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Appendix I: Materials and Methods 

 
Sample Preparation. Disulfide cross-linked N-PGK in 50 mM sodium phosphate buffer, pD 
6.6-7, 100 mM NaCl was prepared as described in reference (1) and urea added as indicated. 
Figure S1 shows that the addition of 2 M urea has no effect on the secondary structural content 
of the open form of N-PGK, and only a small effect on the total secondary structural content of 
the cross-linked form. 

Measurements on the ps-time scale. A fs-oscillator and regenerative amplifier system (Spectra 
Physics, Tsunami and Spitfire) was used to produce laser pulses at 800 nm of 50 fs pulse length 
and 800 µJ energy at a repetition of 1 kHz, which were used to seed two optical parametric 
amplifiers (OPA, Spectra Physics OPA 800C). The output of one OPA was doubled externally 
to 275 nm in a 100 µm BBO crystal, yielding pulses of 100 fs length and 1.5 µJ energy, which 
were focused to a spot of 0.5 mm diameter on the sample and used as pump pulses. Probe pulses 
of 100 fs pulse length at 560 nm were obtained from the second OPA and delayed with respect 
to the pump pulses via an optical delay line. The probe polarization was adjusted to be at magic 
angle to the pump polarization. Time zero and cross correlation were determined using 
Rhodamine 6G in methanol. Transient absorption changes were measured by reducing the 
excitation rate to 500 Hz with a mechanical shutter, thus allowing simultaneous detection of the 
absorption with and without pumping. 

A quartz suprasil cell (pathlength 1 mm) with 10-20 µM cross-linked N-PGK in 50 mM 
deuterated sodium phosphate buffer, pD 6.6, 100 mM NaCl, was used. The cell was slowly 
rotated to avoid sample degradation. The results shown here are the average of many scans over 
different delay times. No signal degradation was observed during these scans. Similarly, UV/vis 
absorbance spectra taken before, during and after the measurements showed no changes, 
confirming sample stability. 

Measurements on the ns- to ms-time scale. Pulses from the fourth harmonic output of a 
Nd:YAG laser (Quantel Brilliant) at 266 nm with a pulse length of 5 ns were used to photolyse 
the sample at a repetition rate of 10 Hz. The pulse energy was adjusted to 0.3 mJ, which was 
focused to a spot size of approx. 1 mm on the sample. 

Transient absorbance changes were probed with cw light, focused to a spot size of less than 0.5 
mm on the sample, and detected with a fast Si-detector (Thorlabs DET210, rise time 1 ns) and 
an oscilloscope (Tektronix TDS3032, bandwidth set to 20 MHz, resulting in an overall signal 
rise time of approx. 20 ns). For preliminary experiments, cw light from a xenon lamp (Applied 
Photophysics Ltd. 4960) was used for probing, from which particular wavelength regions were 
selected using interference band pass filters (band width 40 nm). These experiments showed 
that photolysis of the disulfide cross-link resulted in a transient species with a maximum 
absorbance around 500 nm, confirming the formation of thiyl radicals. For the dynamic 
measurements with better signal-to-noise shown in Fig. 3B-D, 6 mW cw light from an argon-
ion laser (Ion Laser Technology 5450AWC) at 488 nm was used for probing.  

A solution of approx. 600 µM cross-linked N-PGK in 50 mM sodium phosphate buffer, pH 7.0, 
100 mM NaCl, 2 M or 8 M deuterated urea, was continuously flowed through a cell (pathlength 
0.25 mm) with a peristaltic pump. The results shown here are the average of more than 5,000 
single measurements. No signal degradation was observed during this time.  

Data Treatment. The data shown in Fig. 3 are raw results obtained from the measurements, 
after averaging over repeated scans. Before calculating the instantaneous rate constant, 
kinst=-(dc/dt)/c, shown in Fig. 4, the data from Fig. 3 were smoothed by combining all data 
points within a progressively increasing time window (with a width of +/-10% of the centre 
time) into one averaged point. Fitting of the instantaneous rate constant to a power law was 
performed using linear fits on a log-log scale, as shown in Fig. 4. 
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Appendix II: CD Spectra and Unfolding Curves of Open and Cross-linked  

N-PGK  

 
CD spectra were recorded in absence and presence of varying concentrations of urea on samples 
with a protein concentration of 20 µM in 50 mM sodium phosphate buffer, pH 7.0, 100 mM 
NaCl. The open form of N-PGK was obtained by addition of 1 mM DTT. Samples were 
allowed to denature for 4 hours at 25oC prior to addition of DTT and recording of spectra. All 
CD spectra were recorded between 200 and 280 nm in a cell with a pathlength of 1 mm, using a 
scanning speed of 50 nm/min and a response time of 8 s. The spectra were averaged over 2 
scans at 0.1 nm resolution and a bandwidth of 2 nm. The observed ellipticity, θ (millidegree) 
was converted to molar ellipticity [θ]. 

