
Additional Information S1

1

Introduction

This is an additional document to the PLoS ONE article entitled, “Evaluating high-throughput ab initio

gene finders to discover proteins encoded in eukaryotic pathogen genomes missed by laboratory

techniques”. It contains three main sections: Gene Finder programs, Background Information, and

Gene Finder commands. The document is intended to be a reference for gene prediction and is not

expected to be read from cover-to-cover.

Gene Finder programs (page 1) contains a description of all gene finder programs used in the article.

There is a set format for each program entry: Program Name, Usage, Description, Platform,

Implementation, Algorithm, Availability, Licence, Version, First Released, References, Input, Output,

Advantages, Disadvantages, and Comments. The programs appear in alphabetical order.

Background Information (page 7) contains basic introductory information that may assist the

researcher in a better understanding of gene prediction.

Gene Finder commands (page 13) contains, for reference only, syntax commands for setting up and

executing the gene finder programs.

Gene Finder Programs

AUGUSTUS

Program Name: augustus

Usage: Predicts genes in eukaryotic genomic sequences.

Description: The method is based on a generalized Hidden Markov Model with a new method for

modelling the intron length distribution.

Platform: Web server or UNIX/Linux.

Implementation: C++ and Perl

Algorithms: Windowed weight array model (WWAM) and interpolated Markov Models (IMM)

Availability http://bioinf.uni-greifswald.de/augustus/

Licence: Open Source

Version: 2.6

First Released: 2004

Reference: Stanke M, Steinkamp R, Waack S, Morgenstern B: AUGUSTUS: a web server for gene

finding in eukaryotes. Nucleic Acids Research 2004, 32(suppl 2):W309-W312

Additional Information S1

2

Input: a DNA sequence in FASTA format or multiple sequences in multiple FASTA format and model

parameters for target species

Output: A text output in the ‘General Feature Format’ (GFF)

(See http://www.sanger.ac.uk/resources/software/gff/)

To extract the protein sequences from the gff file a Perl script called getAnnoFasta.pl is provided.

Advantages: AUGUSTUS can be run on the German MediGRID. This enables you to submit larger

sequence files and allows you to use protein homology information in the prediction.

Disadvantages:

Training:

AUGUSTUS has currently been trained on species specific training sets to predict genes in organisms

(see http://augustus.gobics.de/) for the list of organisms. A training program called etraining is

available and requires training genes and their exon locations to be in a single file in a genBank

format. The main keys required are LOCUS heading (LOCUS entries are optional), FEATURES, source,

gene, mRNA, CDS, and ORIGIN (followed by the DNA sequence containing the training genes). How to

train AUGUSTUS can be found at:

http://molecularevolution.org/molevolfiles/exercises/augustus/training.html

Comments:

AUGUSTUS is based on a Hidden Markov Model and integrates a number of known methods and sub

models e.g. Markov chain, a higher order windowed weight array model (WWAM), interpolated

Markov Models (IMM) and a novel method for similarity-based weighting of sequence patterns. The

default version of the model consists of 47 states (23 states for forward strand and 23 symmetric

states for reverse strand). Each state emits a random DNA string of possibly random length. The

distribution of these and the transition probabilities between them are determined using established

models and a training set of annotated sequences for the target species. The following are

probabilistically modelled separately: 1) the sequence around the splice sites, 2) the sequence of the

branch point region, 3) the bases before the translation start, 4) the coding regions, 5) the non-coding

regions, 6) the first coding bases of a gene, the length distribution of single exons, initial exons, 7)

internal exons, 8) terminal exons, 9) intergenic regions,10) the distribution of the number of exons

per gene, and 11) the length of distribution of introns. AUGUSTUS employs a new way of modelling

intron lengths by combining explicit length modelling (estimated from observed frequencies) for short

introns, with a geometric distribution for long introns. Short introns typically have a length

distribution clustering around a certain length.

AUGUSTUS predicts the gene structure with the largest a-posteriori probability using the Viterbi-

algorithm.

GeneMark.hmm eukaryotic version

Program Name: gmhmme3

Usage: A eukaryotic gene finding algorithm using hidden Markov models (HMM)

Description: GeneMark-hmm employ inhomogeneous (three-periodic) Markov chain models describing
protein-coding DNA and homogeneous Markov chain models describing non-coding DNA. It utilises
an extended hidden Markov model (HMM) architecture and the generalized Viterbi algorithm to
determine the most likely sequence of hidden states (labels designating the coding or non-coding

function) based on the whole observed DNA sequence. The hidden states are: initial, internal and

terminal exons, introns, intergenic regions and single exon genes located on both DNA strands; and

initiation site, termination site, donor and acceptor splice sites.

