
Supporting Information
Gelbart et al. 10.1073/pnas.1205258109
SI Text
Description of Embryo Development Geometry Explorer. This section
describes in detail the five main steps of the Embryo Development
Geometry Explorer (EDGE) pipeline. Datasets processed by
EDGE consist of image (.tif) stacks recorded over depth, time, or
both. One channel contains images obtained with a membrane
marker. Additional channels may be added containing information
on other relevant markers. The software then performs three basic
steps: (i) membrane detection, (ii) construction of the polygon
data structures, and (iii) tracking. The outcome is a set of cells,
and each set is represented by a stack of polygons that is tracked
over space and time. Because every segmentation and tracking
algorithm admits some errors (Fig. S5), the user may optionally
use EDGE’s built-in interface for manually correcting errors. The
user can then also use (iv) automatic error correction to improve
the results. The last step is (v) computing measurements of desired
shape properties. If the data to be processed contains additional
channels, these channels can be processed as well and related to
the cell geometry.
(i) Membrane detection. When a dataset is imported into EDGE,
each image is processed independently to form a binary image
representing the cell membranes. Images are first normalized to
zero average, clipped at ± 2 SDs, and then, denoised with
a band-pass filter in Fourier space. The band-pass filter uses the
radially symmetric kernel (Eq. S1)

f ðkÞ¼ 1

1þ exp
�
1
β
ðk− 2π=LÞ

�−
1

1þ exp
�
1
β
ðk− 2π=HÞ

�; [S1]

where k is the radial polar coordinate in Fourier-space, L and H
are the low-pass and high-pass cutoff wavelengths, respectively,
and β is the filter sharpness. The filtered image is then thresholded
at a threshold defined by the user in units of the filtered image
intensity’s SD, resulting in a binary image with ones at pixels that
were above threshold and zeros elsewhere. EDGE then applies
morphological transformations to shrink structures down (imple-
mented by Matlab’s bwmorph function). Structures with holes
(such as putative cells) are reduced to 1-pixel-wide closed curves.
Structures without holes shrink down to isolated pixels and are
eliminated from the image in subsequent steps. Optionally, cells
near the boundary of the image may be removed.
(ii) Reduction to polygons. Rationale. The binary image data structure
contains detailed information about membrane locations, but it is
cumbersome to work with for several reasons. First, the amount of
data is large; even in a sparse representation, binary membrane
images still contain a large amount of information. Incorporating
too much data can slow steps farther down the pipeline. Second
and more importantly, this data structure is difficult for user
interaction. For example, EDGE includes an interface that allows
the user to fix errors, such as missing edges (see below). If EDGE
relied on the binary image data structure alone, the user would
need to manually paint in the missing edge pixel by pixel until the
mistake was repaired. The program would then need to recognize
that a cell has been split into two and reorganize its internal data
structures to create two smaller cells. This process would require
it to decide which membrane pixels belonged to which new cell,
each time dealing with one pixel at a time. Any system that
automatically corrected errors would be much more complicated.
To avoid these difficulties, EDGE approximates the cells as
polygons and stores only ordered lists of vertices. This process

compresses the data by a factor of 10–100 depending on the size
and details of the image, and furthermore, this representation is
insensitive to changes in image resolution.

Method.To obtain the polygon-based representation, we first find
the centroids and the vertices of each cell outline in the thresholded
binary image (using Matlab’s regionprops and bwmorph commands
with the branch points option, respectively). We then label each
connected region with an integer index (using Matlab’s bwlabel
command), such that each label corresponds to a putative cell
region. Each integer-labeled image, along with its associated cell
centroids and vertices, is then used to build the polygon data
structure. (This point in the pipeline marks the transition from
Matlab to Java code). First, for each vertex, we examine the
integer labels in the eight neighboring pixels to build a list of
regions (and thus, centroids) associated with that vertex. Vertices
with fewer than two neighboring regions are removed. Second,
the vertices are recursively merged with other vertices within
a user-specified minimum distance. The result is a set of merged
vertices and their corresponding neighboring regions (which
were combined by taking the union of the two neighbor sets
during the merging process). The data structure is then inverted,
resulting in a set of regions and their associated vertices instead
of vertices and their associated regions. In this paper, we refer to
such regions as polygons, because they represent a cell outline as
a polygon in 2D space. For each polygon, we sort the vertices by
angle using the cell centroid as the origin to obtain vertex con-
nectivity information. We then remove polygons with fewer than
two neighbors as well as those polygons containing an interior
angle less than some user-specified minimum. We also remove
polygons with area less than the user-specified minimum. This
process is repeated for all images in the dataset.

Capturing curvature. In cases where the polygon representation of
cell outlines is too crude, because edges between vertices are
curved, EDGE offers a feature to add additional vertices along
edges both manually and automatically (Fig. S1 E and F). These
new vertices do not have the original definition of points where
three or more cells meet but are represented in the same way in
the data structure, and they allow for more complex polygon
shapes in the 2D imaging plane. Using this method, the user is
able to increase the precision of the membranes until the cur-
vature of the membranes is captured to a satisfactory degree,
while still preserving the vertex-based representation.
(iii) Tracking in space and time. Tracking in EDGE is based on the
assumption of continuity and therefore, requires sufficiently high
spatial and/or temporal resolution in the data. The algorithm
works by matching polygons between different images. First,
a user-specified ground truth image or reference image is de-
fined. This image is typically an image for which the automatic
segmentation in EDGE works very well. If necessary, segmen-
tation errors in this image can be manually corrected using the
interface provided by EDGE. This image contains all of the cells
that will be reconstructed and analyzed. Starting from this ref-
erence image and moving out, polygons from other images are
then iteratively matched in both space (if more than one layer has
been imaged) and time (for live-imaging data). A polygon in one
image is matched to a polygon in the next image if and only if the
following criteria are met.

i) Each polygon contains the centroid of the other polygon.
ii) The centroids of the two polygons are within some user-spec-

ified maximum distance.

