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SI Materials and Methods
Transcriptome Analysis.A male spring-spawning herring was caught
in June 2010, in the archipelago of Stockholm. A piece of white
skeletal muscle was collected and stored in RNAlater (Invitrogen).
mRNA was extracted from the tissue using polyA selection. The
library was generated and sequenced at the Science for Life
Laboratory (SciLifeLab) in Stockholm. The fragmented library
with an insert size of 200 bp was sequenced on an Illumina
HiSeq-2000 machine (Illumina) using 101 cycles per run, which
yielded ∼58 million paired-end reads. All lanes were spiked with
1% of phiX DNA. The last 25 nt at the 3′ end of most reads had
PHRED33 quality values lower than 20, and these were, there-
fore, trimmed in all reads. We removed phiX reads and those
contaminated with adapters, linkers, and primers by SeqClean
(released on February 2, 2011) using the UniVec database
(downloaded on February 2, 2011).
We fed ∼98 million trimmed and cleaned reads to Trinity (1)

(released on May 19, 2011) and assembled a transcriptome with
121× average depth of sequence, using default parameters. In
a final filtering step, we retained only those transcripts with at
least 200 bp. Trinity is a three-step assembler of unreferenced
transcriptome that enables the assembly of alternative variants.
Trinity yielded 76,107 contigs with a combined length of ∼61.4
Mbp and with N50 equal to 1,420 bp (Table S1).

Whole-Genome Sequencing.Genomic DNA was isolated of muscle
tissue from 400 fish collected from eight locations during 1978–
1980 (Fig. 1A and Table 1); the samples had been stored at−20 °C
until DNA was isolated. The DNA from 50 individuals per sam-
pling location was pooled in equimolar concentrations. For each
DNA pool, two libraries were constructed with 250- and 320-bp
insert sizes at the SciLifeLab SNP&SEQ Technology Platform at
the Uppsala Academy Hospital. These libraries were sequenced
at 100 cycles using HiSeq-2000 sequencer (Illumina). The number
of reads yielded a theoretical depth of coverage ranging from 42
to 53× for a genome size of 900 Mbp (2).
Previous to the alignment of the data, we selected only high-

quality reads by using a trimming algorithm that kept pairs that
met certain quality measures. We trimmed the reads from the 3′
end, removing all nucleotides that did not reach a PHRED33
value of 20. Only pairs where both reads were at least 75 bp were
kept. We also discarded read pairs that did not have an overall
quality value of 20 in PHRED33 scale for at least 80% of the
bases or any base with quality less than 10.
Because of the variable length of the trimmed region for each

read and the initial variable yield of the sequencing, the final
depth of coverage for the eight populations was between 21
and 27×.

Exome Assembly.To cover a larger part of the herring genome and
detect more genetic variants, we extended our transcriptome
contigs using genomic reads (i.e., to generate what, henceforth, is
referred to as an “exome assembly”). We aligned all of the
transcriptome contigs against each other using BLASTn (e value,
≤10−10) to select the nonredundant (nr) part of the transcriptome.
All contigs that were only aligned to itself were regarded as nr. In
cases where contigs had multiple hits to other contigs of the same
transcript, only the largest contig of each group was included in
the nr set. In total, 56,699 contigs were retained as nr sequences
for exome assembly (Table S1). We then aligned the trimmed
genomic reads from the Kalix (BHK) sample (Table 1) against
the nr transcriptome contigs using bwa (3) (version 0.5.9) with

default parameters. We queried the resulting read alignments
(5.245% of the total genomic reads) and extracted their un-
mapped pairs from the raw read files in cases where a genomic
read resulted in a unique alignment to the transcriptome. With
the genomic reads mapped and their unmapped pairs saved, we
used Trinity (1) (released on November 26, 2011) with default
parameters to de novo assemble short contigs, which will be
extended around the exons with either intronic or intergenic
sequence in a process we called exome assembly. By using ge-
nomic reads to assemble an exome, we may introduce reads from
multiple gene copies and thus create assembly artifacts or chi-
meric sequences. To correct for this redundancy in the exome
contigs, we clustered all sequences with at least 95% sequence
identity together using UCLUSTAL (4) and kept the longest
representative. In a last effort to remove any putative mis-
assembled contigs, we realigned all of the exome contigs against
the nr transcriptome using BLASTn (e value, ≤10−5), resulting in
166,873 exome contigs uniquely matched (Table S1).