Platforms: Web server, Linux and Sun Solaris

Additional Information S1

3

Implementation:

Algorithms: Hidden Markov Model (HMM) with duration or a hidden semi-Markov model (HSMM).

Availability: http://exon.biology.gatech.edu/

Licence: Open Source Software

Version: 3.3

First Released: 1997

References:

Lukashin AV, Borodovsky M: GeneMark.hmm: New solutions for gene finding. Nucleic Acids Research

1998, 26(4):1107-1115

Besemer J, Borodovsky M: GeneMark: web software for gene finding in prokaryotes, eukaryotes

and viruses. Nucleic Acids Research 2005, 33:W451-W454.

Input: a DNA sequence in FASTA format and model parameters for target species

Output: an option to output in the ‘General Feature Format’ (GFF) and an option to translate

predicted DNA sequences to protein sequences.

Advantages:

Disadvantages: There is no training program. However, there is a self-training version of GeneMark

(see below)

Trained model files: Model files for the following organisms are provided and have the extension

*.mod:

Homo sapiens, Arabidopsis thaliana, Caenorhabditis elegans, Toxoplasma gondii, Chlamydomonas

reinhardtii, Drosophila melanogaster, Gallus gallus, Hordeum vulgare, Mus musculus, Oryza sativa,

Triticum aestivum and Zea mays

Comments: There are 2 versions of GeneMark.hmm - Supervised and un-supervised training versions.

The version that uses supervised training has a web interface:

http://exon.biology.gatech.edu/eukhmm.cgi

GeneMark.hmm ES

Program Name: gm_es.pl

Usage: A eukaryotic gene finding algorithm using hidden Markov models (HMM) and employing the

Viterbi unsupervised training procedure. ("E" stands for "Eukaryotic" and "S" stands for "Self-

training")

Description: GeneMark.hmm-ES program predicts genes and intergenic regions in a sequence as a

whole. They use the Hidden Markov models reflecting the "grammar" of gene organization. The self-

training procedure determines parameters for the gene models

Platform: Linux and Sun Solaris

Implementation: Perl

Additional Information S1

4

Algorithm: Markov Model (GHMM) with Viterbi training

Availability: http://exon.biology.gatech.edu/

Licence: Open Source Software

Version: 1.0

First Released: 2005

Reference:

Lomsadze A., Ter-Hovhannisyan V., Chernoff Y. and Borodovsky M., "Gene identification in novel

eukaryotic genomes by self-training algorithm", Nucleic Acids Research, 2005, Vol. 33, No. 20, 6494-

6506

Input: a DNA sequence in FASTA format

Output: a file in a Gene Transfer Format (gtf).

Advantages: Can be used on novel genomes where there are an inadequate number of

experimentally validated genes. The training set used is classified as “unsupervised training”.

GeneMark.hmm ES has been tested on Toxoplasma gondii.

Disadvantages: Contains no option to convert predicted genes to protein sequences

Comments:

GeneMark-ES tested on genomes of Arabidopsis thaliana, Caenorhabditis elegans and Drosophila

melanogaster.

There is an optional parameter (--BP OFF) that switches off the branch point sub model and runs

original ES algorithm (GeneMark.hmm ES version 1.0). This option is recommended for genomes with

weak branch points and was used with Toxoplasma gondii

Generation of gene predictions for a novel eukaryotic genome occurs in parallel with the

unsupervised (automatic) iterative estimation of gene model parameters by the Viterbi training. At

each iteration, the algorithm takes genomic sequence labelled by the Viterbi algorithm at the previous

iteration into coding and non-coding regions, re-estimates model parameters, and computes a new

sequence parse and labelling. This general path of the iterative Viterbi training process is modified by

addition of restrictions on possible changes of parameters to ensure convergence of the iteration

process to the biologically relevant point. At the point of convergence the set of sequence labels is

transformed into the list of gene predictions, the program output.

GlimmerHMM

Program Name: glimmerhmm_linux

Usage: A Generalized Hidden Markov Model eukaryotic gene-finder

Description: GlimmerHMM is a gene finder based on a Generalized Hidden Markov Model (GHMM).

Although the gene finder conforms to the overall mathematical framework of a GHMM, additionally it

incorporates splice site models adapted from the GeneSplicer program and a decision tree adapted

from GlimmerM. It also utilizes Interpolated Markov Models for the coding and non-coding models.

Platform: Linux RedHat 6.x+, Sun Solaris, and Alpha OSF1

Implementation: C/C++

Additional Information S1

5

Algorithm: Generalized Hidden Markov Model (GHMM)

Availability: http://www.cbcb.umd.edu/software/glimmerhmm/

Licence: OSI Certified Open Source Software

Version: 3.0.1 (2007)

First Released: 2004

References:
Pertea M, Salzberg SL: Using GlimmerM to Find Genes in Eukaryotic Genomes: John Wiley & Sons,

Inc.; 2002

Majoros WH, Pertea M, Salzberg SL: TigrScan and GlimmerHMM: two open source ab initio

eukaryotic gene-finders. Bioinformatics 2004, 20(16):2878-2879

Input: Two inputs - a DNA sequence file in FASTA format and a directory containing the training

parameters for the program.