Gelbart et al. www.pnas.org/cgi/content/short/1205258109 1 of 12

www.pnas.org/cgi/content/short/1205258109


iii) The fractional overlap of the two polygons (defined as the over-
lapping area between two cells divided by the maximum of the
two cell areas) is above some user-specified minimum value.

If a match is found, the new polygon becomes the current polygon,
and the process is repeated iteratively. Spatial tracking is per-
formed first and separately at each time point. Then, polygons are
tracked over time only at the depth of the reference image. In case
a polygon image cannot be matched to any polygon in the fol-
lowing image, matching is attempted in subsequent images up to
a user-specified number of images. Optionally, tracking may be
improved by linearly extrapolating the position of each polygon to
its predicted location at the next depth/time before evaluating the
above criteria, but this option is disabled by default. Tracking
results in 4D (space plus time) reconstructions of individual cells
in terms of stacks of polygons.
(iv) Automatic error correction. EDGE offers a built-in platform for
manual correction of segmentation errors, including missing or
misplaced vertices, missing edges, and falsely identified vertices,
edges, or cells. Manual error correction gives the user full control
of the data but can be very time-consuming for datasets con-
taining many images. Therefore, EDGE also offers automatic
error correction that tries to correct errors in a given image by
using information from other images in the stack. The basic idea is
that EDGE attempts to rerun the tracking algorithm, and when
tracking fails, it makes small changes to the polygons to continue
tracking successfully. EDGE can perform three types of auto-
matic error correction. First, vertex addition is used to improve
the approximation of polygons to the cell outline; second, edge
addition is used to split two cells that may have been merged, and
third, edge removal is used to merge two polygons that may have
been split. The vertex-based data structure used by EDGE makes
these error correction methods simple and effective.
An example of the automatic error correction process is shown in

Fig. S1. Fig. S1A shows an image after the membrane detection
stage. In this example, the detection makes two errors, one merge
(red box) and one split (blue box). The cells shown in yellow are
those cells that the program cannot track (i.e., match with cells in
the previous image), and thus, these cells become the candidates
for automatic error correction. The user first uses the automatic
vertex addition (also called edge-splitting) routine to recover
vertices that were lost because of errors. Note that the parameters
of the edge splitting were chosen such that only relatively large
new edges can be created, which allows the user to recover ver-
tices lost because of errors without adding unwanted extra vertices
(Fig. S1 A → B). Note also that, after the edge splitting, the two
flanking cells become pink, because they are now tracked, given
that they are now sufficiently similar to those cells in the previous
image. Next, the split (Fig. S1 B→ C, blue box) and the merge are
repaired automatically (Fig. S1 C → D, red box). At this point, all
of the errors are repaired, but the user may then decide that the
curvature of the membranes is not sufficiently captured by the
polygon approximation (Fig. S1E, light green boxes). The auto-
matic split edge function can then be used again but with different
parameters, and therefore, small edges can also be created. This
results in an improved polygon representation that satisfactorily
captures the membrane curvature (Fig. S1 E → F).
The next three paragraphs explain the implementation details

of the three automatic error correction routines.
Automatic vertex addition. The automatic vertex addition algo-

rithm works by considering the addition of, at most, one new vertex
per edge. For each edge, the algorithm finds the midpoint of the
edge and considers the line perpendicular to the edge that passes
through the midpoint. It then follows this line in both directions
until one of the following scenarios occurs.

i) It reaches an on pixel in the binary membrane detection im-
age. In this case, the algorithm adds a new vertex if and only if

the angle created does not exceed the user-specified maxi-
mum angle and the two tentative new edges are not shorter
than the user-specified minimum edge length.

ii) The angle between the two vertices that make up the edge and
the candidate new vertex becomes smaller than the user-spec-
ified minimum angle. In this case, a vertex is not added.

Automatic edge addition. The automatic edge addition algorithm
considers only polygons that were not successfully tracked. For
each such polygon, the algorithm considers all possible edges that
would divide the polygon into two. It then considers only the subset
of these edges with addition that would result in two polygons that
could both be successfully tracked to polygons in the previous
image. For each such edge, it computes the fractional overlap of
the two resulting polygons with their corresponding polygons in the
previous image. For each of the two candidate new polygons, the
smallest interior angle of the polygon is computed. A total score for
the potential splitting is then computed by adding the two overlap
scores to the two angles (in radians). After all potential edges are
considered, the split that results in the highest total score is per-
formed. The extra term involving angles is used to bias the algo-
rithm against the creation of cells with sharp corners, because such
cells tend not to occur in most data that we have encountered.