SNP Detection. We called SNPs following three separate steps.
First, we used bwa (version 0.5.9) (3) with default parameters to
map the trimmed genomic reads (see above), separately from
each of the eight sampled herring populations (Table 1), to our
exome assembly. Then, we called variants with a Bayesian al-
gorithm implemented in FreeBayes (version 0.9.4) with default
settings. Alignments with mapping quality lower than 30 were
excluded (-m flag). In addition, SNPs with base quality adjusted
to PHRED33 less than 20 (-q flag) and posterior probability less
than 0.0001 (-pvar flag) were discarded. We were only interested
in single nucleotide substitutions ignoring indels, multinucleotide
polymorphisms, or any other complex events (–no-indels,–no-
mnps,–no-complex flags in FreeBayes). Furthermore, to exclude
false-positive SNPs that may happen around indels, we used the
indel realignment parameter (–left-align-indels) to perform left-
realignment of reads and to merge gaps. FreeBayes also reported
triallelic variants. Only 707 of 440,817 SNPs were reported as
triallelic. The majority of these third alleles were only supported
by a few reads, and many of these are, therefore, expected to be
sequencing errors. In these cases, the two most common alleles
were used as biallelic variants in the downstream analysis. We
filtered the resulting SNPs in the VCF output file as follows:

i) We began by filtering positions with read coverage larger
than 100, to avoid calling SNPs in parts of the exome having
excess coverage. The reason for this step is to avoid false SNP
calls caused by duplicated sequences.

ii) SNP positions with a read depth of at least 50 in the union
of all reads from all populations were kept for further anal-
yses. In this set, we also filtered positions that had less than
10 supporting reads for the variant allele.

Statistical Analysis. After the SNP calling, 8 × 2 contingency χ2
analysis was performed to identify SNPs showing highly signifi-
cant allele frequency differences among the eight populations
(Table S2). The χ2 test was performed at each SNP position by
comparing expected and observed read counts for the reference
and variant allele among the eight samples. After examining the
outliers in a quantile–quantile (Q-Q) plot (not shown), P ≤ 10−10

was selected as a highly significance threshold for calling geneti-
cally differentiated SNPs given the number of tests performed.
Simulations aimed at describing the expected sampling dis-

tribution of FST values under a perfectly neutral model were
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conducted using a slightly modified version of the Powsim
software (1). This program mimics sampling from populations at
a predefined level of expected divergence through random
number simulations under a classic Wright–Fisher model
without migration or mutation. An infinitely large base pop-
ulation segregating for a specified number of independent, se-
lectively neutral loci with defined allele frequencies is divided
into s subpopulations of equal effective size (Ne) through ran-
dom sampling of 2Ne genes. Each of the subpopulations is
allowed to drift for t generations, and the expected degree of
divergence in generation t is then FST = 1 − (1 − 1/2Ne)

t (e.g.,
ref. 2, p. 359).
To reduce the sampling variance of FST and avoid unnecessary

“noise,” we restricted the analysis to the 36,794 SNPs that had
a minimum of 40 reads from each of the eight populations
sampled. Over all these SNPs, the average frequency of the most
common allele was ∼0.8, and the average FST (3) was 0.0223. We
simulated an infinitely large base population where a single
biallelic locus segregated at a frequency of 0.8, split this base
population into eight subpopulations of effective size Ne =
10,000, let them drift apart for t= 451 generations to arrive at an
expected FST = 0.0223 for neutral loci, sampled 40 alleles from
each subpopulation, calculated FST, and repeated this process
36,794 times. Finally, the distribution of simulated FST values
was compared with the observed one. The largest simulated FST
value was FST = 0.1883, and we considered SNPs exhibiting
FST > 0.1883 as under directional selection.
The effective sizes of the populations sampled is unknown (4),

