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Derivation of Onset Conditions. To analyze stability, we consider
the Jacobian of the linearized system evaluated at the disease-
free equilibrium X0 (Si ¼ Hi; Ii ¼ 0, Bi ¼ 0) for all i, which is
given by

J ¼
2
4 j11 0 j13

0 j22 j23
0 j32 j33

3
5;

where

j11 ¼ − μUn

j13 ¼ −mSHQβ− ð1−mSÞHβ
j22 ¼ −ϕUn

j23 ¼ mSHQβþ ð1−mSÞHβ

j32 ¼ mI

K
pW−1QT þ 1−mI

K
pW−1

j33 ¼ − ðμB þ lÞUn þ lW−1PTW :

Note that the variables for pathogen have been scaled as
Bi* ¼ Bi=K . Because of its block-triangular structure, the Jaco-
bian has obviously n eigenvalues equal to − μ; therefore, insta-
bility is determined by the eigenvalues of the block matrix

J* ¼
�
j22 j23
j32 j33

�
:

J* is a proper Metzler matrix (1); namely, its off-diagonal
entries are all nonnegative and at least one diagonal entry is
negative. Thus its eigenvalue with maximal real part (dominant
eigenvalue) is real. If the union of the graphs associated with
matrices P and Q is strongly connected, then the graph associ-
ated with J* is also strongly connected. Therefore one can apply
the Perron–Frobenius theorem (2) for irreducible matrices and
state that the dominant eigenvalue is a simple real root of the
characteristic polynomial. The condition for the transcritical bi-
furcation of the disease-free equilibrium is that the dominant
eigenvalue crosses the imaginary axis at zero; namely, the de-
terminant of J* is zero (3). Actually, when the disease-free
equilibrium is stable, all the eigenvalues have negative real parts
and detðJ*Þ is positive because J* is a matrix of order 2n. So the
disease-free equilibrium becomes unstable when detðJ*Þ
switches from positive to negative or equivalently the dominant
eigenvalue becomes zero. For block matrices of the kind

�
A B
C D

�
;

in which all blocks are square and matrix A commutes with
matrix C, the following equality holds (4):

det
�
A B
C D

�
¼ detðAD−CBÞ:

As Un obviously commutes with any matrix, we have

det
�
J*
� ¼ det

�
ϕ
�
μB þ l

�
Un −ϕlW−1PTW þ

−
mSmI

K
pW−1QTHQβþ

−
mIð1−mSÞ

K
pW−1QTHβþ

−
ð1−mIÞmS

K
pW−1HQβþ

−
ð1−mIÞð1−mSÞ

K
pW−1Hβ

�
:

Let us now introduce the basic reproduction number of each
community i when isolated from the others. For waterborne
diseases this quantity reads as (5)

R0i ¼ piHiβi
WiKμBϕ

:

Although originally derived via stability analysis, the previous
expression can also be obtained with standard epidemiological
arguments [e.g., typical of susceptible-infected-recovered (SIR)-
like models (6)]. In fact, after the introduction of an infected
individual into a completely susceptible population, the number
of new infections per unit time is βiBiSi=ðK þ BiÞ. At the disease
onset Si ≈Hi and both Bi and Ii are small, so the rate of new
infections is approximately βiBiHi=K . To find the number of
secondary infections produced by one infected during the in-
fectious period, a relationship between Bi and Ii must be found.
To this end, one can assume equilibrium in the bacterial dynamics
(dBi=dt ¼ 0), which gives Bi ¼ piIi=ðμBWiÞ. The rate of new in-
fections produced by one infected at the disease onset is thus
given by piHiβi=ðμBWiKÞ. This expression has to be multiplied by
the average length of the infectious period 1=ðμþ αþ γÞ ¼ 1=ϕ,
thus providing the basic reproduction number for waterborne
diseases introduced above. We can now define the matrix

R0 ¼

2
664
R01 0 ⋯ 0
0 R02 ⋯ 0
⋯
0 0 ⋯ R0n

3
775¼ p

KμBϕ
HβW−1:

Because H, β, and W−1 are diagonal, thus commuting, matrices,
we can also state that R0 ¼ p

