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Scale-Dependent Behavior of Reaction-Diffusion Processes. Simple
diffusion processes can be studied on different length and time
scales because the diffusion coefficient is scale-independent for
length scales significantly larger than the mean free path and for
time scales well above the inverse collision rate. However, this is
different for a reaction-diffusion process that exhibits different
scale-dependent properties. For the theoretical description
given below, it is instructive to consider a reaction-diffusion
process as a pseudofirst-order reaction, in which particles ex-
change between a free state (F) and an immobile complex (C).
In biological systems, this scenario reflects the binding of a
mobile factor to an essentially immobile substrate with an ex-
cess of potential binding sites, such as chromatin in the cell
nucleus or the cytoskeleton in the cytosol. The probability to
find particles in the free or the bound state depends on the
kinetic on and off rates for binding, kon and koff, and obeys the
following differential equations:

∂F
∂t

¼ koffC− kponF

∂C
∂t

¼ kponF − koffC; [S1]

with F þ C ¼ 1. The parameter kpon is the product of the kinetic
on rate and the average concentration of free binding sites. In
steady state, the derivatives vanish and the bound and free frac-
tions are given by

Feq ¼ koff
kpon þ koff

; Ceq ¼ kpon
kpon þ koff

: [S2]

If a particle A is initially free at t ¼ 0, the probability to find it
in the free state after Δt is given by

FA
�
Δt
� ¼ Feq

�
1þ Kp

eqe
−ðkponþkoffÞΔt�: [S3]

Here, Kp
eq ¼ kpon=koff is the pseudoequilibrium binding con-

stant. In contrast, if a particle B is initially bound at t ¼ 0, the
probability to find it in the free state after Δt reads

FB
�
Δt
� ¼ Feq

�
1− e−ðkponþkoffÞΔt�: [S4]

The quantities FAðΔtÞ and FBðΔtÞ can also be regarded as the
fraction of time that the particles have spent in the free state
during Δt. Because complexes are assumed to be immobile, par-
ticles can only diffuse during their time in the free state. Thus, the
apparent diffusion coefficient of the particles A and B is reduced
because they are trapped part of the time. This apparent diffusion
coefficient corresponds to the weighted average of the diffusion
coefficients in the free state and the bound state, which, for a
diffusion coefficient Dbound ∼ 0 in the bound state, yields

DA
�
Δt
� ¼ DFA

�
Δt
� ¼ DFeq

�
1þ Kp

eqe
−ðkponþkoffÞΔt�

DB
�
Δt
� ¼ DFB

�
Δt
� ¼ DFeq

�
1− e−ðkponþkoffÞΔt�: [S5]

For large times Δt>> ðkpon þ koffÞ−1, both apparent diffusion co-
efficients converge to the effective diffusion coefficient Deff ¼

DFeq ¼ D=ð1þ Kp
eqÞ (1). For small values of Δt<< ðkpon þ koffÞ−1,

DA → D and DB → 0, which reflect the initial conditions that
particle A is free at t = 0 and particle B is bound at t = 0 (Fig.
S1B). The average diffusion coefficient for the ensemble is the
weighted average of the apparent diffusion coefficients DA and DB
of the two pools (i.e., pool A with particles being initially free and
pool B with particles being initially bound). Because the proba-
bility to find a free particle at t= 0 is Feq and the probability to find
a bound one is Ceq, the average diffusion coefficient is given by

Davg ¼ FeqDAðΔtÞ þ CeqDBðΔtÞ
¼ FeqDFeq

�
1þ Kp

eqe
−ðkponþkoffÞΔt�þ CeqDFeq

�
1− e−ðkponþkoffÞΔt�

¼ DFeq
�
Feq þ Ceq

� ¼ D
1þ Kp

eq
¼ Deff :

As expected, the diffusion coefficient for the ensemble is not
time-dependent and equals the effective diffusion coefficient.
Thus, although the ensemble diffusion coefficient is Deff on all
time scales, the ensemble decomposes into a free pool and
a bound pool on small time scales Δt<< ðkpon þ koffÞ−1, whereas
the mobilities of the pools become similar for Δt>> ðkponþ koffÞ−1
(Fig. S1 B and C). In the first case, the size and the diffusion
coefficient D of the free pool can be measured and the ratio
of the rate constants Kp

eq ¼ kpon=koff can be obtained from
Feq ¼ 1=ð1þ Kp

eqÞ. This requires the accurate quantification of
the free and immobile fractions. In the second case, only the
effective diffusion coefficient Deff can be determined. If the free
diffusion coefficient is known, Kp

eq ¼ kpon=koff can be calculated
from the effective diffusion coefficient. In both scenarios, in-
dividual rate constants cannot be resolved because these can
only be obtained from measurements on the intermediate time
scale. In this regime, particles exchange between free pool and
bound pool, and provide information about the binding reaction
(Fig. S1C). Because conventional fluorescence recovery after
photobleaching (FRAP) and fluorescence correlation spectros-
copy (FCS) implementations are limited in their accessible time
scales, only a distinct subset of kinetic rate constants can be
determined that matches the relation Δt ≈ ðkpon þ koffÞ−1 (1, 2).
In contrast, methods like raster image correlation spectroscopy, pair
correlation analysis, or pixel-wise photobleaching evolution analysis
(3PEA) include measurements on multiple scales, and thus cover
a larger range of rates measurable for reaction-diffusion processes.

