Table S3. Parameters for parsimony score used in kwarg to reconstruct ancestral recombination graphs

Runtime		Parsimony score =
per ARG	Configuration complexity	$r^b + \max(am^c/maxam, seq^d/maxseq) + $ the following:
< 2 hrs	$maxlen^a > 100$	$2 \times hk^e$
	$50 < maxlen \le 100$	$1.5 \times \max(eagl(7)^f, hb(2, 50, 6)^g)$
	$maxlen \leq 50, maxam \geq 100$	$1.25 \times \max(eagl(10), hb(2, -1, -1))$
	$maxlen \leq 50, maxam < 100$	$rmin^h$
> 2 hrs	maxlen > 100	$2 \times hk$
	$50 < maxlen \le 100$	$1.5 \times \max(eagl(5), hb(2, 50, 6))$
	$maxlen \leq 50, maxam \geq 25$	$1.25 \times \max(eagl(7), hb(2, 50, 10))$
	$maxlen \leq 50, maxam < 25$	rmin

Shown are parameter choices used in the parsimony score at differing stages of genealogical inference by kwarg. At a given stage in the calculation, the set of recombination, mutation, and coalescence events inferred by previous steps determines a set of remaining sequences referred to as the *configuration*. Each row in the table represents parameter values used to calculate the parsimony score when evaluating move choices for the *next* step, at the indicated configuration complexity.

Parameters for these bounds are described in Lyngsø et al. (2005).

^a The maximum number of segregating sites remaining after any proposed move.

^b The number of recombination events in the proposed event (zero or one).

 $^{^{}c}$ The resulting length of ancestral material after the proposed step (maxam is the maximum across all proposed moves).

d The number of sequences remaining after the proposed step (maxseq is the maximum across all proposed moves).

^e The Hudson-Kaplan lower bound on the remaining data after the proposed step.

^f A composite lower bound combining the exact minimum across disjoint intervals.

g The haplotype lower bound.

^h The exact minimum number of recombination events remaining.