Output: A text output in the ‘General Feature Format’ (GFF)

 (See http://www.sanger.ac.uk/resources/software/gff/)

Advantages: Code reusable due to their modular and extensible architectures. The programs are re-

trainable by the end user. They are also re-configurable and include several types of probabilistic sub

models which can be independently combined, such as Maximal Dependence Decomposition trees

and interpolated Markov models.

Disadvantages: No option to convert the predicted DNA sequences to protein sequences.

Training: Training program is available

Comments:

GlimmerHMM was used for the annotation of the Aspergillus fumigatus and Toxoplasma gondii

genomes.

Currently, the GHMM structure includes introns of each phase, intergenic regions, and four types of

exons (initial, internal, final, and single).

SNAP

Program Name: snap

Usage: A Generalized Hidden Markov Model eukaryotic gene-finder. SNAP is an acronym for Semi-

HMM-based Nucleic Acid Parser.

Description: SNAP models protein-coding sequences in genomic DNA via a specialized hidden Markov

model similar to the one used in Genscan

Platform: A command line UNIX program

Implementation: ANSI C

Algorithm: Hidden Markov Model (HMM)

Additional Information S1

6

Availability: http://homepage.mac.com/iankorf/

Licence: GNU General Public License

Version: 2006-07-28

First Released: 2004

Reference: Korf I: Gene finding in novel genomes. BMC Bioinformatics 2004, 5(1):59

Input: a DNA sequence in FASTA format and model parameters for target species

Output: an option to output in the ‘General Feature Format’ (GFF) and an option to translate

predicted DNA sequences to protein sequences.

Advantage: Attempts to be more adaptable to different organisms, addressing problems related to

using a gene finder on a genome sequence that it was not trained against.

Disadvantages:

Comments:

The default HMMs employed by SNAP have a minimal genome model. There are no models for

promoter, poly-A site, UTRs or trans-splicing. These features are often not annotated and the author

states that only the features which can be unambiguously defined in the training data should be used.

Some key SNAP features: 1) Uses six intron states to prevent stop codons at splice junctions, 2)

models each strand independently. Decoding the strands independently allows genes on opposite

strands to overlap. The advantage is that it allows genes within introns of other genes. The

disadvantage is that it also allows overlapping exons. 3) The state diagram is read from a parameter

file. This allows one to change the HMM to describe a variety of genomic features. 4) The sequence

feature model architecture allows one to employ any length weight matrix and any order Markov

model and to embed these models within an array, decision tree, or 3-periodic (coding sequence)

framework. 6) Introns may have explicit length distributions over a fixed distance followed by a

geometric tail (Similar to AUGUSTUS).

It may be possible to increase the accuracy of SNAP by including more states in the HMM to model

additional genomic features or by using more sophisticated statistical techniques such as interpolated

Markov models, maximum dependence decomposition trees or isochore segmentation.

SNAP employs weight matrices (WM) to model compositional features such as the translation start

site, splice sites and codon bias. The "default" models are as follows: the acceptor WM is30 bp long

with 3 exonic nucleotides, the donor WM is 9 bp with 3 exonic nucleotides, the start WM is 12 bp with

6 coding nucleotides, and the stop WM is 9 bp with 3 bp on either side of the stop codons. Markov

models are used for exons, introns, and intergenic sequence.

Additional Information S1

7

Background Information

The following is a brief introduction to in silico gene finding. In particular, the focus is on ab

initio gene finding that predicts genes within a DNA sequence with no additional evidence. Figure 1

shows the molecular steps from a DNA sequence containing a single gene to a polypeptide sequence:

Step 1) DNA sequence is transcribed to produce a messenger RNA (mRNA). In effect the introns (the

non-coding sequences) are removed due to splicing and the exons (the coding sequences) are

concatenated; and step 2) mRNA is translated into a chain of amino acids (a polypeptide) that folds to

form a protein. These steps are commonly referred to as the central dogma of molecular biology.

Figure 1. Central dogma of molecular biology

The general aim in gene finding is to identify the coding segment (CDS) within a gene region;

but more specifically, identify exons within the coding segment. Once the internal exon-intron structure

of a gene is known, the encoded protein(s) can be deduced. At the most basic understanding there are

three types of exons: an initial exon that is defined by a start codon (typically ATG), an internal exon,

and a terminal exon that is defined by a stop codon (typically TAG, TGA, or TAA).