but as discussed in this paper, there is reason to believe that they
may be “large,” maybe of the order of millions or more. The
divergence of such large populations is difficult to simulate be-
cause of the very long time needed for them to drift apart to an
FST of about 0.02 and the large number of genes that must be
sampled each generation during the simulation process. As it
appears in the present case, however, the exact value of Ne (and
the corresponding value of t for the populations to drift to and
FST ≈ 0.02) is not overly important for the distribution of FST for
“large” Ne and small FST values. After trying various combina-
tions of Ne and t for reaching FST ≈ 0.02, we settled for Ne =
10,000 and t = 451 because these parameters resulted in a rela-
tively modest simulation time (a few days) and produced an FST
distribution that was almost identical to that obtained with Ne =
1,000 and t = 45 generations of drift (a combination that also
yields an expected FST ≈ 0.02). This striking similarity between
the FST distributions obtained for the different Ne values is ac-
tually expected in situations with large populations and small FST
values when alternate fixation for different alleles can be ig-
nored. By approximating the change of allele frequency within
subpopulations by a diffusion process (e.g., ref. 5, chap. 4), it can
be shown that the variation of allele frequencies among subpopu-
lations, and thereby the distribution of FST, is independent of Ne.

SNP Genotyping. We selected 5,000 SNPs (called from an earlier
version of exome assembly) for genotyping of individual fish.
These 5,000 SNPs were selected based on the following criteria:

i) All SNPs from the contigs containing the top 200 outlier
SNPs (total SNPs: 673)

ii) All remaining outlier SNPs so that the total number from
this set and the one above constitutes 3,000 SNPs (total
SNPs: 2,327)

iii) A total of 1,000 SNPs with P values in the range 0.5–0.9
from the χ2 analysis. (The average frequency across all
populations of the rare allele at each locus was in the
range 0.3–0.5 to select highly informative SNPs.)

iv) A total of 1,000 SNPs with P values in the range 0.1–0.5
from the χ2 analysis. (The average frequency across all pop-

ulations of the rare allele at each locus was in the range 0.3–
0.5 to select highly informative SNPs.)

Fifty nucleotides at each side of the SNPs were used to design
two assay probes per SNP following instructions provided by
Roche NimbleGen. A total of 153 SNPs were discarded from the
final design because fewer than 50 nt were available at one of their
flanks in the exome assembly. The assay probes (Table S3) to-
gether with DNA samples representing 50 fish from each pop-
ulation (400 in total) were used to successfully genotype 3,024 of
4,847 SNPs in 380 (of 400) individuals by an AccuSNP custom
array (Roche NimbleGen).

Phylogeny Analysis. The SNPs called from the resequencing data
were used to generate two phylogenetic trees: one using all called
SNPs (440,817 SNPs) and one using only the 3,847 significant SNPs.
First, we generated a genetic distance matrix (10) from the allele
frequencies of all SNPs in the eight populations, and these were
used to construct neighbor-joining trees using POPTREE (11).
Of the 3,024 successfully genotyped SNPs in 380 individual fish

using AccuSNP, we further removed 197 SNPs that were het-
erozygous in more than 90% of the individuals in each population
indicating that they represented paralogous sequence variants
rather than alleles at a single locus. In the downstream analyses,
we also omitted genotypes of 14 individuals that had high pro-
portions of missing genotypes (>15% of genotyped SNPs).
We calculated a pairwise identical by state (IBS) similarity

matrices for each pair of individuals using PLINK (24), both for
the 1,583 outlier and the 1,244 neutral SNPs. We converted the
IBS matrices into genetic distance matrices using PLINK (12).
Using these distance matrices, we generated two different UP-
GMA trees using Phylogeny Inference Package (PHYLIP) (13)
(Fig. S3).
We also used the recently developed fineSTRUCTURE soft-

ware (14) for cluster analysis. fineSTRUCTURE uses a Bayesian
approach to scan for patterns of haplotype similarity and capture
information about the underlying population structure. We used
the linked model algorithm of fineSTRUCTURE because we
expected some of our significant SNPs to be in linkage. We used
the resample procedure of fineSTRUCTURE to evaluate the
statistical support for the final tree (Fig. 3C). In this analysis,
using Markov Chain Monte Carlo (MCMC), 100,000 burn steps
were used, and 100,000 further iterations were sampled keeping
every 100 samples.