KμBϕ
W−1Hβ and rework the de-

terminant of J* as

det
�
J*
� ¼ ½ϕðμB þ lÞ�ndet

�
Un −

l
μB þ l

W−1PTW þ

−
μB

μB þ l
mSmI

KμBϕ
pW−1QTHQβþ

−
μB

μB þ l
mIð1−mSÞ

KμBϕ
pW−1QTHβþ

−
μB

μB þ l
ð1−mIÞmS

KμBϕ
pW−1HQβþ

−
μB

μB þ l

�
1−mI

��
1−mS

�
R0

�
:
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As the determinant of a product of square matrices is the
product of determinants and the determinant of an inverse matrix
is the inverse of the determinant, we can write

det
�
J*
� ¼ ½ϕðμB þ lÞ�ndet

�
W
�
Un −

l
μB þ l

W−1PTW þ

−
μB

μB þ l

��
1−mI

��
1−mS

�
R0 þ

þmSmI

KμBϕ
pW−1QTHQβþ

þmIð1−mSÞ
KμBϕ

pW−1QTHβþ

þð1−mIÞmS

KμBϕ
pW−1HQβ

��
W−1

	
:

Therefore, because p and W are diagonal and thus commuting
matrices, the condition detðJ*Þ ¼ 0 is given by

det
�
Un −

l
μB þ l

PT −
μB

μB þ l

��
1−mI

��
1−mS

�
R0 þ

þmSmI

KμBϕ
pQTHQβW−1 þ

þmIð1−mSÞ
KμBϕ

pQTHβW−1 þ

þð1−mIÞmS

KμBϕ
pHQβW−1

�	
¼ 0:

In addition to the matrix R0 ¼ p
KμBϕ

HβW−1 we can now in-
troduce three other matrices of reproduction numbers; namely,

RI
0 ¼

pQTHβW−1

KμBϕ
; RS

0 ¼
pHQβW−1

KμBϕ
;

and

RIS
0 ¼ pQTHQβW−1

KμBϕ
;

corresponding to metacommunities with infectives only being mo-
bile, susceptibles only being mobile, and both infectives and sus-
ceptibles being mobile, respectively. If we account for the
different probabilities of movement in the metacommunity, we
can define a transmission matrix averaged over nonmobile indi-
viduals, mobile infectives, and mobile susceptibles as

T0 ¼ ð1−mIÞð1−mSÞR0 þmSmIRIS
0

þmIð1−mSÞRI
0 þ ð1−mIÞmSRS

0 :

Therefore, the bifurcation of the disease-free equilibrium corre-
sponds to the condition

det
�
Un −

l
μB þ l

PT −
μB

μB þ l
T0

�
¼ 0:

Equivalently, the dominant eigenvalue Λ0 of the matrix

G0 ¼ l
μB þ l

PT þ μB
μB þ l

T0;

which is a convex combination of PT and T0, must equal unity. Actu-
ally, the disease-free equilibrium switches from being stable to being

a saddle, thus triggering the start of the disease, whenever the dom-
inant eigenvalue of J* switches from positive to negative, and hence
whenever Λ0 switches from being less than 1 to being larger than 1.

Geography of Disease Onset. The geography of disease onset, i.e.,
the spatial localization of the sites that are hit with more strength
during the early phase of the epidemic, is determined by the
dominant eigenvector of the Jacobian matrix J*. The eigenvector
lies in the subspace (of dimension 2n) Si −Hi ¼ 0 (i ¼ 1; n) and
has strictly positive components Ii and Bi according to the Per-
ron–Frobenius theorem for nonnegative matrices (2). The
dominant eigenvector of J* can be computed by solving

J*
�
i
b

�
¼ λ

�
i
b

�
;

where λ is the dominant eigenvalue of J*, and i and b are the
components of the dominant eigenvalue corresponding, respec-
tively, to infectives and pathogens. Writing again J* as

J* ¼
�
A B
C D

�

we get

Aiþ Bb ¼ λi

Ciþ Db ¼ λb:

