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Supporting Information Legends

Estimating Number of Principal Components

The spectral decomposition yields a parsimonious expansion of the subject level functions Aiq(t) =

∑
∞

j=1 ξijqψjq(t). Necessarily, we truncate the decomposition at L terms so that Aiq(t) has a finite decom-

position expression, Aiq(t) = ∑
L
j=1 ξijqψjq(t).

We follow the approach proposed by [?] to estimate L based on proportion of variance explained. Let
P1 and P2 be two thresholds, and define

Lq = min{k ∶
k

∑

j=1

λjq/
∞

∑

j′=1

λj′q ≥ P1, λkq < P2}.

Here, P1 is a threshold on the cumulative explained variance while P2 is a threshold on the individual
explained variance. In this manuscript, we choose P1 = 0.95 and P2 = 0.02. These choices work well in our
simulations and application. However, they should be carefully tuned in other settings, perhaps using
simulations.

Variance Matrix Smoothing

Instead of the true mixing matrix functions, Aiq(t), we obtain the model-based estimates from the

ICA algorithm, Âiq(t). Assume a measurement error model so that Âiq(t) = Aiq(t) + εiq(t), where εi(t)
is a white noise process with variance σ2

q . Thus a smoothing step is desirable.

Under the assumed model Âiq(t) = Aiq(t) + εiq(t), the covariance operator for the observed data is

KW
q (s, t) =Kq(s, t)+σ

2
qδts, where KW

q (s, t) = Cov{Âiq(s), Âiq(t)} and δts = 1 if t = s and 0 otherwise [?].

This equation reveals that the diagonal elements of KW
q (s, t) includes the nugget measurement error. A

simple and natural solution is to drop the diagonal elements and smooth the covariance matrix. We use
the standard (moment based) estimate K̂W

q (s, t) from the observed data, ∑
I
i=1 Âiq(t)Âiq(s)/I and then

estimate K̂A
(s, t) by smoothing the estimate for s ≠ t [?, ?]. The eigenvalues, λjq, and eigenfunctions,

ψjq can then be derived from this estimated covariance matrix.