Derivation of the Theoretical 3PEA Framework for Free Diffusion.
Bleaching a Point. In the following, an expression is derived that
yields the probability for a particle to be bleached at pixel po-
sition~x0 and to be subsequently detected via a decrease of the
fluorescence signal when the focus is located at pixel position~x1.
The point spread functions (PSFs) are approximated by 3D-
Gaussian geometry. This is sufficiently accurate for all experi-
mentally relevant scenarios of this study because the 3PEA
method relies on pixel distances rather than on the exact shape
of the PSF. The equations derived here apply to normal diffu-
sion. To account for other models or binding interactions, the
diffusion propagator in the equations below is substituted with
the corresponding expression. Thus, the theoretical description
presented here can be used for any type of translocation process.
In the first step, we consider the probability Pbleach for a particle

located at ~x to be bleached while the focus is located at ~x0.
Assuming that bleaching is a first-order process with a bleach
rate proportional to the illumination intensity, the amount

[S6]
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of fluorescent particles decreases with expð−γPSF1=2τbleachÞ ≈
1− γPSF1=2τbleach. Here, the PSF is defined according to Eq.
3 as the product of the illumination and detection PSF.
Accordingly, the PSF for the bleaching process is given by

PSF1=2. Because τbleach is the pixel time that is typically of
the order of some microseconds, the latter approximation is
appropriate, and the bleach probability can be expressed as

Pbleach
�
~x; ~x0

� ¼ βPSF1=2�~x; ~x0�
¼ β exp

 
−
ðx− x0Þ2 þðy− y0Þ2

w2
b

−
ðz− z0Þ2

z2b

!
: [S7]

In Eq. S7, β ¼ γτbleach ≤ 1 is the bleach depth, and wb and zb
denote the effective beam waist of the bleach PSF in lateral and
axial directions, respectively. Because the high laser intensities
during the bleach typically lead to an enlarged PSF, the specific set
of structure parameters ðwb;  zbÞ is used to describe the bleach PSF.
In the second step, the probability Pdiff for a particle located at

~x to diffuse to~x′ during time Δt is calculated. This probability is

Pdiff
�
~x; ~x′;Δt

� ¼ 1

ðπd2ðΔtÞÞ3=2
exp

 
−
ðx− x′Þ2þðy− y′Þ2þðz− z′Þ2

d2ðΔtÞ

!
: [S8]

Here, D is the diffusion coefficient and d2ðΔtÞ ¼ 4DΔt is the
particle’s mean squared displacement (MSD) for normal diffu-
sion. Finally, the fluorescence intensity Ψdet of a particle located
at~x′ in the focus at~x1 is calculated with Eq. S9:

Ψdet
�
~x′; ~x1

� ¼ PSF
�
~x′; ~x1

�
¼ exp

 
− 2

ðx′− x1Þ2þðy′− y1Þ2
w2
0

− 2
ðz′− z1Þ2

z20

!
: [S9]

Based on Eqs. S7, S8, and S9, the fluorescence intensity re-
duction in~x1 caused by particles bleached in~x0 is proportional to

Nr2c
x0→x1

�
~x0; ~x1;Δt

� ¼ c
Z∞
−∞

dx′
Z∞
−∞

dy′
Z∞
−∞

dz′ Ψdet
�
~x′; ~x1

�

×
Z∞
−∞

dx
Z∞
−∞

dy
Z∞
−∞

dz Pbleach
�
~x; ~x0

�
Pdiff

�
~x; ~x′;Δt

�
: [S10]

Because overlapping bleach PSFs have to be considered for
2D bleach regions, the bleach PSF is split up into a sum of cu-

boids (Fig. S1). The intensity differences within a single cuboid
are neglected, and the integral in Eq. S10 is divided into two
parts: the average cuboid bleach probability hPbleach;ii and the
translocation probability Pr2c

xi→x1 :

with the average cuboid bleach probability hPbleach;ii
�
~x0
� ¼

1
Vb;i

R xiþrx
xi− rx

dx
R yiþry
yi− ry

dy
R ziþrz
zi− rz

dz Pbleach
�
~x; ~x0

�
.