Figure 2 shows a schematic of the gene finder motif signals. In addition to the start and stop

codon signals in the DNA sequence of the CDS, an intron begins with a splice donor site (typically GT)

and ends with a splice acceptor site (typically AG). Hence, there are four basic motif signals defining

coding exons: start and stop codon, and donor and acceptor sites. These motif signals define the

boundaries for the exon-intron structure of a gene and in effect define the syntax rules for parsing the

DNA sequence. For example, valid gene parses are ATG � TGA, ATG �GT � AG � TGA. An

invalid gene parse is ATG � AG. Some valid parses will not be true genes because not all ATGs code

for a start codon, and not all GTs and AGs are splice sites,

Additional Information S1

8

Given a single DNA sequence as input, gene finders attempt to predict for each base along the

sequence whether it is part of an exon, intron, or intergenic region. The basic steps for predicting genes

are: 1) identify all possible boundary motif signals, 2) link the boundary signals based on syntax rules

into valid gene parses, 3) score all valid gene parses, and 4) output the gene predictions with the highest

scoring parses.

Methods from the fields of natural language processing and speech recognition have been

adopted in computational gene finding. Instead of identifying features such as a subject or a verb in a

sentence, features of biological significance in a DNA sequence are identified. There are two broad

classes of features representing DNA subsequences: 1) Motif Signals - short, fixed-length features such

as start and stop codons, and splice sites; and 2) Content regions - variable-length features such as

exons and introns. Codon bias is one natural phenomenon that can help predict the content regions.

That is, some codons in protein coding regions are significantly more common than other codons in

non-coding regions. Ab initio gene prediction searches for signals and content. Figure 3 shows the

signal and content sensors. In signal sensing, a sliding window identifies and scores the motif signals

along the DNA sequence. Typically, position-specific weight matrices (PWMs) are employed in the

sequence signal detection. The parameters of the PWM are estimated from known signals of the same

type as part of the training process. The sliding window which constitutes a PWM for a specific signal

(e.g. start codon) can have any fixed number of cells. For example, in Figure 3 this sliding window has

nine cells, four cells prior to and two cells after the signal consensus (ATG). Each cell of the PWM

contains the frequency distribution of each of the four nucleotides. For example, the fifth, sixth and

seventh cells in Figure 3 have the following nucleotide distribution: (A = 1.0, C = 0.0, G = 0.0, T= 0.0)

(A = 0.0, C = 0.0, G = 0.0, T= 1.0) (A = 0.0, C = 0.0, G = 1.0, T= 0.0). All other six cells have a

distribution relative to the compositional biases at the corresponding positions flanking start codons

(ATGs) in known genes of the target organism. That is, computational biases are learned from the

process of parameter estimation, or training. Validated genes from the organism of interest comprise

the training data, or training set. Each organism has its own compositional biases. The PWM window

Figure 2. Gene finder motif signals (Source: Majoros WH, Methods for Computational Gene Prediction,
Cambridge University Press)

Additional Information S1

9

slides along the DNA sequence one nucleotide at a time. A signal score is computed at each location by

multiplying the cell probabilities of the observed nucleotides in each cell of the window. The

probabilities are derived from the estimated parameters of the PWM. Taking Figure 3 as an example,

the score at the shown location for this nine celled sliding window is the probability of G in cell one

multiplied by the probability of T in cell two, and so on. Only signals with scores over a predetermined

threshold are selected for the next phase of the gene finding process, which involves content sensing.

Content sensing is the process of scoring the regions between the motif signals in a valid

parse, such as exons, introns, or intergenic regions. The regions are scored in accordance with content

measures (also referred to as codon statistics). The current most popular content-based measure is in

the form of a Markov chain (or model). For example, it is a model that predicts the next base in a

sequence using a fixed number of preceding bases. A more specific example is hexamer frequencies in

the form of codon position-dependent fifth-order Markov models. It uses the five previous bases to

predict the next base. The signal and content scores are combined to determine which putative exons

are ultimately included in the overall predicted gene structure.

A Generalized hidden Markov model (GHMM) provides a framework to integrate signal

scores and content scores. Figure 4 shows a state-transition diagram of a GHMM. Each gene feature

corresponds to a state in diagram. The signal features are represented by circle states and the content

regions by the oval states. Each state has its own emission probability distribution and emits a

subsequence of the input sequence. For example, in the figure the donor state emission distribution is

shown and GT is the most probable sequence emitted from this state. An input sequence can be scored

by assessing the emission probabilities for a particular valid parse (or path through the GHMM model).

The emission probabilities collectively comprise signal scores (produced from the circle states) and

Figure 3. Feature sensors for ab initio gene finding

Additional Information S1

10

content scores (produced from the oval states). To score the variable length of the content regions (i.e.

the exons, introns, and intergenic regions), each content state generates an additional distribution of

duration probabilities. In other words, GHMM (but not HMM) explicitly model feature lengths of

exons and to a lesser extent introns and this is important where feature lengths do not follow a

geometric distribution.