Because close to the transcritical bifurcation through which the
disease-free equilibrium loses stability the dominant eigenvalue λ
of J* is equal to 0, from the first equation we have

i ¼ −A−1Bb;

therefore, the second equation can be written as

−CA−1Bbþ Db ¼ 0:

Because A is a diagonal matrix with equal diagonal entries, with sim-
ple algebraic manipulations we can write the previous equation as

ðAD−CBÞb ¼ 0:

From the previous section we already know that

AD−CB ¼ ϕðμB þ lÞ�Un −W−1G0W
�

and hence

G0Wb ¼ Wb:

Therefore, we can conclude that, close to the transcritical bifur-
cation of the disease-free equilibrium, where the dominant eigen-
value Λ0 of G0 is equal to 1, the dominant eigenvector g0 of
matrix G0 corresponds to the pathogens’ components of the
dominant eigenvalue of J* multiplied by the volumes of the
corresponding water reservoirs (g0 ¼ Wb). The infectives’ com-
ponents i of the Jacobian matrix can thus be computed as

i ¼ mSHQβþ ð1þmSÞHβ
ϕ

W−1g0

and they can be used to effectively portray the geography of dis-
ease onset. Note, however, that this simple relationship between
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the dominant eigenvector of G0 and the infectives’ components
of the dominant eigenvector of J* holds only close to the tran-
scritical bifurcation of the disease-free equilibrium. In general,
for parameter combinations for which the dominant eigenvalue
of G0 is significantly larger than 1, the study of the geography of
disease onset requires the computation of the eigenvalues and
the eigenvectors of matrix J*.

Pathways for Pathogen Propagation. Hydrological transport. In the
studies of theHaiti and Thukela epidemics as well as in the analysis
of theoretical landscapes, the hydrological interconnections sub-
sumed into matrix P are assumed to conform to the following
mechanism. The fraction Pij of pathogens that move between two
nodes of the hydrological network (say from i to j) is given by

Pij ¼

8>>>>>><
>>>>>>:

Pout

doutðiÞPout þ dinðiÞPin
if i→ j

Pin

doutðiÞPout þ dinðiÞPin
if i← j

0 if i↮ j;

with j≠ i (Pii ¼ 0). Pout (Pin) is the fraction of pathogens moving
along an outward (inward) edge and dout (din) is the out degree (in
degree) of node i, that is, the number of outward (inward) edges.
Note that the quantity Pij can be derived from the discretization of
the standard advection-dispersion equation for water flow or,
equivalently, from a biased random-walk process on an oriented
graph (7). The transport process is assumed to be conservative,
i.e.,

P
j∈Ni

Pij ¼ 1, where Ni is the set of neighbors connected to
node i [of cardinality dðiÞ ¼ doutðiÞ þ dinðiÞ]. The bias of hydro-
logical transport along the river (which is related to downstream
velocity) can thus be defined as b ¼ Pout − Pin ¼ 2Pout − 1. Note
also that matrix P must account for proper boundary conditions
(BCs) for the leaves and the outlet of the river network. At the
outlet (labeled as node 1), in particular, absorbing BCs can be
used to characterize river basins with coastal regions where patho-
gens are not found in interepidemic periods, whereas reflecting
BCs are better suited for cholera endemic areas where brackish
water represents a reservoir for pathogens. To properly define
BCs, we introduce a fictitious node 0 downstream of the network
outlet (i.e., node 0 is connected with node 1 only), so thatP

j∈N1
P1j ¼ 1, with N1 including node 0. Absorbing BCs thus cor-

respond to setting P01 ¼ 0 and P00 ¼ 1, whereas (purely) reflect-
ing BCs can be obtained by imposing P01 ¼ P10 and P00 ¼ 1−P10.
In the same way we can define fictitious nodes upstream of the
network leaves. All the numerical examples described in the main
text are obtained with reflecting BCs for the leaves and absorbing
BCs for the outlet of the river network, to mimic nonendemic
settings.
Human mobility. Local communities are linked through human
mobility, which is described by means of matrix Q. We assume
that the entries of Q can be estimated through a functional
choice (8, 9) in which attractivity of a given destination site is
supposed to be proportional to its size and decrease exponen-
tially with its distance from the home site,