Each part of the sum in Eq. S11 gives the reduced intensity due
to the presence of particles bleached in a single cuboid centered
at~xi with edge lengths 2rx, 2ry, and 2rz and volume Vb;i. For high
laser intensities, which are typically used for FRAP experiments,
the axial beam waist becomes very large. For this case (i.e., in the
limit zb →∞, rz →∞), the axial dependence can be neglected and
Eq. S11 is written as

Nr2c *
x0→x1

�
~x0; ~x1;Δt

� ¼ cVeff

X
i

�
Pbleach;i

�
Pr2c *
xi→x1

�
~xi; ~x1;Δt

�
; [S12]

with

Pr2c *
xi→x1 ¼

1
4

2
64erf

0
B@ xi − x1 þ rxffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

w2
0=2þ d2

q
1
CA− erf

0
B@ xi − x1 − rxffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

w2
0=2þ d2

q
1
CA
3
75

×

2
64erf

0
B@ yi − y1 þ ryffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

w2
0=2þ d2

q
1
CA− erf

0
B@ yi − y1 − ryffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

w2
0=2þ d2

q
1
CA
3
75:

Bleaching a Line. For typical scan speeds, the line time τl is on the
order of 1 ms. This corresponds to the dwell time of a freely
mobile protein in one diffraction-limited spot. Therefore, diffu-
sion during the bleach process of a single bleach line (or a line
segment) can be simplified to reduce the computational cost of
the calculations significantly. Based on the bleach probability in
a single spot (Eqs. S7–S12), the bleach distribution after se-
quentially bleaching several spots along a line is derived. The
intensity in~x after n bleach events at positions~xi is given by

I
�
~x; n

� ¼ 1−Pbleach
�
~x; n

� ¼ ∏
n

i¼0

�
1− β  PSF1=2

�
~x; ~xi

��

¼ exp
	
ln
	
∏
n

i¼0

�
1− β  PSF1=2

�
~x; ~xi

��



¼ exp

 Xn
i¼0

ln

 
1− β  exp

 
−
ðx− xiÞ2þðy− y0Þ2

w2
b

−
ðz− z0Þ2

z2b

!!!
:

[S13]

Nr2c
x0→x1

�
~x0; ~x1;Δt

� ¼X
i

c
�
Pbleach;i

��
~x0
�
 

Z∞
−∞

dx′
Z∞
−∞

dy′
Z∞
−∞

dz′ Ψdet
�
~x′; ~x1

� Zxiþrx

xi− rx

dx
Zyiþry

yi− ry

dy
Zziþrz

zi− rz

dz Pdiff
�
~x; ~x′;Δt

�

¼
X
i

cVeff

8
�
Pbleach;i

��
~x0
� 264erf

0
B@ xi − x1 þ rxffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

w2
0=2þ d2

q
1
CA− erf

0
B@ xi − x1 − rxffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

w2
0=2þ d2

q
1
CA
3
75

×

2
64erf

0
B@ yi − y1 þ ryffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

w2
0=2þ d2

q
1
CA− erf

0
B@ yi − y1 − ryffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

w2
0=2þ d2

q
1
CA
3
75
2
64erf

0
B@ zi − z1 þ rzffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

z20=2þ d2
q

1
CA− erf

0
B@ zi − z1 − rzffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

z20=2þ d2
q

1
CA
3
75; [S11]
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Thus, if a line between − xb and xb is bleached, the intensity
distribution can be expressed as

with an effective line bleach probability μ. To solve the integral
given in Eq. S14, the logarithm is represented by a series ex-
pansion, yielding

with wn ¼ wbffiffi
n

p . The series in the exponential function decreases
monotonically and the expression in the last line of Eq. S15 con-
verges. The series canbe truncated as needed to compute the results
numerically with the desired accuracy. For the calculations con-
ducted here, the series was truncated at n = 500 and the bleach
parameters β ¼ 0:2 and μ ¼ 2 per pixel were used. In analogy to
Eq. S12, the number of particles that translocate from a pixel~x0
within the bleached line into pixel~x1 can be calculated by replac-
ing Pbleachð~x; ~x0Þ with the line bleach probability Pline

bleachð~x; ~x0Þ given
inEq.S15. The time stamp for each bleach eventwas assignedbased
on its x-position along the line. Thus, the sequential bleach events
were correctly separated in time; however, their PSF was not as-
sumed to be a Gaussian distribution but rather a slice of the line
bleach PSF in Eq. S15. For pixels adjacent to the designated bleach
spot that arebleacheddue to the spatial extensionof thebleachPSF,
the time stamp corresponding to the first/last point of the bleach
region in the current scan line was assigned. This approach in-
troduces errors in the bleach times that are on the order of the time
themicroscope’s beam needs to translocate the distance that equals
the lateral width of the bleach PSF, which is below 1 μm. For a scan
speed of 1,400 Hz, a pixel time of roughly 0.4 μs, and a voxel size of
7.5 nm, this error is smaller than 50 μs.
Bleaching a 2D Region. In this section, the intensity distribution after
bleaching a 2D region is derived. First, the fraction of particles
bleached in a pixel of such a bleach region is calculated. This
probability is not equal in all bleach pixels/lines. A particle can
already be bleached when the focus is located at a precedent pixel/
line due to the spatial extension of the bleach PSF and diffusive
transport during the bleach process. The fraction of particles
bleached in pixel~x in the bleach region can be expressed with the
recursive relation