Each state has fixed transition probabilities from one state to another state (represented in

diagram by arrows). The transition probabilities describe the linear order in which the states are

expected to occur. In this example, the red arrows are the low transition probabilities and the black

arrows the high transition probabilities. In effect the transitions define the syntax rules for parsing the

DNA sequence.A general rule is that the states representing the content regions (the oval states) cannot

transition directly to each other. Each state has its own separate sub-model or sensor (see Figure 3).

The signal sensor uses the emission distribution to detect the appropriate motif signal and the content

sensor assigns a probability score between two signals to determine the subsequence to be emitted by

the state.

Figure 5 shows how a GHMM model is fitted to an input DNA sequence to predict exons. For

example, let us assume we are at the intergenic state. Each state emits a subsequence based on its

emission probability distribution. The probabilities are derived from the training sequences for which

the correct gene structure is known. We choose which state to visit next based on the transition

probability (in the figure the low transition probabilities have been removed for clarity). The path

through the states is referred to as a Markov chain – meaning that the state we go to next depends on

the state that we are in. Since only the observed input sequence is given, the actual state path is hidden

Figure 4. A state-transition diagram of a generalized hidden Markov model (GHMM)

Additional Information S1

11

and needs to be inferred. Each nucleotide in the input sequence can only be emitted from only one

state. The model determines the probability that a nucleotide was emitted by a particular state.

Only three putative paths (represented by a series of coloured rectangles) are shown below the state-transition
diagram. The colours of the rectangles correspond to the colours of the states e.g. exons are green.

There are potentially many state paths (putative gene parses) that could emit the same

sequence. To evaluate and score all possible valid parses is too time consuming. In practice, a shortest

path algorithm (incorporating dynamic-programming) is used to find the highest-scoring parse for the

input sequence (i.e. the path with the highest probability). The term decoding is used to describe the

problem of identifying the highest-scoring parse. Decoding is typically achieved by an algorithm called

Viterbi. Figure 6 shows a summary of the steps involved in predicting protein sequences.

Prediction accuracy depends on both the number of genes and the variety of genes in the

training set. A training set in effect represents an “average gene” so it can be expected that some genes

in the genome will not be predicted or will be incorrectly predicted because they greatly differ in

structure or compositional biases to the so-called average gene. In mammalian genomes, there can be

regions in the genome that are rich or poor in GC content in comparison to regions in the rest of the

genome. These regions are called isochores and tend to have more functional genes. It is proposed that

gene prediction accuracy in mammalian genomes will increase if the compositional biases are modelled

for each isochore.

Most gene finders for efficiency make the following assumptions, which may be invalid at

times:

1) The motif signals (start and stop codons, and splice sites) are the same throughout the genome;

2) The lengths for the introns and intergenic regions are geometrically distributed (AUGUSTUS

is an exception);

Figure 5. Predicting exon location with generalized hidden Markov model (GHMM)

Additional Information S1

12

3) Genes do not overlap;

4) Genes are not nested within other genes;

5) The input sequence contains no sequencing errors;

6) There is no alternative splicing .i.e. only one single, highest scoring isoform per gene is

predicted; and

7) The start and stop codons contain no introns.

Additional Information S1

13

This schematic shows a summary of the steps involved in predicting protein sequences when given a DNA

sequence as input. The first major step is the creation of model parameters (the determination of the probability

distributions) for the respective gene finder. This is achieved by using validated genes from the target pathogen

as training genes. The more genes used the greater the prediction accuracy but also the greater the potential for

overtraining. The training procedure requires two input files: one containing the validated gene sequences and the

other the exon locations of these gene sequences.

The model parameters along with the DNA sequence, in which we want to predict genes, are the only input

requirements to the gene finder. One of the primary outputs is a file containing all the predicted exon locations

per predicted gene. Using the exon start and end coordinates (e.g. start = 6 and end = 16) the exon nucleotide

sequences (shown in red) are extracted from the input DNA sequence. These exon sequences are concatenated to

form one sequence per gene prediction and in effect are equivalent to an mRNA sequence without the 5´cap or

polyA tail. Commencing at the start of the mRNA sequence three letter codons (e.g. ATG,TCG, ATC) are

translated to amino acid letters (e.g. M,S, I) to construct the protein sequence

Figure 6. Predicting protein sequences

Additional Information S1

14

References

Baxevanis, A. D., and Ouellete, B. F. Bioinformatics, Third Edition. John Wiley and Sons, 2005

Edwards, D., Stajich J., and Hansen D. Bioinformatics – Tools and Applications. Springer, 2009