Qij ¼
Hjexp

�
− dij=D

�
Pn
k≠i

Hkexpð− dik=DÞ
;

where j≠ i (Qii ¼ 0). In the previous expression dij is the distance
between node i and node j and D is the average travel distance.
Although such a model is clearly not expected to fully capture the
complexity of real human movement patterns, gravity-like models
have been widely applied in the epidemiological literature to de-

scribe the impact of human mobility on the emergence of a suite of
human diseases, including influenza, HIV, measles, and recently,
cholera (10). Therefore we apply gravity models both in the anal-
ysis of waterborne disease epidemics spreading in theoretical land-
scapes (Peano networks) and in the study of real-word outbreaks
(cholera epidemics in Haiti and KwaZulu-Natal, South Africa).
Note also that we assume that the disease does not significantly
impair human mobility (mS ¼ mI ¼ m). Extensions to different
human mobility models based on small-world and scale-free
graphs are briefly analyzed in the case of theoretical landscapes.

Modeling Specifications in Case Studies. Analysis of the Haiti epidemic.
As a first case study, we have applied our theoretical framework
for the definition of onset conditions for epidemics of waterborne
disease to the cholera outbreak that struck Haiti in 2010 and is
still ongoing (8, 11). Population distribution (Fig. S1A), river and
mobility network structures (Fig. S1B), and parameter values
(Table S1) have been borrowed from a recent study (11) based
on a slightly modified version of the epidemiological model
presented in Materials and Methods of the main text. The model
used in that paper (11) does in fact account also for immunity
loss along years (which can be obviously neglected in the study of
onset conditions and in the analysis of the disease course im-
mediately following the epidemic peak, as explained above) and
for the role of rainfall as driver of increased water contamina-
tion. Specifically, regarding rainfall, Rinaldo and colleagues (11)
assumed that the contamination rate can be expressed as

piðtÞ ¼ p0ð1þ ψRiðtÞÞ;

where p0 is the baseline contamination rate, RiðtÞ is precipitation
intensity at site i and time t, and ψ is a suitable proportionality
constant. Here, for consistency with the epidemiological model,
we have dropped time dependency and assumed the following
expression for rainfall-driven water contamination,

pi ¼ p0


1þ ψRi

�
;

where Ri represents the average rainfall intensity recorded at site
i from November 2010 to May 2011 [data from the National
Aeronautics and Space Administration–Japan Aerospace Explo-
ration Agency’s Tropical Rainfall Measuring Mission (11)].
The computation of eigenvalues and eigenvectors has been

performed at the scale of the river/mobility network nodes, which
also represent the computational units for the simulations pre-
sented in the previous analysis (11). However, because epidemio-
logical data and population distribution are, respectively, available
at coarser (10 Haitian administrative departments; data available
online through the website of Ministère de la Santé Publique et de
la Population, Republique d’Haiti, http://www.mspp.gouv.ht) or
finer (LandScan data at 1-kmd2 pixel resolution, available online
at the Oak Ridge National Laboratory website, http://www.ornl.
gov/sci/landscan) spatial scales, we have suitably downscaled (or
upscaled) incidence data and eigenvector components to these two
spatial resolutions (results shown in Fig. 1 in the main text).
We have tested the sensitivity of Λ0 to changes of single pa-

rameter values. To that end, for each model parameter (say θ)
we computed

θ′ ¼ θ0ð1þ δÞ;

where θ0 is the reference value of the parameter (reported
in Table S1) and δ sets the scale of parameter variability
(− 0:99≤ δ≤ 0:99), and repeated the computation of the domi-
nant eigenvalue of matrix G0 (Fig. 1D in the main text).
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To test also for the robustness of the spatial patterns prescribed
by the components of the dominant eigenvector of G0, we have
performed a sensitivity analysis of the results presented in Fig. 1
C and E in the main text with respect to random variations of the
parameter values. Specifically, for each parameter θ we in-
dependently computed a stochastic value θ′ as