Nbleach
�
~x; t
� ¼ Pbleach

�
~x; ~x0

�
 

3

 
hNi−

X
ti < t

X
~x ′∈PSFi

Nbleach
�
~x′; ti

�
 Pr2r

x′→x

�
~x′; ~x; t− ti

�!
: [S16]

The probability Pr2r
x′→xð~x′; ~x;ΔtÞ is the probability for a particle

to be present in pixel ~x′ and to translocate to pixel ~x during

the time interval Δt. For cuboid voxels, this probability is
given by

Pr2r
x′→x

�
~x′;~x;Δt

� ¼ Zx′þrx

x′− rx

d~x
Zy′þry

y′− ry

d~y
Zz′þrz

z′− rz

d~z 
Zxþrx

x− rx

dx̂
Zyþry

y− ry

dŷ

3

Zzþrz

z− rz

dẑ Pdiff
�
~~x;~̂x;Δt

� ¼ 1
8
XYZ; [S17]

with the following abbreviations:

X ¼ ðΔxþ 2rxÞerf
	
Δxþ 2rx

d



þ ðΔx− 2rxÞerf

	
Δx− 2rx

d




− 2Δx erf
	
Δx
d



þ

ffiffiffiffiffi
d2

π

s 	
e−

ðΔxþ2rxÞ2
d2 þ e−

ðΔx− 2rxÞ2
d2 − 2e−

Δx2

d2




Y ¼ �Δyþ 2ry
�
erf
	
Δyþ 2ry

d



þ �Δy− 2ry

�
erf
	
Δy− 2ry

d




− 2Δy erf
	
Δy
d



þ

ffiffiffiffiffi
d2

π

s 	
e−

ðΔyþ2ryÞ2
d2 þ e−

ðΔy− 2ryÞ2
d2 − 2e−

Δy2

d2




Z ¼ ðΔzþ 2rzÞerf
	
Δzþ 2rz

d



þ ðΔz− 2rzÞerf

	
Δz− 2rz

d




− 2Δz erf
	
Δz
d



þ

ffiffiffiffiffi
d2

π

s 	
e−

ðΔzþ2rzÞ2
d2 þ e−

ðΔz− 2rzÞ2
d2 − 2e−

Δz2

d2




Here, d2 is the particles’ MSD and Δx ¼ x̂−~x, Δy ¼ ŷ−~y, and
Δz ¼ ẑ−~z. Based on Eqs. S16 and S17, the intensity distribution
after an arbitrary number of bleach events can be expressed
according to

I
�
~x; t
� ¼ ε

	
hNi−

X
ti

X
~x′∈PSFi

Nbleach

�
~x′; ti

�
 Pr2c

x′→x

�
~x′; ~x; t− ti

�

: [S18]

Pline
bleach

�
~x; ~x0; ~xb

� ¼ 1− exp

0
@ Zxb

− xb

dxiμ
X∞
n¼1

ð− 1Þnþ1

n

 
−β  exp

 
−
ðx− xiÞ2þðy− y0Þ2

w2
b

−
ðz− z0Þ2

z2b

!!n1A

¼ 1− exp

0
@− X∞

n¼1

μ

n

 
β  exp

 
−
ðy− y0Þ2

w2
b

−
ðz− z0Þ2

z2b

!!n Zxb
− xb

dxi exp

 
− n

ðx− xiÞ2
w2
b

!1A

¼ 1− exp

 
−

ffiffiffi
π

p
2

X∞
n¼1

μwn

n

 
β  exp

 
−
ðy− y0Þ2

w2
b

−
ðz− z0Þ2

z2b

!!n	
erf
	
xþ xb
wn



− erf

	
x− xb
wn



!
; [S15]

I
�
~x; ~x0; ~xb

� ¼ 1−Pbleach
�
~x; ~xb

� ¼ exp

0
@ Zxb

−xb

dxiμ ln

 
1− β  exp

 
−
ðx− xiÞ2þðy− y0Þ2

w2
b

−
ðz− z0Þ2

z2b

!!1A; [S14]