Majoros, W. H. Methods for Computational Gene Prediction. Cambridge University Press, 2007

Gene Finder Commands

For the gene prediction programs we need to know the exon start and end locations for the training data

genes. The main place to find this information is in GenBank under the CDS join section as shown

below:

CDS join(22502..26539,27124..27259,28110..30498,31038..31104,

 31285..31575,31925..32903,33391..35489,36324..36458,

 36903..37039,37723..37822,38124..38225,38690..38821,

 39431..39811,40299..41876)

Each exon is represented by two numbers separated by “..”. The first number e.g. 25502 is the start

coordinates of the exon and the second number e.g. 26539 is the end coordinates of the exon. The

exons are list in the order that they occur in the gene.

####### Syntax commands for setting up and executing the gene finders ############

The following are the commands to run the various Gene finder programs.
Lines that commence with a # are comments and any blank line are ignored.
Lines without a # are commands.

The commands are in the relevant order which means the entire file can in theory be
 executed as a Linux script to consecutively run each command.
e.g. ./script_example

Alternatively the commands can be copied and ran one at a time

This file has been configured to process an input file in a FASTA format containing
the nucleotide sequences of the target pathogen.

In this example the target pathogen = Toxoplasma gondii and the input file is called
TGME49_chrVIIb.txt contains the sequence for the chromosome VIIb.
In theory the user only needs to change the input and output filenames, and the path
location of the executables and input files. However, the intention here is more to aid the user
by providing relevant commands that can be copied and edited for the user’s specific setup
environment.

BLAST installation ###

Download BLAST + version for LINUX
lwp-download ftp://ftp.ncbi.nlm.nih.gov/blast/db/ncbi-blast-2.2.25+-ia32-linux.tar.gz

Decompress tar file
tar -xvpf ncbi-blast-2.2.25+-ia32-linux.tar.gz

Additional Information S1

15

Append to the path so that BLAST programs will run from any directory
PATH=$PATH:$HOME/Blast/ncbi-blast-2.2.25+/bin
export PATH
echo PATH

Alternatively can add the following two lines to .bash_profile
PATH=$PATH:$HOME/Blast/ncbi-blast-2.2.25+/bin
export PATH

Download appropriate databases for BLAST
lwp-download ftp://ftp.ncbi.nlm.nih.gov/blast/db/nr.00.tar.gz nr.00.tar.gz

Alternatively use Perl script update_blastdb.pl to download pre-formatted BLAST databases from
NCBI

perl update_blastdb.pl --showall #Show all available pre-formatted BLAST databases

Download non-redundant protein sequence database with entries from GenPept, Swissprot, PIR,
PDF, PDB, and NCBI RefSeq
perl update_blastdb.pl -d nr

Large databases are formatted in multiple 1 Gigabytes volumes e.g. non-redundant protein sequence
database, which are named using the database.##.tar.gz convention. All relevant volumes are
required. An alias file is provided so that the database can be called using the alias name without the
extension when using BLAST. For example, to call nr database, simply use "-d nr" option in the
commandline

Decompress the multiple database tar files
for file in `ls nr.*.tar.gz`;do tar -xzf $file;done

Create a file called .ncbirc (a blast configuration file) in /home directory and add the following 2
lines. These 2 lines direct the blast programs were to find the databases:
[BLAST]
BLASTDB=$HOME/Blast/db

Use the following to extract a sequence from a BLAST database in a FASTA format
blastdbcmd -db refseq_rna -entry nm_000249 -out test_query.fa

blastn example
blastn -query test_query.fa -db refseq_rna -task blastn -dust no -outfmt 7 -num_alignments 2 -
num_descriptions 2

blastp example
blastp -query input.txt -db nr -task blastp -num_descriptions 10 -num_alignments 10 -out protein.txt

AUGUSTUS installation ##
Append to the path so that Augustus programs will run from any directory
PATH=$PATH:$HOME/Gene_Prediction_Programs/Augustus/augustus.2.5.5/bin
export PATH
echo $PATH

Alternatively can add the following two lines to .bash_profile
PATH=$PATH:$HOME/Gene_Prediction_Programs/Augustus/augustus.2.5.5/bin
export PATH

Add the following line to .bashrc in home directory
export AUGUSTUS_CONFIG_PATH=$HOME/Gene_Prediction_Programs/augustus.2.5.5/config

Example of how to run Augustus
augustus --species=fly --predictionStart=7000001 --predictionEnd=7500000 chr2R.fa > sg.abinitio.gff

Additional Information S1

16

Information on the GFF format obtained from:
http://www.sanger.ac.uk/resources/software/gff/

Download the program getAnnoFasta.pl
lwp-download http://augustus.gobics.de/binaries/scripts/getAnnoFasta.pl getAnnoFasta.pl