θ′ ¼ θ0ð1þ ξδÞ;

where ξ is a random variable drawn from a uniform distribution
Uð− 1; 1Þ and δ sets the scale of parameter uncertainty. Eigen-
value and eigenvector computation was then performed with the
randomized parameter values. For each value of δ (0≤ δ≤ 0:99)
we have repeated 200 times the procedure just outlined and
recorded mean and standard deviation of the distribution of
coefficients of determination resulting from the comparison of
predicted vs. observed epidemic spatial patterns (Fig. 1F in the
main text).
Analysis of Thukela epidemic. As a second case study, we have
reexamined the cholera outbreak that occurred in the KwaZulu-
Natal (KZN) province of South Africa, specifically in the Thukela
river basin, in 2000–2001 (10, 12). To this end, we have made use
of (i) local epidemiological and demographic data, (ii) data
about availability and distribution of drinking water resources
and toilet facilities, and (iii) information on local hydrological
networks. The relevant epidemiological data (i) were provided
by the KZN Health Department (http://www.kznhealth.gov.za/).
Data consist of a record of cholera cases including information
about date and location (i.e., health subdistrict) of each hospi-
talized case (Fig. S2 A and B); the dataset also includes the record
of local population size for each health subdistrict. Georefer-
enced data on availability of piped drinking water and improved
toilet facilities (ii) have been retrieved from the Geographic In-
formation System (GIS) set up for the 2001 South African census
(http://www.statssa.gov.za; Fig. S2 C and D). Hydrological data
about the river networks of the KZN province (iii) were derived
from the GIS provided by the South African Department of
Water Affairs and Forestry (http://www.dwaf.gov.za/).
Perennial rivers and channel endpoints have been considered

as edges and nodes of the hydrological network, respectively (7).
Demographic, epidemiological, hydrological, and sanitary data
have thus been interpolated from health subdistricts to network
nodes. Specifically, nearest-neighbor interpolation has been
used, with distances being computed from subdistrict centroids.
Interpolated population abundances and great-circle node-to-
node distances have been used for the gravity model of pop-
ulation mobility as well (see above). Water resources were as-
sumed to be related to local population size according to the
relation Wi ¼ cHi, with c being a proportionality constant (12).
Sanitary data have been used to impose a plausible spatial dis-
tribution for the exposure (β) and contamination (p) parameters
(10). Specifically, we have assumed βi ¼ βmωi (pi ¼ pmτi), where
βm (pm) is the maximum exposure (contamination) rate and ωi
(τi) is the local fraction of households without access to piped
water (improved toilet facilities).
Several model parameters have been drawn from the literature

or from demographic/epidemiological data. In particular, the
mortality rate of the population (μ) has been computed as the
inverse of the average human lifetime in the KZN region [about
60 y (12)], and hence μ ¼ 4:6× 10−5 (d−1). We assumed (5, 12)
that people can be exposed to contaminated water or food at most
once a day in the worst-case scenario (ω ¼ 1); thus we set
βm ¼ 1:0 (d−1). The recovery rate γ from cholera can be evaluated
as the inverse of the average duration of the disease in infected
individuals, which is approximatively 5 d (5); therefore γ ¼ 0:20
(d−1). On the basis of the count of lethal cholera cases recorded
during the Thukela-KZN epidemic, Bertuzzo and colleagues (12)

estimated the value of the additional mortality rate due to cholera
as α ¼ 4:0× 10−4 (d−1). The same study suggested the numerical
value of the mortality rate μB of free-living vibrios in the Thukela
basin; i.e., μB ¼ 0:23 (d−1).
The remaining parameters (namely pm, l, b, mS ¼ mI ¼ m,

and D) could not be derived from literature data and had thus
to be numerically tuned through proper techniques. Parameter
estimation has been performed by combining extensive nu-
merical simulations of the epidemiological model presented in
Materials and Methods (with pathogen concentration suitably
rescaled as Bi* ¼ Bi=K) with the exploration of the parameter
space through Markov chain Monte Carlo (MCMC) sampling
(13), implemented in the DREAMZS algorithm (14, 15). The
goodness of fit of each single simulation has been computed as
the residual sum of squares between weekly hospitalized chol-
era cases per hydrological unit as evaluated from the KZN
epidemiological record and from model simulations (namely
assuming a hospitalized-to-infected ratio of 0.2). The MCMC
algorithm has been initialized with broad flat prior distributions
for parameter values and let run until convergence (about
15,000 iterations). Differently from the Haiti case study, here
we wanted to test the predictive ability of our framework;
therefore, only the first 120 d of epidemiological data have been
used to tune model parameters. Parameter values are reported
in Table S2.
Before evaluating the performance of the dominant eigen-