Erdel and Rippe www.pnas.org/cgi/content/short/1209579109 3 of 11

www.pnas.org/cgi/content/short/1209579109


3PEA for Reaction-Diffusion Processes. To apply 3PEA in the
presence of reaction-diffusion processes, the propagator in Eq.
S8 is replaced with an expression that accounts for binding
interactions. This reaction-diffusion propagator is derived in the
following. The starting point is the dissociation of particles from
a binding site, which is described by the differential equation

dNðtÞ
dt

¼ − koffN
�
t
�
; [S19]

with the solution NðtÞ ¼ N0   e−koff t. Thus, the probability for
a bound particle to remain at the binding site for the time tres
is PbðtresÞ ¼ koff   e−koff tres , where the prefactor is required for nor-
malization. The probability distribution for an arbitrary particle’s
residence time tres in the presence of binding reactions with
pseudoassociation rate kpon and dissociation rate koff is

PboundðtresÞ ¼ FeqδðtresÞ þ Ceqkoffe−koff tres : [S20]

Here, Feq ¼ koff
kponþkoff

and Ceq ¼ kpon
kponþkoff

are the free and bound
fractions in steady state, respectively (see above). The first
term is the probability to find a free particle, and the second
term is the probability to find a particle bound for tres. With
this result, the propagator in Eq. S8 can be redefined as

Preacþdiff
�
~x0; ~x1;Δt

� ¼ FeqPdiff
�
~x0; ~x1;Δt ·FA

�
Δt
��

þ Ceq

ZΔt
0

dtres   koffe−koff tresPdiff
�
~x0; ~x1;

�
Δt− tres

�

·FA
�
Δt− tres

��þ Ceqe−koffΔtδ
�
~x0 −~x1

�
: [S21]

Here, FAðtÞ is the fraction of time a particle spends in the free
state if it was free at t ¼ 0 (derived above in Eq. S3). The first
line of Eq. S21 represents particles that are initially free and
subsequently diffuse for Δt ·FAðΔtÞ. The second line represents
particles that are initially bound, dissociate after tres <Δt, and
diffuse for the rest of the time they spend in the free state [i.e.,
ðΔt− tresÞ ·FAðΔt− tresÞ ]. The third line represents particles that
are initially bound and remain bound for tres >Δt.
In general, the integral in the second line of Eq. S21 has to be

solved numerically. For special cases, an analytical reaction-dif-
fusion propagator can be found. One case is binding that is much
slower than the time scale of the measurement (i.e., k−1off >>Δt).
Here, the probability to dissociate from a binding site within Δt
can be neglected [i.e., Pbðtres <ΔtÞ→0 ] and the integrand in Eq.
S21 vanishes. The propagator converges to the sum of a diffusing
pool and an immobile pool, with both having analytical propa-
gators. For binding that occurs much faster than the time scale of
the measurement (i.e., k−1off <<Δt), the integrand in Eq. S21
vanishes as well and one effectively diffusing pool with diffusion
coefficient Deff remains.

Convergence of 3PEA in the Limit of Infinitely Fast Scanning. In the
limit of infinitely fast scanning and negligible beam waist, the
above theoretical description yields the state-of-the-art FRAP
model for a uniform disk derived previously (1, 3). For free
diffusion, the probability to bleach a particle in~x0 and to detect it
in~x1 (as fluorescence intensity decrease) is given by

Plim
x0→x1

�
~x0; ~x1;Δt

� ¼ β 

4πDΔt
e−

ðx1 − x0Þ2þðy1 − y0Þ2
4DΔt : [S22]

In case of infinitely fast scanning, the time Δt corresponds to
the time τf to acquire one image frame. The number of bleached
particles is equal in every pixel (i.e., Eq. 5 is not required). To

obtain the intensity profile after having bleached a circle with
radius R located around the center of the image (0, 0), the sum in
Eq. 6 is replaced by an integral:

I
�
~x; m

�
¼ ε hNi

0
B@1−

Z
~x′ ∈ ROI

d~x′  Plim
x′→x

�
~x′; ~x; mτf

�
 

1
CA

¼ ε hNi
0
@1−

β 

4πDmτf

ZR
0

rr′dr′ 
Z2π
0

  dϕ′ e−
r2þr′2−2rr′cosϕ′

4Dmτf  

1
A

¼ ε hNi
0
@1−

β 

2Dmτf

ZR
0

rr′e−
r2þr′2
4Dmτfdr′ I0

	
rr′

2Dmτf



 

1
A:

[S23]

Here, I0ðxÞ denotes the modified Bessel function of the first
kind and m is the number of the postbleach frame. In the last
step, the integral representation of I0ðxÞ was used. The integral
in the last line of Eq. S23 corresponds to the one used by
Soumpasis (equation 9 of ref. 3) to derive the well-known FRAP
model for free diffusion; for β ¼ 1, this is given by

IROI
�
m
� ¼ Z

~x ∈ ROI

d~x  I
�
~x; m

�

¼ ε hNi e− R2
2Dmτf

�
I0

	
R2

2Dmτf



þ I1

	
R2

2Dmτf



 

�
: [S24]