Automatic edge removal. The automatic edge removal algorithm
also considers only polygons that were not successfully tracked. For
each such polygon, the algorithm considers merging that polygon
with each of its neighbors. If, for any such potential merger, the
resulting polygon would be successfully tracked to a corresponding
polygon in the previous image, the fractional overlap is calculated
between the candidate new polygon and its corresponding polygon
in the previous image. After all neighbors are considered, the
merge that results in the largest overlap is performed.
(v) Measurements of geometric properties. After the cells are recon-
structed to a satisfactory degree, EDGE can perform measure-
ments on geometric properties, visualize them, and export them.
Measurements and visualizations are based on the polygon stacks
representing cell geometries. By default, EDGE can calculate cell
volume and length as well as the x- and y-position of centroids
and the area of cell outlines at a given depth. In case additional
channels are provided, EDGE also calculates, by default, the
polygon-averaged labeling intensity at each depth. Additional
processing modules (based on Matlab code) can be added in
a straightforward way by the user (see the online documenta-
tion). For each cell, a list of its nth-order neighboring cells is
provided for computing properties that rely on the properties of
more than one cell.

Download and Documentation. The EDGE source code, as well
as additional documentation, is freely available at http://code.
google.com/p/embryo-development-geometry-explorer/. EDGE is
implemented using a combination of Matlab and Java. Matlab
was used for its image processing features, and its prevalence in
the scientific community allows for user-generated measurement
scripts to be integrated more easily. Java was used because its
more object-oriented nature helped to keep the internal data
structures organized and the code more readable.

EDGE Examples. (i) Example 1: Importing data and segmenting cells with
the EDGE Importer. EDGE comes with two main interfaces: the
EDGE Importer for importing data and processing data and the
EDGE Browser for exploring cell properties. Fig. S2 shows
a screenshot of the EDGE Importer. At the upper left, an image
frame (grayscale) obtained by live imaging of Drosophila is
depicted overlaid with the polygon-approximation membranes
(pink) and cell centroids (red dots) detected by EDGE. The
sliders below the image allow the user to navigate through the
different images, both in space (different depths in the stack)
and time. The buttons at the upper right allow for manual and

Gelbart et al. www.pnas.org/cgi/content/short/1205258109 2 of 12

http://code.google.com/p/embryo-development-geometry-explorer/
http://code.google.com/p/embryo-development-geometry-explorer/
www.pnas.org/cgi/content/short/1205258109


automatic error correction of the dataset. The user is able to
add, remove, or move vertices, add or remove cells, and add or
remove edges. See the EDGE online documentation for more
information on the buttons and text boxes shown in the
screenshot, which allow the user to control the various image
processing parameters.
(ii) Example 2: Basic capabilities of the EDGE Browser. Fig. S3 shows
a screenshot of the EDGE Browser highlighting some of the
capabilities of the software. As with Example 1, a live-imaging
experiment on Drosophila ventral furrow formation has been
processed by EDGE, and the upper left shows a single-image
frame. The cell with a red dot in it is the cell currently selected by
the user. The user has also selected neighbors mode (see top right;
neighbors order = 2). Therefore, first-order and second-order
neighbors are also selected (green and light blue dots, re-
spectively). At the bottom right of the screen, we see a 3D ren-
dering of this group of 20 cells. The red line in the 3D rendering
corresponds to the depth slice that is currently being displayed at
the upper left.
The 3D rendering is useful to give the user a general intuition

about cell shape and what the cells look like. However, EDGE is
capable of producing quantitative information as well. In the
lower left of the screen, we see a plot with three curves, corre-
sponding to the three colors of selected cells (red, green, and light
blue). This plot is of cross-sectional area vs. time at the currently
selected depth (the green and light blue curves show averages
over their respective cells). This kind of analysis could, for in-
stance, be used to determine whether a cell and its neighbors
constrict synchronously.
(iii) Example 3: Integration of multichannel data. EDGE requires
images of the cell membranes, which it uses to perform the
membrane detection, tracking, and all other functionalities.
However, the software is not limited to just single-channel images;
along with the membranes, any number of additional channels
may be imported into the software (providing information on, for
instance, the nucleus, myosin concentration, adherens junctions,
etc.). When EDGE segments the membrane image, it identifies
which parts of the image belong to which cells, and thus, this
information can be combined with information from the other
channels. Fig. S4 shows an example of a dataset from a fixed
embryo with stained cell nuclei. As before, one image from the
dataset is shown at the upper left. The raw data and detected
membranes are again shown in grayscale and pink respectively,
and the additional channel, the cell nuclei, is now shown in green.
The lower left of Fig. S4 shows a plot of the nucleus stain

intensity vs. depth for the selected cell. The stain has been av-
eraged over the cell’s cross-section at each depth. The curve
shows that the nucleus staining is high within a space of ∼15 μm.
The black dashed line indicates the slice currently selected by the
user (i.e., the one that corresponds to the image in the upper left
and the red marking in the lower right).
Unlike the embryos shown in Figs. S2 and S3, the embryo shown

in Fig. S4 is fixed. EDGE, therefore, does not display the time-
adjustment slider to the right of the image in this screenshot, and it
plots measured quantities as a function of cell depth instead of time
(as in the lower-left plot of nucleus stain intensity vs. depth).