vector of matrix G0 associated with the Thukela epidemic, it is
interesting to assess whether correlations exist between the
georeferenced data available for this case study (i.e., spatial
distributions of population H; drinking water availability, mea-
sured by parameter β; and sanitation conditions, measured by
parameter p) and the distribution of cholera cases. Because the
spatial resolution of the model is relatively fine-grained (287
computational units for the Thukela basin), we have partitioned
network nodes into clusters to increase the robustness of our
spatial analyses. Clustering has been performed on the basis of
the geographical positions of the nodes via the standard k-means
algorithm (16). We have thus generated k ¼ 30 clusters (average
cluster radius r≈ 10 km), properly upscaled the georeferenced
variables, and performed a linear correlation analysis. The re-
sults show that there is basically no correlation between the
population distribution and the spatial pattern of cholera cases
recorded during the onset of the epidemic (R2 ¼ 0:02, P = 0.45),
whereas cholera cases are slightly correlated to the availability of
drinking water (R2 ¼ 0:22, P< 0:01) and sanitation conditions
(R2 ¼ 0:20, P< 0:05).
Because of the availability of georeferenced data, it is also

possible to determine the spatial distribution of the local basic
reproduction numbers of the disease (R0i). Although cholera
cases are obviously correlated to this quantity (R2 ¼ 0:30,
P< 0:01), contrasting the map of local basic reproduction
numbers to that of cholera cases (Fig. S3) reveals that the R0i
cannot be considered a satisfactory measure of the likelihood
of local outbreaks. As a matter of fact, data show that there are
regions where the disease emerged even if the local basic re-
production number is less than 1, whereas in other regions the
disease hardly proliferated despite R0i being larger than 1.
These observations strongly support the importance of ac-
counting for spatial dynamics (and, in particular, for connec-
tivity structures) in the definition of onset conditions for
waterborne diseases. The dominant eigenvector of matrix G0
does indeed outperform the value of R0i as a predictive tool for
the localization of disease cases during the onset of the epi-
demic (R2 ¼ 0:86, P< 0:001).
Quantitative results do obviously depend on the details of

spatial clustering. However, we have repeated eigenvector
computations and the related spatial analyses for different
numbers of clusters (namely k ¼ 15, r≈ 15 km; k ¼ 60, r≈ 5 km)
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and found no significant qualitative differences with respect to
the results shown here and in the main text for k ¼ 30 (Figs. S4
and S5).

Disease Spread in Theoretical Metapopulations. We have also
studied theoretical landscapes, namely characterized by
a Peano-like hydrological network. The Peano construct is
generated iteratively from a basic prefractal, a cross seeded in
a corner of the square domain, and develops into an iconic
exactly self-similar structure spanning the entire plane [as
iterations tend to infinity, the total network length behaves like
an area (17)]. Iterations consist of cutting in half each branch to
reproduce the prefractal on four equal subbasins. Peano’s to-
pological measures (like Horton’s numbers and the Tokunaga
cyclicity) match closely those of real river networks (18), but
fail to satisfy the statistics of aggregation and upstream/down-
stream distances. However, geometrical constraints imposed by
a fractal network on transport of species, populations, or
pathogens [known to imply strong corrections on the speed of
traveling waves (19)] chiefly depend on topological features
because transmission fronts are dominantly affected by the bi-
furcation structure encountered along the backbone of the net-
work (7). Hence topology, rather than the fine structure of the
subpaths, dominates the process, making a case for the generalized
use of Peano’s network, also in view of its exact solvability.
The study of a theoretical landscape requires some assump-