In analogy to the calculations above, the 3PEA limit for infinitely
fast scanning and negligible beamwaist in the presence of a reaction-
diffusion process is derived as described below. Similar to Eq. S22,
the probability to bleach a particle in~x0 and to find it in~x1 for the case
of diffusion and binding (based on Eqs. S20 and S21) amounts to

Plim
b;x0→x1

�
~x0; ~x1;Δt

�
¼
�
Pbound ⊗Plim

x0→x1

��
~x0; ~x1;Δt

�
þ  Ceqe−koffΔtδ

�
~x0; ~x1

�
: [S25]

Here, ⊗ is the convolution operator. In the limit of vanishing
beam waist, the Dirac delta distribution is obtained; the bleach
depth was set to β ¼ 1. The relation between the integrated in-
tensity in the bleach region of interest and the transition prob-
ability in Eq. S25 is given by

IROI
�
m
� ¼ Z

~x ∈ ROI

I
�
~x; m

�

¼ ε hNi

0
B@1−

Z
~x ∈ ROI

 d~x
Z

~x′ ∈ ROI

d~x′  Plim
b;x′→x

�
~x′; ~x; mτf

�
 

1
CA

¼ ε hNi

0
B@1−

Z
~x ∈ ROI

d~x 
Z

~x′ ∈ ROI

d~x′ 
�
Pbound ⊗Plim

x′→x

�

�
~x′; ~x; mτf

�
−  Ceqe−koffmτf

1
CA:

[S26]

Because the convolution in Eq. S26 cannot be calculated an-
alytically, an expression for the Laplace-transformed intensity is
derived. Starting from the Laplace transform for the pure dif-
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fusion case (1), together with the results from the previous sec-
tion, the following relation is obtained:

IROIðpÞ ¼ ε hNiL
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[S27]

Here, Lff ðtÞg denotes the Laplace transform. Thus, for the
case of binding and diffusion, Eq. S27 reads
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[S28]

In the first step, the convolution theorem for Laplace trans-
forms was used. Furthermore, the dimensionless variable
t′ ¼ t DAðtÞ

R2 with its Laplace variable p′ ¼ p R2

DðpÞ ¼ R2

LfDAðtÞg was in-

troduced. The solution for LfPboundðtÞg with Pbound (t) as defined
in Eq. S20 is

LfPboundðtÞg ¼ FeqLfδðtÞg þ CeqkoffL

e−koff tres

�
¼
	
Feq þ Ceq

koff
pþ koff



¼ Feq

	
1þ kpon

pþ koff



:

[S29]

Based on Eqs. S28 and S29, the expression for the Laplace-
transformed intensity in the bleach spot can be written as
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[S30]

with p′ ¼ p R2

DðpÞ ¼
pR2

D

	
1þ kpon

pþkoff



.

This is the result obtained previously for reaction-diffusion
processes by Sprague et al. (1).

Calculating Effective Translocation Probability Distributions. Based
on the microscope’s scan parameters, the characteristic spatial
and temporal distance to a set of bleach events can be calculated
for every pixel of the image. The characteristic temporal distance
was determined according to

Δt ¼

P
~x ∈ ROI

P
~x′ ∈ PSF

Δt
�
~x; ~x′

�
·j~x−~x′j−1

P
~x ∈ ROI

P
~x′ ∈ PSF

j~x−~x′j−1 : [S31]

Here, Δtð~x; ~x′Þ represents the temporal distance between
pixels~x and~x′ (according to Eq. 1). The j~x−~x′j−1 term is a weight
factor accounting for the fact that particles diffusing larger dis-
tances are underrepresented in a given pixel, because in a 2D
process, every pixel~x′ can be regarded as a radial line segment of
a circle around the originating pixel ~x. For simplicity, it was
neglected that bleaching also occurs at pixels outside the nomi-
nal bleach region due to the spatial extension of the PSF. The
characteristic spatial distance was calculated in an analogous
manner:

Δx ¼

P
~x ∈ ROI

P
~x′ ∈ PSF

Δx
�
~x; ~x′

�
·j~x−~x′j−1

P
~x ∈ ROI

P
~x′ ∈ PSF

j~x−~x′j−1
: [S32]

Similar to Eq. S31, Δxð~x; ~x′Þ ¼ j~x−~x′j represents the spatial
distance between pixels~x and~x′. Based on the assignment of Δx
and Δt, translocation probabilities can be estimated from the
pixel intensities as explained in the main text.

