the above equation needs to be
solved self-consistently, which can be accomplished by iterative
numerical analysis. The negative curvature shown in Fig. 2C is
a result of this modification of nf.
Next, we calculate the fluctuations in e to determine the ex-

pected spectral linewidth for a givenmode, and thus determine the
expected Q. We start by relating the variance of the strain to the
calculable variance of squared amplitudes of all resonance modes:

σ2e ¼
X
n;a

���� ∂e∂a2n
����
2

σ2a2n ¼
X
n;a

β2na
4L4

�
a4n − a2n

2
�
: [S9]
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Due to Maxwell–Boltzmann statistics, we know the probability
distribution for the squared amplitudes of the resonance modes,
and thus can calculate and substitute for a4n and a2n:

p
�
a2n
	
da2n ¼ kna

kBT
e
−knaa2n
kBT da2n ⇒ a2n ¼ kBT

kna
; a4n ¼ 2

�
kBT
kna

�2

: [S10]

As above, we can carry out the series to calculate the strain var-
iance:

σ2e ¼
X
n;a

β2na
4L4

�
kBT
kna

�2
¼
�
kBT
2NL

�2X
n;a

1

1þ
�
αna
βna

κ

NL2

�2 [S11]

X
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1

1þ
�
αna
βna

κ

NL2

�2 ≈ 2
π

ffiffiffiffiffiffiffiffiffi
NL2

κ

s Z ∞
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	2 dn′

!
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2

ffiffiffiffiffiffiffiffiffi
NL2

κ

s

[S12]

σ2e ¼
1
8

�
kBT
NL

�2 ffiffiffiffiffiffiffiffiffi
NL2

κ

s
¼ L2

8n3f ℓ
2
p
: [S13]

The strain fluctuations directly lead to frequency fluctuations,
and thus affect the resonance width. Consequently, we are able to
calculate the expected quality factor:

Q−1¼ δ fFWHM

f
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8 lnð2Þ

p σf
f
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 lnð2Þ

p σe
e
: [S14]

The
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8 lnð2Þp

factor relates the variance of a Gaussian distribu-
tion to its FWHM. Although it is not regularly assumed that a res-
onance peak will have a Gaussian profile, the above theory implies
this, and the simulated power spectral density displays mostly
Gaussian peaks with Lorentzian tails, as seen in Fig. 2. With this
we predict for the inverse quality factor for tensioned nanotubes:

Q−1 ¼
ffiffiffiffiffiffiffiffi
ln 2

p

2
L

n
3
2
f eℓp

: [S15]

Derivation of Eq. 3. The length constraint requires that the de-
flection of an out-of-plane mode is accompanied by an in-plane
deflection. In our simplifying assumption, we assert that the in-
plane deflection is in the shape of the static buckling. This de-
flection amounts to a driving force distributed among all in-plane
modes. Focusing on a single pair of in- and out-of-plane modes,
we can write down the Lagrangian:

L ¼ 1
2
m_z2ipþ

1
2
m_x2op−

1
2
kip


zip −

η

L
βopx

2
op

�2
−
1
2
kopx2op: [S16]

Solving for the equations of motion, we get

mz€ip ¼ − kip


zip −

η

L
x2op
�

[S17]

mx€op ¼ − kopxop − 2kip
η

L
xop


zip −

η

L
x2op
�
: [S18]

Eqs. S17 and S18 are nonlinearly coupled equations that we
now seek to simplify, because our main goal is to understand

how the resonance frequencies shift based on the amplitudes of
the relevant modes, as opposed to the detailed phase relation-
ships. Consequently, we will recast the coupling in terms of
a mean-field interaction matrix. Because the coupling is qua-
dratic in xop, we express Eq. S17 in terms of its apparent in-
plane deflection:

zop ≡
η

L
βopx

2
op: [S19]

To substitute into Eq. S18, we rewrite Eq. S19 in terms of xop and
compute the second derivative, respectively,

xop ¼
ffiffiffiffiffiffiffiffiffi
zipL
ηβop

s
[S20]

x€op ¼ −
1
4

�
_zop
	2

z2op
þ 1
2
z€op
zop

; [S21]

which gives

m

 
2z€op −

�
_zop
	2

zop

!
¼ − 4kopzop þ 8kip

η

L
zop
�
zip − zop

	
: [S22]