tions on the spatial distribution of the population. The simplest
choice is a uniform distribution (Hi ¼ h ∀i). The results shown
in Fig. 3 A and B in the main text (and in Fig. S6 A and B for
different parameter settings) refer to this assumption. How-
ever, a uniform population distribution may represent a some-
what crude simplification of the observed spatial arrangement
of human communities. Empirical observations show in fact
that a much more realistic model for the size of human set-
tlements is given by the so-called Zipf’s law (20, 21), according
to which the size distribution of human communities can be
well represented by a power-law distribution, namely by
probðHiÞ∝H−2

i . Therefore, we have also performed our analysis
by sampling the size of each local community from a power-law
distribution. To allow comparison with the results of the ho-
mogeneous case, we have imposed the normalizing constraintPn

i¼1Hi ¼ nh. The results shown in Fig. 3 C and D in the main
text (as well as in Fig. S6 C and D) have been obtained with
a Zipf-like population distribution. Note that, in this case, for
each analyzed parameter setting we have extracted 500 in-
dependent realizations of sample size n from the population
distribution and we have distributed the n population sizes
randomly in the landscape. Colors in Fig. 3 C and D and Fig. S6
C and D thus code the fraction of different realizations for
which onset conditions are met.
Our theoretical framework allows for the description of the

geography of disease onset in theoretical landscapes as well. In
particular, the predictive ability of the dominant eigenvector of
matrix G0 can be tested against numerical simulations of the
epidemiological model implemented on a Peano-like network.
To initialize the simulation, we have assumed that the outbreak
starts close to the outlet of the river network (bottom-right

corner of the embedding domain), as is often observed in real-
world epidemics (10, 12), with 1‰ of the local population
representing the initial infective pool. Fig. S7 shows the dom-
inant eigenvector of G0 and the simulation of epidemic onset in
a Peano network with either homogeneous (Fig. S7 A–D) or
Zipf-like (Fig. S7 E–H) population distribution. Note that in
these theoretical examples it is possible to detect the “emer-
gent” phase of the outbreak, i.e., the occurrence of the very first
cases of the disease—something that cannot be usually done in
real-world applications (such as the Haiti and Thukela cholera
epidemics analyzed here). Specifically, disease emergence has
been identified numerically from model simulations as the
week after which daily incidence and its first and second time
derivatives exceed 5‰ of the respective maximum values re-
corded in the simulation.
Not only different population distributions (Fig. S7), but also