Accuracy of Segmentation and Tracking in EDGE. (i) Accuracy experi-
ments.We performed an analysis of the segmentation and tracking
errors of EDGE based on the two-photon data used in this study.
The accuracy of EDGE was measured by using 100 images at
different times (total of 20 min at a depth z ¼ 20 μm below the top
of the cells and starting at time t ¼ − 13 min) and separately using
27 images at different depths (total of 27 μm at time t ¼ 5 min
starting 10 μm below the top of the cells). We prepared ground
truth segmentations using the manual error correction features in
EDGE, and then, in each case, we compared the ground truth
segmentation to both the EDGE segmentation algorithm and the

EDGE segmentation followed by EDGE automatic error cor-
rection (automatic edge splitting followed by edge addition fol-
lowed by edge removal). We considered only cell outlines that
were present in all images in the ground truth (for time: N ¼ 48
per image, total = 4,800; for depth: N ¼ 56 per image, total =
1,512). In each case, a reference image was chosen and manually
corrected to form a correspondence between the cells in the
ground truth and the automatic segmentations. Then, to compute
accuracy scores, we considered a cell successfully tracked if it met
the following two criteria: (i) it overlapped with a ground truth cell
in the corresponding image by at least 75% (where overlap frac-
tion was computed as the intersection of the two areas divided by
the union of the two areas), and (ii) the cell was tracked to the
correct cell in the reference image as determined by the corre-
spondence mentioned above. Intuitively, the first criterion checks
for accuracy of the segmentation, and the second criterion checks
for accuracy of the tracking. Note that the above criteria are
stricter than the tracking parameters used in this study, and
therefore, this evaluation is conservative.
The analysis shows that EDGE is very effective in segmenting

and tracking cells in our data; essentially, all cells were suc-
cessfully tracked in the considered time (or depth) window. Fig.
S5 illustrates the results of this analysis. In Fig. S5, green indicates
successful tracking, and red indicates failures. In the spatial ex-
periment, the EDGE segmentation algorithm (Fig. S5A) ach-
ieved 98.4% accuracy (error rate = 1.6%), and the EDGE
segmentation plus automatic error correction (Fig. S5B) ach-
ieved 99.7% accuracy (error rate = 0.3%). In the temporal ex-
periment, the EDGE segmentation algorithm (Fig. S5C)
achieved 98.5% accuracy (1.5% error), and the EDGE seg-
mentation plus automatic error correction (Fig. S5D) achieved
99.5% accuracy (0.5% error). Fig. S5 shows that, in both ex-
periments, all of these errors are isolated mistakes, and no cells
were permanently lost in the window shown. This result is pos-
sible because EDGE is capable of skipping over missing cell
outlines during tracking (the extent to which this skipping is done
is specified by the user) as mentioned above.
(ii) Limitations.Despite the high accuracy of EDGE on the dataset
from this study, there are several limitations to the segmentation.
First, the signal-to-noise ratio (SNR) of the raw images must be
sufficiently high, and therefore, the membrane detection algo-
rithm is able to find the membranes. However, EDGE performs
very well even with relatively low SNR, which is shown in Fig. S6.
On the high SNR data, EDGE makes very few errors; on the low
SNR data, the program still manages to segment most cells, but
some errors are apparent. However, as discussed above, these
errors are typically isolated failures, and tracking is generally able
to skip over these failure cases and still create full 4D cell
reconstructions. Noise in the form of other objects in the image
can also be problematic, especially if these other objects contain
the same fluorescent marker as the membranes.
Other problems can arise, such as in images containing cells

with highly nonconvex cross-sections. The algorithms that convert
the binary membrane image to the polygon representation as-
sume that, if the vertices are sorted by angle using the cell centroid
as the origin, then the sorted vertex list is also the order in which
they are connected. Cells with sharp corners tend to violate this
rule. The EDGE segmentation also assumes that all cells are
contiguous objects within an image. Therefore, EDGE will not
work with highly curved cells that have two or more non-
contiguous cross-sections within a particular image slice.

Postprocessing and Supplemental Information on Analyses Performed
in the Present Study. (i) Estimating cell limits at apical and basal ends.
EDGE provides 4D reconstructions of individual cells in terms
of stacks of polygons. Fig. S7A shows an example of quantitative
measurements obtained from these reconstructions. The areas
depicted are the areas of the individual polygons in a given cell

Gelbart et al. www.pnas.org/cgi/content/short/1205258109 3 of 12

www.pnas.org/cgi/content/short/1205258109


as a function of depth and time. Each area was assessed in-
dependently. The measurements are consistent throughout the
bulk of the cell but become more noisy toward the apical and
basal cell limits. This result is mostly caused by relatively weak
labeling intensity at the apical surface and basal cell ends
(because of the E-cadherin–based marker that was used). In
particular, for cells tilted with respect to the axis perpendicular
to the image plane, measurements were more difficult. This
section and the subsequent sections address this problem.
The first step is to estimate the proper cell limits at each point in

time. Our procedure for this step is illustrated in Fig. S7B. The
idea is to move from the bulk of the cell to the cell limits and
monitor changes in membrane labeling intensity. Within the bulk
of the cell, the labeling intensity close to the membrane is high
but relatively low in the interior of the cell. After the cell limit is
reached, the label intensity varies less across space. This transi-
tion robustly marks the cell limit.
To implement this method, we first computed the cell axis,

a curve running apically–basally through the approximate cell’s
center at any given depth. At each given depth zi in the image
stack, we calculated the center of mass ~ci of the five nearest
polygon centroid 3D positions. This center, together with the di-
rection ~υi obtained by the first principle component of the same
five centroids, defines a linear regression to the five points in 3D
space. The location of the cell axis at depth zi was defined as the
intersection of this regression line with the x; y -plane at depth zi.
The upper- and lowermost three centroids were discarded. Note
that this procedure interpolates the centroids inside the bulk of
the tracked region and extrapolates beyond it, and therefore, the
obtained cell axis runs through all depths in the image stack. After
the cell ends are estimated properly, a refined version of this cell
axis is computed for additional analysis (see below).
At each depth (inside and outside of the tracked region), we