Figure S1a shows CD spectra of open and cross-linked N-PGK. The spectra show that in the 
absence of denaturant, cross-linked and open N-PGK have similar secondary structural content, 
although the difference in the CD-spectra indicates different overall structure. Fluorescence and 
NMR spectroscopy confirm that the structure of cross-linked N-PGK is less ordered and more 
molten-globule like in the absence of denaturant (1). Upon addition of 2 M urea, cross-linked N-
PGK shows decreased secondary structural content, whereas open N-PGK is still fully folded. 
Addition of 8 M urea, on the other hand, yields a similar loss of structure in cross-linked and 
open N-PGK. 

Figure S1b shows the unfolding curves of open and cross-linked N-PGK, determined from the 
CD-signal [θ] at 222 nm, normalized to the signal at 0 M urea, against urea activity, D = [urea] 
× C0.5/(C0.5+[urea]), where [urea] is the molar concentration of urea and C0.5 = 25.3 M (2). The 
data were fitted to a two-state model, assuming constant baselines, yielding the following results 
(referring to the plot of [θ]/[θ]0 vs. urea activity):  

Open N-PGK 

 ∆G0 = (-7.2 ± 0.5) kcal/mol m = (-2.9 ± 0.2) M-1 

Cross-linked N-PGK 

 ∆G0 = (-2.2 ± 0.1) kcal/mol m = (-1.1 ± 0.05) M-1 

The value of ∆G0 for open N-PGK is in reasonable agreement with the value of (-8.3 ± 0.4) 
kcal/mol determined previously for the same protein from GuHCl-induced unfolding, detected 
by tryptophan fluorescence (1).  Due to the absence of clear baselines, the values for cross-
linked N-PGK have to be regarded as crude estimates only. 

 

Figure S1. Denaturant-induced unfolding of open and cross-linked N-PGK. a. CD-spectra in 
absence and presence of urea; b. Unfolding curves, determined from the CD-signal [θ] at 222 
nm, normalized to the signal at 0 M urea, against urea activity (for comparison, the lower 
abscissa shows urea concentration); solid lines are fits of the data to a two-state model, see text. 
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Appendix III: Simulations of Geminate Recombination Time Dependence  

 
In our experiments, we followed the geminate recombination of thiyl radicals bound to a poly-
peptide backbone after they were created using short UV laser pulses. The relative motion of 
polypeptide-bound radicals, which is reflected in their recombination dynamics, is governed by 
the underlying motion/structural changes of the polypeptide. In the following, we present 
simulations which support our conclusion that the observed time dependence of the thiyl radical 
geminate recombination indicates subdiffusional behavior of the polypeptide sections to which 
the radicals are bound (intraprotein subdiffusion). The unusual recombination behavior is best 
seen in the time dependence of the instantaneous recombination rate constant, kinst(t) = 
-(dc/dt)/c, where c is the thiyl radical concentration, which follows a power law of t -0.94 over 9 
orders of magnitude in time (from the picosecond to the millisecond time scale), see Figure 4.  

In section 1, we show that normal diffusional behavior of the polypeptide sections to which the 
radicals are bound, diffusing either freely (section 1.1) or in a harmonic potential which 
approximates the tethering effect of the linking polymer chain (section 1.2), is not compatible 
with the observed power law behavior of kinst(t). This leads to the conclusion that the dynamic 
properties of the backbone significantly affect the motion of the polypeptide sections, and thus 
the recombination dynamics of the thiyl radicals, beyond the trivial tethering effect. In turn, this 
also means that the experimentally observed recombination dynamics contains information on 
the structural relaxation of the polypeptide backbone. 

In section 2, we attempt to include the dynamic nature of the polymer backbone into the 
simulation, using different models, namely the free-draining and non-draining Rouse models 
(section 2.1), and the worm-like chain model which accounts for chain stiffness and excluded 
volume effects (section 2.2). Although these models modify the simulated time dependence of 
kinst(t), none of them can account for a power law of t -0.94 over 9 orders of magnitude in time. 

In section 3, we show that the observed recombination behavior is well described by sub-
diffusional motion of the polypeptide sections. These simulations are based on a continuous 
time random walk model with broad waiting time distribution which leads to a fractional 
diffusion equation and subdiffusive behavior, i.e. a mean square displacement that is nonlinear 
in time, <r

2(t)> ∝ tα (α < 1).  