different models of human mobility can be applied and ana-
lyzed in our framework. Small-world graphs (22, 23) represent
an alternative connectivity model to the gravity-like approach
used elsewhere in the main text. Starting from an adjacency
structure characterized by local connections (like, e.g., in
nearest-neighbor coupling), a possible way to create a small-
world network is that of randomly rewiring some existing
edges and thus introducing long-range shortcuts whose effect
is that of significantly decreasing the average path lengths
(small-world effect). Specifically, each link i↔ j of the preex-
isting connectivity graph is removed with a probability r and
a new link i↔ k is created. Node k can be randomly chosen
either from a uniform distribution or via some other ad hoc
procedure accounting, for instance, for preferential attach-
ment. In the latter case the probability with which node k is
chosen is a function of its degree. Note that both procedures
lead to the formation of small-world networks and that pref-
erential attachment also leads (at least in the limit of infinite
networks) to the formation of scale-free networks, i.e., net-
works with power-law degree distributions (23, 24). Once
connectivity structure has been defined, mobility fluxes can be
then computed either according to a gravity model or as-
suming that the strength of the connections is independent of
travel distance, so that if a node i is connected to k other
nodes, then Qij ¼ 1=k for each of its neighbors [the so-called
“propagule rain” scenario (25)]. Here we have first defined
a local connectivity structure by linking each human commu-
nity to its nearest Peano neighbors; then, we have performed
either random rewiring or random rewiring with preferential
attachment; in both cases we have applied spatially homoge-
neous distributions for population density and local basic re-
production numbers and assumed the propagule rain scenario
for population fluxes; finally, we have evaluated onset con-
ditions as a function of model parameters, performing several
realizations of the rewiring processes to account for the sto-
chasticity involved in the generation algorithms (200 in-
dependent realizations for each parameter setting). Results
are reported in Fig. S8 and show that small-world connectivity
can greatly favor the emergence of subthreshold epidemics,
especially in the presence of preferential attachment.
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Fig. S1. Population distribution, hydrological connectivity, and human mobility network in Haiti. (A) Spatial distribution of population density obtained by
remote sensing (LandScan data by Oak Ridge National Laboratory), which is translated into a georeferenced spatial distribution of nodes i endowed with
population Hi (11). (B) Main Haitian rivers (blue) and a relevant subset of the network of human mobility (black), here portrayed synthetically by the four
largest outbound connections for each node.
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Fig. S2. Epidemiological, demographic, and sanitation data for the Thukela-KZN cholera epidemic. (A) Total incidence data (weekly cases) recorded in the
Thukela river network from October 2000 to July 2001. Inset shows Thukela river network. (B) Yearly cholera incidence, evaluated as number of reported cases
in each health district from October 2000 to September 2001 divided by population size. (C) Spatial distribution of households without access to piped water.
(D) Spatial distribution of households without access to improved toilet facilities.
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Fig. S3. (A and B) Spatial distribution of local basic reproduction numbers (A) and cholera cases reported during the onset phase of the Thukela epidemic (B).
For a better visual comparison, C and D show, respectively, the localization of regions with R0i > 1 and more than 10 cholera cases (red).
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Fig. S4. (A–D) Data and model predictions of Thukela epidemic, as in Fig. 2 A–C and F in the main text with k ¼ 15 clusters (instead of k ¼ 30).
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Fig. S5. Data and model predictions of Thukela epidemic, as in Fig. 2 A–C and F in the main text with k ¼ 60 clusters (instead of k ¼ 30).
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Fig. S7. Dominant eigenvector of G0 and simulation of epidemic onset in a Peano network with homogeneous (A–D) or Zipf-like (E–H) population distri-
bution. (A) Dominant eigenvector (associated to Λ0 ¼ 1:001). (B) Simulated temporal pattern of daily incidence. (C) Simulated spatial distribution of weekly
cases during the emerging phase of the outbreak (black dot in B). (D) Simulated spatial distribution of cumulative cases up to disease peak (gray shading in B).
(E–H) As in A–D, with Zipf-like population distribution (F, Inset). The dominant eigenvalue is Λ0 ¼ 1:11. Peano construct is here used at the fifth stage of it-
eration (SI Text). Network outlet is located in the lower-right corner of the spatial domain. Parameter values: β ¼ 1, α ¼ μ ¼ 0, μB ¼ 0:23, l ¼ 1, b ¼ 0:5,
mS ¼ mI ¼ 0:125, D ¼ 0:05, R0i ¼ 1:2.
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Fig. S8. Epidemic onset conditions in a Peano network with homogeneous population distribution, hydrological transport, and different models of human
mobility. (A–C) Random rewiring. (D–F) Random rewiring with preferential attachment (details in main text). The color scale indicates the fraction of real-
izations in which the onset condition based on the dominant eigenvalue of G0 is met. Parameter values: β ¼ 1, α ¼ μ ¼ 0, μB ¼ 0:23, l ¼ 0:5, b ¼ 0:2,
mS ¼ mI ¼ 0:5 (A and D); R0i ¼ 0:8 (B and E); and r ¼ 0:5 (C and F).
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Table S1. Parameter values for the Haiti cholera epidemic

Parameter Units Value

μ d–1 4.5 × 10–5

β d–1 1.0
γ d–1 0.20
α d–1 4.0 × 10–3

μB d–1 0.20
p0/(Kc) — 0.14
ψ d·mm–1 4.8 × 10–2

l d–1 1.8
b — 1.0
m — 0.69
D km 100

Table S2. Estimated parameter values for the Thukela cholera
epidemic

Parameter Units Value

pm/(Kc) — 0.11
l d–1 0.10
b — 0.04
m — 0.27
D km 3.1

Gatto et al. www.pnas.org/cgi/content/short/1217567109 10 of 10

www.pnas.org/cgi/content/short/1217567109