then estimated a polygon used to monitor the labeling intensity at
this depth. The polygon was estimated from the union of the four
nearest tracked polygons after being shifted to its depth. Polygons
are divided into an interior region and a membrane region, each
occupying 50% of the polygon area. Marching along the cell axis,
the average label intensities inside the two polygon subregions
were monitored for each depth. Within the cell limits, the in-
tensity is larger in the membrane than the interior region. Outside
the cell, the labeling is similar in the two regions. The label
difference Δ is, therefore, large inside the cell and fluctuates
around zero outside the cell. The transition points mark the cell
limits. These transition points are calculated from the peaks in
the derivatives of the label difference Δ with respect to depth
(Fig. S7 C and D). In tests, we found that cell limits obtained by
this method deviated, on average, by 1.2 μm from the limits
identified by visual inspection (Fig. S7E).
(ii) Repairing cell ends.After the cell limits are obtained, the polygon
stacks representing individual cells were adjusted. In our analysis,
we chose tracking parameters, and therefore, in the majority of
cases, EDGE overtracked cells, with polygons reaching beyond
the identified cell limits. In this case, we eliminated all polygon
pixels beyond a plane that was perpendicular to the cell axis at the
cell limit. For cells in which the polygon stack did not cover the
total range between cell limits, an automatic reparation of the
missing cell parts was performed, which is illustrated in Fig. S8.
Starting from the outermost tracked points, we proceeded to the
cell limits (Fig. S8B) and collected all pixels with high-labeling
intensities (Fig. S8C) inside polygons, which were computed as
in Fig. S7. For the upper end, pixels with intensity below 0.5 of
the maximal intensity of all collected pixels were discarded; for
the lower end, pixels with intensity below 0.7 of the maximum
were discarded (Fig. S8D). Each resulting cloud of voxels in 3D
was then interpolated by computing its convex hull (Fig. S8E).
Finally, these volumes were integrated into the cell’s polygonal
representations.

(iii) Computing cell axis and properties as a function of depth. The cell
axis provides a 1D coordinate system in each cell. Based on the
improved reconstruction in the previous sections, the cell axis was
reestimated for each cell at each time. At each given depth inside
the cell, the plane perpendicular to the cell axis was extracted. The
center of mass of the cross-section of this plane with the cell was
computed. The refined cell axis was obtained by the chain of
centers of mass. Through this procedure, small deviations of the
axis from the cell’s center line (particularly at the cell ends) were
reduced. Thus, this adjusted cell axis runs from the apical to the
basal end of the cell and passes roughly through the center of the
cell’s cross-section at any given depth. All depth-dependent
measurements are obtained based on this cell axis. Cell length is
the length of this axis from the apical to the basal cell limit.
(iv) Postprocessing and error estimation. Fig. S9A shows an analysis of
the same cell as in Fig. S7A. The area depicted is the area of the
cross-section perpendicular to the cell axis as a function of cell
depth and time. Zero depth corresponds to the apical cell limit.
At any given time, values range from the apical to the basal cell
limit, and therefore, the depth at the basal limit corresponds to
the cell length. The estimated cell length generally increases
continuously over time but also, occasionally, shows heavy fluc-
tuations from one point in time to the next. Because the changes
between two subsequent time points should be small, these
fluctuations were identified as reconstruction errors and dis-
carded from the measurement traces. The changes between two
subsequent time points can then also be used to estimate the
errors for the measurements.
To discard the time points contaminated by strong recon-

struction errors, we first compared the cell lengths in an ensemble
of reconstructed cells from a given embryo to their median (Fig.
S9B). We then discarded all time points in any given cell deviating
more than 10 μm from the median (which has been smoothed
by local robust regression using weighted linear least squares and
a second-degree polynomial model of a length of 13 frames). This
procedure eliminated strong outliers (Fig. S9 C and D, dark blue
dots) and is based on the assumption that cell length does not vary
substantially across the local cell population being considered.
In a second step, we eliminated time points based on individual
measurement traces. For this step, we focused on the z-position
(depth in image stack) of the most apical (Fig. S9C) and most
basal (Fig. S9D) points in a given cell. We computed linearly in-
terpolated low pass-filtered versions of these quantities (again,
based on regressions with second-degree polynomials but of
a length of 33 frames) (Fig. S9 C and D, red curves) and discarded
all time points with values deviating more than 3 μm from these
curves (Fig. S9 C and D, green dots). Finally, for the case of cell
length and cell volume, we eliminated additional outliers based on
their fluctuations across subsequent measurements. For any given
cells, we smoothed cell length/volume as a function of time by
local robust regression with a second-degree polynomial [kernel
size = 23/33 frames (length/volume)] and eliminated all time
points in the remaining raw trace for which the length/volume
deviated more than a given threshold from these smoothed curves;
the threshold was chosen as 1.0/0.5 SD of length/volume differ-
ences between two subsequent frames. For any given cell and
measured property, this procedure resulted in a curve consisting of
the subset of measurements from well-segmented cells.
From these curves, we estimated the measurement error for

a given property from the fluctuations (SD of differences) between
subsequent values. We found that the error for cell length was 1.5
μm and the error for cell volume was 97 μm3. The relative errors
of these properties and others were in the range of 5–10%.
(v) Estimating the time point at which gastrulation starts (t = 0) and
aligning different embryos in time. To align different WT embryos
in time, we used the drop in apical surface area as an indicator for
the beginning of gastrulation (Fig. S10B). We fitted the sigmoidal
function (Eq. S2)