Extract the Protein sequences from the gff file
perl getAnnoFasta.pl mytest.abinitio.gff

How to train Augustus can be found at:
http://molecularevolution.org/molevolfiles/exercises/augustus/training.html

#setup at folder for the model parameters in /home/Augustus/augustus.2.5.5/config/species
perl new_species.pl --species=toxoplasma_250

Train the model
etraining --species=toxoplasma_250 aug_train_250.gb

Make the Augustus predictions
augustus --species=toxoplasma_250 /home/ME49_Chromosomes/TGME49_chrVIIb.txt >
TGME49_chrVIIb_250.gff

augustus --species=human /home/ME49_Chromosomes/TGME49_chrVIIb.txt > aug_human.gff
augustus --species=toxoplasma /home/ME49_Chromosomes/TGME49_chrVIIb.txt > aug_default.gff

SNAP installation ##

Download snap
lwp-download http://homepage.mac.com/iankorf/snap-2010-07-28.tar.gz

Decompress tar.gz file
gunzip snap-2010-07-28.tar.gz
tar -xvf nap-2010-07-28.tar

Add to the file .bashrc in home directory
export ZOE=$HOME/Gene_Prediction_Programs/SNAP/snap

Add path to the file .bash_profile
:$HOME/Gene_Prediction_Programs/SNAP/snap

SNAP options
SNAP - Semi-HMM-based Nucleic Acid Parser (version 2006-07-28)

usage: snap [options] <HMM file> <FASTA file> [options]
options:
 -help report useful information
 -lcmask treat lowercase as N
 -plus predict on plus strand only
 -minus predict on minus strand only
 -gff output annotation as GFF
 -ace output annotation as ACED
 -quiet do not send progress to STDERR
 -aa <file> create FASTA file of proteins
 -tx <file> create FASTA file of transcripts
 -xdef <file> external definitions
 -name <string> name for the gene [default snap]

Example input
./snap HMM/worm DNA/worm.dna.gz

Additional Information S1

17

./snap A.thaliana.hmm thale.dna

***** Create SNAP training set *****

create a .zff file from the exons.txt file
perl create_zff.pl

Rename the exons.zff file to exons.ann
Rename DNA sequence file (e.g.TGME49_chrVIIb.txt) with extention .dna
(e.g.TGME49_chrVIIb.dna)

Run a program called fathom
fathom At.ann At.dna -gene-stats
fathom exons.ann seq.dna -gene-stats
fathom exons.ann seq.dna -validate
fathom exons.ann seq.dna -categorize 1000

There will be up to 1000 bp on either side of the genes. The files are:

 alt.ann, alt.dna (genes with alternative splicing)
 err.ann, err.dna (genes that have errors)
 olp.ann, olp.dna (genes that overlap other genes)
 wrn.ann, wrn.dna (genes with warnings)
 uni.ann, uni.dna (single gene per sequence)

Convert the uni genes to plus stranded with the command:
fathom uni.ann uni.dna -export 1000 -plus

The above generates 4 new files:
 export.aa proteins corresponding to each gene
 export.ann gene structure on the plus strand
 export.dna DNA of the plus strand
 export.tx transcripts for each gene

#Create a new directory for the parameter estimations
 mkdir params
 cd params
 forge ../export.ann ../export.dna
 cd ..

build an HMM
perl hmm-assembler.pl split_seq.dna params > toxo.hmm

Example of how to run SNAP with training set
snap toxo.hmm TGME49_chrVIIb.txt -aa TGME49_chrVIIb.aa -tx TGME49_chrVIIb.tx -gff >
TGME49_chrVIIb.gff

GeneMark installation ##

Downloaded from http://exon.gatech.edu/license_download.cgi

WebPage on http://exon.gatech.edu/

Decompress tar.gz file
gunzip gm_es_bp_linux64_v2.3d.tar.gz
tar -xvf gm_es_bp_linux64_v2.3d.tar

Rename gm_es_bp_linux64_v2.3d gmes

Extract the key file (licence file)

Additional Information S1

18

tar -xvf gm_key_64.tar

Move the file gm_key to home directory and rename to .gm_key

re-format input file into a FASTA format
perl re_format_fasta.pl --out fasta_chrVIIb.txt --trace trace.txt TGME49_chrVIIb.txt

To run GeneMark-ES
perl /home/sgoodswe/Gene_Prediction_Programs/GeneMark/gmes/gm_es.pl fasta_chrVIIb.txt --BP
OFF

#To run GenMark_HMM

#GenMark.hmm options
GeneMark.hmm eukaryotic, version bp 3.9d April 16, 2009

Usage: gmhmme3 [options] <sequence file>

 required parameters:
 -m <model file>

 optional parameters:
 -o <output file>
 -p write protein translation
 -b <output file> output statistics of predicted introns
 -d <file name> provide input for GeneMark.hmm plus
 -s <string> sequence tag in GFF output format
 -f <format> output prediction in [lst|gff3|gtf] format; default [lst]