Identifying Patterns of Strong Selection.With the resequencing and
genotype data from each population, we looked for selection
patterns according to the traditional knowledge of the herring
population structure, the phylogeny constructed based on the
significant markers and the salinity of the Baltic Sea (Fig. 1A). We
conducted each pairwise interpopulation allele frequency com-
parison at each SNP position using 2 × 2 contingency χ2 analysis
and identified sets of SNPs with significant allele frequency dif-
ferences for each comparison (P ≤ 10−10).
Furthermore, to investigate the genomic distribution of the

SNPs showing strong genetic differentiation in our study, we
aligned the 1,072 transcriptome contigs containing the significant
SNPs against the stickleback genome (BROAD S1 assembly,
downloaded from Ensembl database version 61) with tBLASTx.
The genome of zebrafish is heavily rearranged compared with
other sequenced teleost fishes; we, therefore, mapped our tran-
scripts against the stickleback genome. We then filtered the
output, looking for the unique hits that yielded ≥50% identity to
the stickleback genome and an e value of ≤10−5. The resulting
hits had a genome-wide distribution pattern with all of the
chromosomes of the stickleback genome covered (Fig. 3A). We
also clustered all of the hits in blocks using 500-kb nonover-
lapping sliding windows along the stickleback genome. We used
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allele frequencies to construct heat maps for all blocks and
manually inspected them to identify putative sweep regions.
SNPs clustering within the same block in stickleback and showing
similar frequency pattern indicate a sweep region.
Exome contigs that displayed an interesting pattern regarding

frequency differences between populations were manually an-
notated. Both exome contigs and their corresponding tran-
scriptome contigs were used as queries in nucleotide searches with
BLASTn against the nr database at the National Center for
Biotechnology Information (NCBI) website (December 2011 to
May 2012). Simultaneously, we also performed translated nu-
cleotide searches using tBLASTx against the genome of zebrafish
(Danio rerio) available at the Ensembl database (15) (versions
65–67). With this strategy, we identified zebrafish proteins that
were subsequently used as queries in translated nucleotide
searches with tBLASTn against the herring transcriptome to

reaffirm and strengthen our initial BLASTn annotation. In the
particular cases where no annotated zebrafish orthologs to the
herring contigs were found, the same procedure was repeated in
stickleback (G. aculeatus).
In some cases, our herring transcriptome contigs did not match

a full-length gene from zebrafish. Another issue affecting the
annotation of transcripts is the difficulty to assign the correct
name to a certain transcript matching one of the copies of certain
families generated in the teleost specific whole-genome dupli-
cation. To account for these multicopies, the zebrafish gene
names include generally an extra a and b at their end. For the gene
names annotated in Fig. 3, we have, thus, preferred to use the
corresponding gene name in human (if available) instead of
assigning the partial herring contigs the specific a- or b-copy
nomenclature from zebrafish.
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Fig. S1. Example of how exon/intron borders are deduced after aligning genomic reads to a transcript assembled using Trinity.
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Fig. S2. Strong correlation between allele frequency estimates by genome sequencing of pooled samples and individual SNP genotyping.

Fig. S3. Phylogenetic analysis of individual herring based on individual SNP analysis. (A) Phylogenetic analysis based on 1,244 loci showing no significant
differentiation. (B) Phylogenetic analysis based on 1,583 loci showing significant genetic differentiation.
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Fig. S4. Allele frequencies and individual SNP genotype data at three cluster of loci showing strong genetic differentiation in Atlantic and Baltic herring. (A)
Cluster 1 corresponding to stickleback chromosome XIV. (B) Cluster 2 corresponding to stickleback chromosome VIII. (C) Cluster 3 corresponding to stickleback
chromosome XIII. Transcript names are given below the allele frequency graphs. The most common allele in Atlantic Ocean was used as the reference allele at
all loci. AHA, Atlantic herring Atlantic Ocean; AHB, Atlantic herring Southern Baltic Sea; AHK, Atlantic herring Kattegat; AHN, Atlantic herring North Sea; AHS,
Atlantic herring Skagerrak; BHG, Baltic herring Gamleby; BHK, Baltic herring Kalix; BHV, Baltic herring Vaxholm.

Table S1. Summary statistics for the transcriptome and exome assembly based on Baltic herring muscle RNA sequencing data combined
with genomic read alignments

Table S1

Table S2. Loci showing highly significant genetic differentiation (P < 10−10) among populations of Atlantic and Baltic herring

Table S2

Table S3. SNP loci genotyped in individual Atlantic and Baltic herring

Table S3
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