Gelbart et al. www.pnas.org/cgi/content/short/1205258109 4 of 12

www.pnas.org/cgi/content/short/1205258109


f ðtÞ¼ a1
1

1þ expððt− a2Þ=a3Þ þ a4 [S2]

to the average apical surface area in each embryo (least squares
fit). Here, t denotes time, and a1; a2;; a3; and a4 are fit param-
eters. a2 approximates the point in time of maximal negative
slope. a3 determines the scale over which the surface area de-
creases. We defined the beginning of gastrulation as (Eq. S3)

t ¼ a2− 4a3; [S3]

and called this time point t ¼ 0 in the manuscript. As shown in
Fig. S10B, this time point marks the moment in a given embryo
when cells near the midline start constricting apically.
All curves in Fig. S10 are aligned at t ¼ 0. cta; T48mutants were

aligned manually based on the average cell length (Fig. S10A).
Embryos imaged with a confocal microscope (Fig. 5) were aligned
with respect to each other in time using the method described
above for the two-photon WT data. To enable a precise com-
parison of the volume fluxes in the two datasets (Fig. 5G), t = 0
was shifted by ∼30 s in the confocal data. This shift was estimated
from matching the two curves in Fig. 5G based on visual in-
spection. The yolk stalk data (Fig. S13) was aligned to the two-
photon data based on visual inspection of the onset of lateral
movement of cells.
(vi) Cell length inflection point at the beginning of gastrulation. The
inflection point in cell length at the transition between cellulari-
zation and gastrulation (Figs. 2D and 3A) was estimated by fitting
a linear-constant-linear curve (least squares fit) to cell length as
a function of time in each cell (Fig. S11A). The constant part was
included, because many cells exhibited a near constant length
over a brief period in between the two phases of cell elongation
(Fig. S11B).
The piecewise linear function used for fitting reads (Eq. S4) is

hðtÞ¼ c0þ c1½− tþ t0�þþ c2½t− ðt0 þ ΔtÞ�þ; [S4]

where ½·�þ denotes rectification (½z�þ≡maxð0; zÞ). The function h
exhibits a plateau of value c0 in the interval ½t0; t0 þ Δt�. The
slopes c1 (preplateau slope) and c2 (postplateau slope) account
for the time dependence of cell length outside of the plateau
region. We provided initial conditions and constraints to the
fitting routine depending on the embryo under consideration.
For instance, for all cells in the embryo shown in Fig. S11, we
used the initial conditions t0 ¼ 14 min and Δt ¼ 0:8 min, and
for c0, the cell length is at t0. Furthermore, the initial condi-
tion for c1 was estimated by linear regression of cell length
as a function of time over the interval 0 min≤ t< 11 min, and
the initial condition for c2 was estimated over the interval
19 min ≤t< 25 min. As constraints, we required 11 min < t0 < 18
min and 0.4 min <Δt< 2:4 min.
(vii) Joining segmentations from difference reference layers. One limi-
tation of EDGE is that it is only able to track cells that are present
in the reference image. This limitation affects cells that move into
the imaging window over depth or time. In the data presented in
this study, we encountered this problem while attempting to re-
construct cells over a wide range of movements. Therefore, it was
sometimes necessary to use multiple reference images and stitch
the reconstructions together. In the analysis presented in this study,

we associated two 4D polygon stacks if their centroid–centroid
distance was < 1 μm for > 5 depths for some point in time.

Additional Analyses. (i) Constriction starts at the apical cell end at the
beginning of gastrulation and progresses basally over subsequent
minutes. Fig. S12 illustrates, for two representative cells, how cell
shape changes proceed over time after gastrulation starts. The
cross-sectional area as a function of depth and how it changes over
time are shown. Shortly after t ¼ 0, the beginning of gastrulation,
only the uppermost 5–10 μm are affected. This finding is consis-
tent with the model that constriction is driven by a contractile
actomyosin meshwork close to the apical surface. Five minutes
later, the cross-sectional area displays pronounced changes close
to the apical end, and signs of constriction are visible even 20 μm
below the apical surface. At the same time, the basal end moves
more basally (i.e., the cells elongate). These examples also illus-
trate why the apical 75% of a cell was used to estimate the apical
volume loss (Fig. 4A).
(ii) Apical constriction induced leakage at the basal cell end. Our calcu-
lations indicated that, at the beginning of gastrulation, not all
volume lost apically reappeared basally in the form of cell elon-
gation. Toward the end of cellularization, the furrow canal at the
front of the progressing membrane widens, and in each cell,
a contractile actomyosin ring subsequently reduces the membrane-
free part at the basal end, which is called the yolk stalk. We
measured yolk stalk area in myosin-GFP–labeled embryos (Fig.
S12A). Embryos were aligned in time based on the onset of lateral
movement of cells, which coincided well with the onset of apical
constriction. We found that, around t ¼ 0, the yolk stalk area
measured about 75% of the basal surface area, and yolk stalks did
not close within the first 10 min into gastrulation (Fig. S12B).
Thus, cellularization was not completed at the time gastrulation
started, and this finding is consistent with the observation that the
cell volume continued increasing during this period (Fig. 2C).
The presence of an opening at the basal cell end during the

early phase of gastrulation when cells already start constricting
apically may cause cytoplasm to leak. In fact, for many cells, we
observed that strong apical volume loss often coincided with
a rapid pronounced drop in total volume (Fig. 4B and Fig. S12C).
Volume rate and apical volume loss showed a strong negative
correlation during the early phase of gastrulation (Fig. S12D).
To estimate the amount of leakage, we identified the subset of
cells that showed only little apical volume loss (in general, this
subset changed with time). We used the volume rate based on
this subset to estimate the true volume change caused by cellu-
larization. As shown in Fig. S12E, this volume rate (purple
curve) was consistently larger than the volume rate based on all
cells (green curve) but similar to the volume rate observed in cta;
T48 mutants (bright green dashed line), in which cells showed
only little apical volume loss (Fig. 4E). We estimated the leakage
rate by the difference between the purple and the solid green
curves (orange curve). This leakage only describes the average
net in- or outflow per minute. The outflow increased around
t ¼ 0 and decayed close to zero at the time that the yolk stalk
closed. The part of volume flux at the basal end that is translated
into lengthening is given by the apical volume loss rate plus the
leakage rate. Transforming this volume rate into lengthening
results in a smaller rate compared with the rate estimated in Fig.
4A (Fig. S12F, yellow curve).