#Example of how to run GeneMark.HMM
$HOME/Gene_Prediction_Programs/GeneMark/genemark_hmm/gmhmme3 fasta_chrVIIb.txt -m
$HOME/Gene_Prediction_Programs/GeneMark/genemark_hmm/t_gondii_05.hmm3.mod -p

GlimmerHMM

Download Glimmer
lwp-download ftp://ftp.cbcb.umd.edu/pub/software/glimmerhmm/GlimmerHMM-3.0.1.tar.gz

Decompress tar.gz file
gunzip GlimmerHMM-3.0.1.tar.gz
tar -xvf GlimmerHMM-3.0.1.tar

#add to .bash_profile
/home/sgoodswe/Gene_Prediction_Programs/Glimmer/bin

To train GlimmerHMM, first run make in the train directory.
Read readme.train from GlimmerHMM/train. After creating training directory you can use it at the -#
d option with GlimmerHMM.

trainGlimmerHMM <mfasta_file> <exon_file> [optional_parameters]

perl $HOME/Gene_Prediction_Programs/Glimmer/train/trainGlimmerHMM seq_genes_chr_VIIb.txt
glim_exons.txt

#Glimmer options

USAGE: glimmerhmm_linux <genome1-file> <training-dir-for-genome1> [options]
Options:
-p file_name If protein domain searches are available, read them from file file_name

Additional Information S1

19

-d dir_name Training directory is specified by dir_name (introduced for compatibility with earlier
versions)
-o file_name Print output in file_name; if n>1 for top best predictions, output is in file_name.1,
 file_name.2, file_name.n f-n n Print top n best predictions
-g Print output in gff format
-v Don't use svm splice site predictions
-f Don't make partial gene predictions
-h Display the options of the program

 #how to run Glimmer
glimmerhmm_linux $HOME/toxo_predictions/ME49_Chromosomes/TGME49_chrVIIb.txt -d
$HOME/Gene_Prediction_Programs/Glimmer/trained_dir/toxoplasma -o glimmer_results.txt

glimmerhmm_linux $HOME/toxo_predictions/ME49_Chromosomes/TGME49_chrVIIb.txt -d
$HOME/Gene_Prediction_Programs/Glimmer/trained_dir/toxoplasma -o glimmer_results.gff -g

Examples of gene finder execution ##

Augustus ##

augustus --species=toxoplasma TGME49_chrVIIb.txt > aug_TGME49_chrVIIb.gff

perl getAnnoFasta.pl aug_TGME49_chrVIIb.gff

blastp -query aug_TGME49_chrVIIb.aa -db nr -task blastp -outfmt "10 qseqid qgi qacc qaccver qlen
sseqid sallseqid sgi sallgi sacc saccver sallacc slen evalue bitscore score pident nident mismatches
positive " -num_descriptions 10 -out blast_aug_ME49_chrVIIb.txt

SNAP ##

snap toxo.hmm TGME49_chrVIIb.txt -aa snap_TGME49_chrVIIb.aa -tx snap_TGME49_chrVIIb.tx -
gff > snap_TGME49_chrVIIb.gff

blastp -query snap_TGME49_chrVIIb.aa -db nr -task blastp -outfmt "10 qseqid qgi qacc qaccver
qlen sseqid sallseqid sgi sallgi sacc saccver sallacc slen evalue bitscore score pident nident mismatches
positive " -num_descriptions 10 -out blast_snap_ME49_chrVIIb.txt

GenMark.HMM ##

$HOME/Gene_Prediction_Programs/GeneMark/genemark_hmm/gmhmme3 TGME49_chrVIIb.txt -m
$HOME/Gene_Prediction_Programs/GeneMark/genemark_hmm/t_gondii_05.hmm3.mod -p

perl get_prot_seq.pl [This script needed to be written to get sequences from bottom of file
TGME49_chrVIIb.txt.lst

blastp -query gm_TGME49_chrVIIb.aa -db nr -task blastp -outfmt "10 qseqid qgi qacc qaccver qlen
sseqid sallseqid sgi sallgi sacc saccver sallacc slen evalue bitscore score pident nident mismatches
positive " -num_descriptions 10 -out blast_gm_ME49_chrVIIb.txt

Glimmer.HMM ##

glimmerhmm_linux $HOME/toxo_predictions/ME49_Chromosomes/TGME49_chrVIIb.txt -d
$HOME/Gene_Prediction_Programs/Glimmer/trained_dir/toxoplasma -o gl_TGME49_chrVIIb.gff -g