3PEA Implementation. The workflow for the 3PEA data analysis of
protein mobility in the presence of interactions with immobile
obstacles, such as chromatin, is illustrated in Fig. S7. The ex-
perimental bleach profile is fitted with the diffusion library to
determine the apparent diffusion coefficient D. The value of D
retrieved from the diffusion fit is compared with the free diffu-
sion coefficient Dfree that can be derived by different approaches:
(i) The protein mobility in the cytosol can be measured, which
yields D in the absence of chromatin interactions; (ii) a similar-
sized inert protein can be measured, such as, for example, the
green autofluorescent protein (GFP) pentamer used here; and
(iii) the diffusion coefficient can be calculated based on its mo-
lecular weight and/or structure (4). A value of the apparent
diffusion coefficient D similar to Dfree indicates that binding
interactions can be neglected. If D is significantly smaller than
Dfree, it is likely that binding reactions decrease protein mobility.
Other reasons for a reduced diffusion coefficient include caging
effects or the formation of a multimeric protein complex that
displays an increased molecular weight M over that of the mo-
nomeric protein, with D being proportional to M−1/3 for
a spherical protein. However, these contributions typically lead
to only moderate changes. Protein complexes with M as high as
1–2 MDa appear to be unrestricted in terms of the accessible
nuclear space (5), and up to a GFP pentamer, protein mobilities
were found to be very similar in the cytoplasm and in the nu-
cleoplasm (6). In the case of protein binding, the interaction with
chromatin is described by a pseudoequilibrium constant K*eq =
k*on/koff, with k*on also including the concentration of binding
sites according to the formalism outlined above. To separate the
diffusion of the protein from the binding contribution, the bleach
profile is fitted to a reaction-diffusion model. If both the diffu-
sion and the reaction-diffusion fits are of similar quality, a tran-
sient binding interaction is present that is included in the value
of the effective diffusion coefficient. Otherwise, the fit to the full
reaction-diffusion library retrieves k*on and koff. For very large
dissociation rates, only a lower limit can be calculated, which is
determined by the time resolution of 3PEA. In the current im-
plementation, it is limited by the error of the bleach time as-
signment, which is roughly 50 μs. Thus, dissociation rates up to
about 10,000 s−1 can be resolved.
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Fig. S1. Function definitions and behavior of reaction-diffusion processes. (A) Translocation probabilities used for the derivation of the theoretical 3PEA
framework are visualized. Pr2r is the translocation probability between two cubes or rectangles, Pr2c is the translocation probability between a cube and a 3D-
Gaussian distribution or a rectangle and a 2D-Gaussian distribution. (B) The scale-dependent behavior of reaction-diffusion processes is illustrated, and the
time-dependent apparent diffusion coefficients for the particles that are initially free or bound are shown. (C) The bound pool can be further subdivided into
an immobile pool (bound longer than t*) and an exchanging pool (bound shorter than t*) according to the propagator in Eq. 8. On different scales, different
pools are present, allowing for retrieval of distinct observables. For very short measurement scales, only an immobile fraction and a mobile fraction diffusing
with D are present; for very large measurement scales, only one pool diffusing with Deff is present. In both cases, the individual rate constants are not obtained.
Rather, measurements on the intermediate time scale have to be conducted to characterize the process fully.
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Fig. S2. Calibration of the bleach PSF. The bleach PSF in lateral and axial direction was determined with a GFP solution dried on a coverslip and a fluorescent
plastic slide (Chroma Technology Corp.), respectively. (A) Line segments were bleached with different scan speeds to obtain the lateral geometry of the bleach
PSF from the dried GFP sample. (B) Intensity perpendicular to the bleached line segments from A was plotted to determine the effective bleach depth. (C) A
spot was bleached on the chroma slide to determine the axial geometry of the bleach PSF. (D) Intensity profiles from Cwere plotted to estimate the beam waist
for the bleach PSF.