Gelbart et al. www.pnas.org/cgi/content/short/1205258109 5 of 12

www.pnas.org/cgi/content/short/1205258109


a b 

c d 

e f 

Fig. S1. Steps of automatic error correction. (A) Original image after membrane detection stage. Two errors occurred in the processing. In the red box, two
neighboring cells are merged into one. In the blue box, a cell was split into two. With an appropriate set of tracking parameters, the program detects that
these cells cannot be tracked (i.e., matched with those cells at the previous depth), and thus, it draws the cells in yellow. (B) Additional vertices are added so
that cell polygons more closely match the detected boundaries in binary image. This step is important for correcting the merge error in the red box, because in
addition to losing an edge, the error also causes the two vertices to be lost. (C) The split error in the blue box is repaired automatically by removing an edge,
resulting in improved correspondence with the previous image. (D) After additional vertices are added, the merge error in the red box is fixed automatically by
adding an edge between two vertices. The edge is added in the location that maximizes correspondence with the previous image. (E) The same image as in D
but with different highlighting. The light green boxes show two edges with curvatures that are not captured well by the polygon approximation. (F) The
automatic edge splitting function is used again, but for this step, error correction parameters are set differently to allow more splits. One additional vertex is
automatically added in each of the light green boxes, resulting in polygons that form better approximations of the curved borders. Note that the edge splitting
functionality (used in generating B and F) is based on the raw (prepolygon) binary segmentation of this image, unlike the other steps that are based on
forming a correspondence between this image and other images in the stack (i.e., tracking).

Fig. S2. A screenshot of the EDGE Importer showing the polygon membranes (pink) overlaid over the raw image (grayscale). The red dots show the centroids of all
of the identified cells. The buttons on the right can be used to fix any errors, and the many other settings allow for control over other aspects of the processing.

Gelbart et al. www.pnas.org/cgi/content/short/1205258109 6 of 12

www.pnas.org/cgi/content/short/1205258109


Fig. S3. A screenshot of the EDGE Browser showing its basic capabilities. The polygons in the upper left were produced with minimal manual error correction.
The lower left plot shows area vs. depth as a function of time for the selected cell (red dot) and its neighbors (green and light blue dots). A 3D rendering of the
selected cell and its neighbors at a selected time point is shown in the lower right.

Fig. S4. Another screenshot of the EDGE Browser. This fixed dataset has been stained with two markers, one for cell membranes and another for the nucleus.
The nuclei (green) and the polygon membranes (pink) are overlaid on top of the raw data (grayscale). The bottom plot shows the polygon-averaged intensity
of the nucleus channel for the selected cell as a function of stack depth. The intensity curve exhibits a clear peak, revealing the vertical position of the nucleus
inside the cell.

Gelbart et al. www.pnas.org/cgi/content/short/1205258109 7 of 12

www.pnas.org/cgi/content/short/1205258109


Fig. S5. Results of the experiment showing the accuracy of the EDGE segmentation and tracking across space for segmentation only (A), space for seg-
mentation followed by automatic error correction (B), time for segmentation only (C), and time for segmentation followed by automatic error correction (D).
The reference image, which is used to make correspondences between cells in the different segmentations, is shown in blue in each case. Green corresponds to
successfully identified cells, and red corresponds to failures. The figures show that, in all cases, although EDGE occasionally fails to identify cells at isolated
depths or times, no cells are lost entirely over the window because of the robustness of the tracking algorithm. Comparing B and Dwith A and C shows that the
error rate is reduced substantially (from 1.6% to 0.3% in the spatial experiment and from 1.5% to 0.5% in the temporal experiment) by the use of automatic
error correction.

Fig. S6. Estimated cell outlines (green) and polygons (pink) for a representative image with relatively high SNR (Upper) and low SNR (Lower). Images were
obtained by two-photon microscopy, with cell membranes labeled by E-Cadherin-GFP (Materials and Methods).

Gelbart et al. www.pnas.org/cgi/content/short/1205258109 8 of 12

www.pnas.org/cgi/content/short/1205258109


Fig. S7. Estimating cell limits at apical and basal end. (A) An example output of EDGE: a measurement of the cross-sectional area as a function of depth (layer
in the image stack) and time for one representative cell. Note that each pixel represents an independent measurement. The measurement is consistent
throughout the bulk of the cell but more noisy close to its apical and basal end. (B) Estimating the cell limits (schematic): a cell axis is estimated by linear inter-
and extrapolation of polygon centroids (in the text). Polygons at different depths are divided into a center region (red) and a membrane region (green), each
occupying 50% of the polygon area. Polygons inside and outside the bulk region are constructed by averaging over the four nearest tracked polygons.
Traversing the cell axis, the average label intensities in both the interior and border regions are monitored at each depth. The label difference Δ is large inside
the cell and fluctuates around zero outside the cell. The two transition points mark the cell limits. (C) The label intensities and their difference for the cell in A.
The derivative with respect to stack depth shows peaks at the two transition points in labeling difference. (D) Derivative as a function of stack depth at a given
time point for the cell in A and two other cells (blue solid line). Locations of peaks match well with the cell limits identified by visual inspection in the same cells
(red dashed lines). (E) Comparison of cell limits estimated by this derivative method, and visual inspection for six cells at 10 time points. Only data for the lower
basal end are shown. The mean deviation for these cells averaged over all time points and the basal and apical ends was 1.2 μm.