The solution to Eq. S22 in the absence of coupling is

zop¼ z½cosð2ωtþ ϕÞ þ 1�; [S23]

where ω ¼
ffiffiffiffiffi
kop
m

q
. In the weak coupling limit, we can assume that

zop retains this approximate functional form, whereas the fre-
quency may be perturbed by the interaction term. With this
approximation in mind, we calculate all of the relevant terms
seen in Eq. S22:

�
_zop
	2

zop
¼ 4ω2zð1− cosð2ωtþ ϕÞÞ [S24]

z€op ¼ − 4ω2z  cosð2ωtþ ϕÞ: [S25]

The first effect we solve for is due to the term in Eq. S22 containing
z2op, which originates from the x3op term in Eq. S18. Neglecting the
zopzip term, and dropping all oscillating terms, we solve for the
modified frequency:

ω2 ¼ ω2
op þ 3zω2

ip

ηβop
L

: [S26]

Next, we solve for the effect due to the zopzip term in Eq. S22.
Here we substitute zip ¼ zipcosðωiptþ θÞ, and assuming j2ωop −
ωipj � j2ωop + ωipj, we retain only terms close in frequency to
2ωop and get

2z€op −
�
_zop
	2

zop
¼ − 4ω2

opzop þ
�
8ω2

ip

ηβop
L

zop



zip: [S27]

Combining the conclusions from Eqs. S26 and S27, substituting
for zop ¼ 2ηβopL hx2i we rewrite Eqs. S17 and S22 to obtain linearized
equations of motion:
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mz€ip ¼ − kipzip þ kipzop [S28]

mz€op ¼
�
16kip

�
ηβop
L

�2�
x2
�

zip −

�
4kop þ 24kip

�
ηβop
L

�2�
x2
�

zop:

[S29]

Finally, we express the coupled equations in matrix form, symme-
trizing the off-diagonal elements by taking the geometric mean, so
that the eigenvectors are in the basis of the original, uncoupled
solutions; this results in Eq. 3 in the main text.

Calculation of Q for Buckled NT. Solving for the quality factor of the
buckled NT follows an analogous procedure to that in the ten-
sioned NT, where Q is obtained by averaging over a statistical
distribution of frequencies. Eq. 3 can be solved for eigen-
frequencies that are dependent on the amplitude of the out-of-
plane mode:

ω2
± ¼ ω2

ip

�
1þ 4α2ðTÞ	þ 4ω2

op

2

±

��ω2
ip

�
1− 4α2ðTÞ	− 4ω2

op

��
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ α2ðTÞω4

ip

ω2
ipð1− 4α2ðTÞÞ− 4ω2

op

�2
vuuut :

[S30]

In the weak coupling limit, the lower eigenfrequency in Eq. S30
(which corresponds to dominant the in-plane motion) re-
duces to

ω− ≈ωip

0
BB@1−

α2ðTÞ
8

1�
2ωop

ωip

�2
− 1

1
CCA: [S31]

In the low-tension limit, the ratio of the lowest in-plane and
out-of-plane flexural modes for a Euler-buckled beam is a fixed
value, giving

1�
2ωop

ωip

�2
− 1

¼ 2:4: [S32]

Finally, α2ðTÞ∝ hx2opi, so we can solve for

σf ¼
����� ∂f∂x2op

�����σx2op [S33]

σf ¼ 1
2π

�����∂ω−

∂x2op

�����σx2op ¼ ωip

2π
0:3

64π4η2

L2

L3kBT
16π4κ

[S34]

σf
f
¼ 1:2η2

L
ℓp
: [S35]

Carrying out the appropriate inner products gives η2¼ 0:05
jej , which

when substituted into the above equation gives

σf
f
¼ 0:06

L
jejℓp: [S36]

Here, the relationship between the variance and FWHM of the
distribution is not set by a Gaussian distribution as in Eq. S2. The
line shape is notably skewed, and according to the simplified
approach outlined above, the line shape is represented by an
exponential probability function, which gives 0.69σf ∼ δfFWHM,
and this in turn gives

Q−1 ≈ 0:04
L
jejℓp: [S37]

A B

Fig. S1. Q vs. e0 at 100 K. Eqs. 2 and 4 are shown as blue lines in A and B, respectively. Corresponding simulation results are shown as red circles.
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