Snf2H-GFP RFP Merge

5 µm

Fig. S3. Representative cell coexpressing Snf2H-GFP and red fluorescent protein (RFP). U2OS cells stably expressing Snf2H-GFP were transiently transfected
with a plasmid coding for TagRFP. The bleach region was positioned in a region of the nucleoplasm where both proteins were mostly homogeneously
distributed.
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Fig. S4. Experimental implementation of 3PEA for a rectangular bleach region. (A) A stable Snf2H-GFP U2OS cell line was transfected with free red fluo-
rescent protein (RFP) (Fig. S3), and the mobilities of both proteins were measured in a 3PEA experiment. Scan speeds of 100 Hz and 1,400 Hz were used for
raster acquisition and bleaching. The rectangular bleach regions had dimensions of 2 μm × 0.5 μm (experiments with a circular bleach geometry are shown in
Fig. 2). As expected, the bleach coronas became broader for increasing diffusion coefficients and decreasing scan speeds. In the merge images, the less mobile
protein can be readily identified by visual inspection of the predominant color in the area adjacent to the bleach region (here, Snf2H-GFP in green). (B) Ex-
emplary theoretical bleach profiles for different diffusion coefficients calculated for the parameters used in the experiments, with 512 × 512 pixels and 7.5-nm
voxel size. The experimental Snf2H-GFP profile seems to be most similar to the D = 1 μm2·s−1 case, whereas the RFP profile is better approximated with D =
10 μm2·s−1.
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Fig. S5. Diffusion coefficient of free GFP and a GFP pentamer (GFP5) measured by 3PEA in the nucleus. U2OS cells stably expressing free GFP or GFP5 were
subjected to 3PEA. Diffusion coefficients of D = 36 ± 5 μm2·s−1 and D = 15 ± 2 μm2·s−1 were determined for GFP and GFP5, respectively. The experimental
fluorescence intensity profile, the corresponding image for the best fit, and the sum of squared residuals (SSR) plot are shown.
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Fig. S6. Experimental calibration of fluorescence correlation spectroscopy (FCS) measurements and comparison of different FCS fit models. (A) Diffusion times
of GFP and TetraSpeck 100 beads. The dwell time of free GFP expressed in U2OS cells was measured by FCS. As a reference, TetraSpeck beads with a diameter of
100 nm and a known diffusion coefficient of D = 4.4 μm2·s−1 were measured in aqueous solution. From the dwell time difference, an effective diffusion
coefficient of D = 44 μm2·s−1 was determined for GFP. (B) FCS autocorrelation curves for reaction-diffusion processes (green) have a very similar shape as
autocorrelation curves with two diffusive components (red). Thus, it is difficult to decide if the second component originates from jiggling of the chromatin
fiber or from a reaction-diffusion process with an immobile substrate. For comparison, the best fit of a two-component anomalous diffusion model to an
experimental curve for Snf2H-GFP is shown (black). Curves were plotted according to the equations in the studies by Michelman-Ribeiro et al. (1) and Erdel
et al. (2) with the parameters for two-component anomalous diffusion (Dfast = 6 μm2·s−1, Dslow = 0.06 μm2·s−1, αfast = 0.7, αslow = 2.0, ffast = 0.78), two-component
normal diffusion (Dfast = 15 μm2·s−1, Dslow = 0.16 μm2·s−1, ffast = 0.57), and reaction-diffusion (K*eq = 0.59, koff = 3.2 s−1, D = 12 μm2·s−1).

1. Michelman-Ribeiro A, et al. (2009) Direct measurement of association and dissociation rates of DNA binding in live cells by fluorescence correlation spectroscopy. Biophys J 97(1):
337–346.

2. Erdel F, Schubert T, Marth C, Längst G, Rippe K (2010) Human ISWI chromatin-remodeling complexes sample nucleosomes via transient binding reactions and become immobilized at
active sites. Proc Natl Acad Sci USA 107(46):19873–19878.
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Fig. S7. Workflow for 3PEA. The general workflow for the mobility analysis of different proteins by 3PEA is shown. Based on this methodology, the effective
diffusion coefficient for the proteins can be determined. Furthermore, the binding interactions between the protein and immobile obstacles can be char-
acterized as described in the main text and SI Text.

Movie S1. Simulated bleach experiment with D = 1 μm2·s−1. Confocal light scanning microscopes acquire and bleach images via a raster scan process. Pixels are
sequentially illuminated from the upper left pixel to the lower right pixel. In the standard unidirectional mode, all lines are scanned from left to right. Thus,
after a line has been scanned, the microscope’s illumination beam moves to the left pixel of the next line (“fly-back”). (Left) Current beam position is depicted.
During fly-back, a gray strip appears in the lower left corner. The bleach region consists of one pixel located in the center of the image. When the illumination
beam reaches this pixel, the intensity increases and a Gaussian-shaped profile is bleached into the pool of fluorescent particles. (Center) Current intensity
distribution that could be observed by looking at all particles simultaneously is depicted (fluorescent particles are represented in white, bleached particles are
represented in black). The intensity distribution does not correspond to the acquired image, because the microscope detects only one pixel at a time at the
point where the illumination beam is located (Left), which leads to the CLSM image (Right). The bleach profile is asymmetrical, because the pixels above the
bleach region are acquired before bleaching has occurred and because diffusion takes place during the acquisition process. For the simulation, a voxel size of
100 nm, a pixel dwell time of 5 μs, and a diffusion coefficient of 1 μm2·s−1 were used.

Movie S1
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Movie S3. Simulated bleach experiment with D = 100 μm2·s−1. The bleach experiment is the same as in Movie S1 but with a diffusion coefficient of 100 μm2·s−1.
Here, diffusion occurring during the bleach process is significant. The bleach profile becomes very broad at its lower part, and the remaining bleach depth after
completion of the image frame is very small. Thus, the signal would be insufficient for a conventional FRAP analysis.

Movie S3

Movie S2. Simulated bleach experiment with D = 10 μm2·s−1. The bleach experiment is the same as in Movie S1 but with a diffusion coefficient of 10 μm2·s−1.
Diffusion during the bleach process is evident, leading to a bleach profile that is broadened in its lower part.

Movie S2
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