Gelbart et al. www.pnas.org/cgi/content/short/1205258109 9 of 12

www.pnas.org/cgi/content/short/1205258109


Fig. S8. Automatic reparation of cell ends. (A) Output of EDGE, a stack of polygons representing a given cell at a given time. Parts of the upper and lower ends
have not been tracked by EDGE in this case, resulting in the cell appearing chopped off. (B) Extrapolating cell shapes (schematic) is based on extrapolations of
the cell axis and the polygon outside the tracked cell region (both estimated as in Fig. S7). (C) The label intensity inside the polygon is collected, while tra-
versing the extrapolated cell axis until the cell limits (estimated in Fig. S7) are reached. Shown are intensities at extrapolation distances 1, 2, and 3 μm. (D) The
set of voxels with intensity above 0.5 times the maximal intensity in the whole extrapolated region for the apical part (Upper). For the basal part (Lower),
a threshold of 0.7 times the maximum was used. (E) Convex hulls of voxels from D. Integrating them into A gives rise to a representation of the entire cell.

0 50 100 150 200
20

40

60

80

100
z position apical end

D
ep

th
 [µ

m
]

Disc. by length
Disc. by depth
Fit
Kept

0 50 100 150 200
0

20

40

60

80

100

Time [frames]

z position basal end

D
ep

th
 [µ

m
]

0 50 100 150 200
0

20

40

60

Time [frames]

Le
ng

th
 [µ

m
]

Discard strong outliers 
(length deviate from median >10µm )

a

b

c

d

Fig. S9. Discarding outliers in measurements based on continuity. (A) Perpendicular cross-sectional area as a function of depth (distance from the apical
surface along the cell axis) and time for the same cell as in Fig. S7A. Zero depth is defined by the apical cell limit. Depth is measured along the cell axis, a curve
running from the most apical to the most basal part of the cell through the approximate centers of mass of a perpendicular cross-section at any given depth.
Cross-sectional areas are calculated for sections perpendicular to the cell axis at steps of 1 μm. (B) Cell lengths as a function of time for 59 cells from one
embryo. Individual cells’ traces are represented by different colors, and the median (smoothed; in the text) is represented by the black curve. For a given cell, its
length is defined by the length of the cell axis from its most apical to most basal point. Note the often abrupt changes in estimated length for some of the cells
at some time points. (C and D) z-position at apical (C) and basal (D) cell ends as a function of time for the cell shown in A. Time points showing strong deviations
in length from the average cell length at a given time were discarded from the data (dark blue dots). In a second step, time points showing exceedingly large
changes in depth were excluded (details in the text).

Gelbart et al. www.pnas.org/cgi/content/short/1205258109 10 of 12

www.pnas.org/cgi/content/short/1205258109


Fig. S10. Estimating the time at which gastrulation begins. (A) Average cell length in cells within 20 μm from the midline in the five WT embryos (red) and the
two cta; T48 embryos (orange) used in this study. (B) Average apical surface area in the same cells (dark gray, WT; light gray, cta; T48).

Fig. S11. Estimating the inflection point in cell length at the beginning of gastrulation. (A) Length of one cell as a function of time (blue circles) together with
fits using a linear-constant-linear function (red lines). (B) Start and end point (red dots) of plateaus (black lines) for 59 cells from one embryo. Cells are sorted by
the distance from their apical ends to the midline.

Fig. S12. Constriction initiates apically and proceeds more basally over the first few minutes of gastrulation. (A) Cross-sectional area as a function of depth
(distance from the apical end) in a representative cell. Different curves correspond to different times as indicated (numbers denote minutes from t ¼ 0). Curves
were smoothed for illustration purposes. (B) The same as in A for a different cell.

Gelbart et al. www.pnas.org/cgi/content/short/1205258109 11 of 12

www.pnas.org/cgi/content/short/1205258109


Fig. S13. Apical constriction induced leakage at basal cell end. (A), Myosin-GFP images obtained by two-photon microscopy to visualize yolk stalks (Left, yz
cross-sections; Right, maximum projections of the basal z-slices). (Scale bar: 10 μm.) (B) Yolk stalk area in A estimated by EDGE (thick line, mean; thin lines, ±SD).
(C) Apical volume loss rate (blue) and the rate of change in total volume (green) for a representative cell. (D) Cross-correlation (zero lag) of the two quantities
in a sliding window of length of 6 min (147 cells, five embryos; gray lines, control: data randomly shifted in time). (E) Estimated true rate of change of volume
caused by cellularization (purple), the measured volume rate (green), their difference, and the estimated volume leakage rate (orange; in the text). The
measured volume rate in cta; T48mutants is shown in dashed light green. (F) Elongation rate predicted by apical volume loss taking basal leakage into account
(yellow) compared with the measured elongation rate (red).

Gelbart et al. www.pnas.org/cgi/content/short/1205258109 12 of 12

www.pnas.org/cgi/content/short/1205258109