1. Simulations of Geminate Recombination Governed by Normal Diffusion 

Diffusion of the radicals after their creation by a short UV pulse will be largely governed by the 
motion of the polypeptide sections to which they are bound. Recombination requires contact 
formation, followed by the actual chemical reaction. The dynamics of contact formation 
between reactive groups on a polypeptide, which is governed by intramolecular diffusion, has 
been investigated extensively using fluorescence or triplet quenching experiments, both for 
unstructured oligopeptides and small proteins (partially folded or unfolded) (3-17), single-
molecule fluorescence correlation spectroscopy (18) or heme ligand binding following CO 
photodissociation (19, 20). Most of these experiments were analyzed assuming normal diffusion 
behavior, which gave reasonable agreement with experimental results and provided important 
insights into backbone dynamics. However, in all of these experiments the polypeptide 
backbone ensemble is in thermodynamic equilibrium before and during the experiment; in 
contrast, after disulfide photolysis the system is initially far from equilibrium and the results 
(especially the continuously decreasing instantaneous rate constant, Fig. 4) indicate that full 
equilibrium is not reached even on the maximum time scale of the experiment (1 ms). 

The measured instantaneous rate constant for geminate recombination, kinst(t), is the ensemble-
averaged probability of a reaction between two radicals. Its time dependence is governed by the 
diffusion-controlled probability of a re-encounter of the two radicals, multiplied by the 
probability of recombination upon contact formation before the radicals diffuse apart again. It 
decreases with time since the two reactants are initially in close vicinity but diffuse apart over 
time, reducing their chance of a re-encounter. However, the two radicals do not diffuse freely, 
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since they are tethered by the protein backbone, which prevents complete escape. Furthermore, 
the linking polypeptide backbone will modify the properties and time scale of diffusion. 

Here, we simulate the expected time dependence of geminate radical recombination, which is 
controlled by diffusion of the polypeptide sections to which the radicals are bound, assuming 
“normal” diffusion (where the mean square displacement changes linearly in time: <r

2> ~ t), 
with the linking polypeptide backbone only affecting the effective diffusion constant (“free dif-
fusion”, section 1.1), or additionally taking into account its tethering effect (section 1.2); it will 
be shown that the experimentally observed power law, kinst(t) ∝ t-0.94 over 9 orders of magnitude 
in time (1 ps to 1 ms), cannot be rationalized in this way.  

1.1. Geminate Recombination of Radicals on Freely Diffusing Polypeptide Sections 

1.1.1. Reencounter Probability for Non-Reacting Infinitely Small Particles 

Assuming normal three-dimensional diffusion (random walk) with diffusion constant D, the 
probability density p(r,t) of finding a (non-reacting) particle at distance r at time t, if the particle 
at t = 0 was at r = 0,  is given by 
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The probability that two radicals (assumed to be infinitely small), bound to different poly-
peptide sections and created at t = 0 in very close contact, will encounter each other again can 
be calculated by assuming that one radical remains fixed at the origin whereas the other one 
diffuses with a diffusion constant D which is the sum of the individual self-diffusion constants. 
This yields an encounter probability time dependence of p(0,t) ~ t-1.5, predicting kinst(t) ~ t-1.5. 

However, this ignores several important aspects of geminate recombination. In particular, 
radicals are not created and do not react at zero centre-to-centre distance; furthermore, the 
recombination reaction, which only occurs in the radical encounter region, may lead to a 
distortion of the particle density near the origin. 

1.1.2. Finite Initial Pair Separation and Contact Distance 

It is straightforward to calculate the time dependence of the probability for two radicals to 
encounter each other at a contact distance σ after being created at an initial pair separation r0. 
Again, this can be done by assuming that one particle remains fixed at a distance of r0 from the 
origin, whereas the other, initially at the origin, diffuses with a relative (intrachain) diffusion 
constant D. Averaging p(r,t), Eq. (S1), over all positions which are at distance σ from the 
“fixed” radical yields the corresponding encounter probability density: 
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The contact distance σ for aromatic thiyl radicals has been estimated to be 7.2 Å (21, 22). 
Geminate recombination in our experiments is found to start essentially immediately after 
radical pair generation, indicating that the initial pair separation r0 cannot be significantly larger 
than σ ; most likely, this is due to caging by the solvent and the protein which prevent 
significant separation during photolysis; a similar effect has been observed for model disulfides 
in high viscosity solvents (22). Therefore, we use values of r0 in our simulations which are at 
most slightly larger than σ . The relative diffusion constant of polypeptide chain segments has 
been reported, mostly from fluorescence or triplet quenching experiments, to be on the order of 
1-20 Å2/ns, in the absence or presence of significant concentrations of  denaturant, measured on 
unstructured oligopeptides or unfolded proteins (4, 6, 12, 19, 20, 23-26). 

Figure S2 shows the time dependent encounter probability density at contact distance calculated 
from Eq. (S2) for a range of parameters (D, r0 and σ). In all cases, the same general behavior is 



 6 

found. For r0 = σ  > 0 τhe probability density of re-encounter shows an initial decay ~ t-0.5 at 
short times (t << τ0 = r0

2/D), during which the average radical pair separation has not increased 
far beyond the initial separation r0. At longer times, at which diffusion has gone well beyond the 
initial separation, this turns into a ~ t-1.5 behavior, with the transition between the two regimes 
lasting not longer than one order of magnitude in time. For r0 > σ, i.e. if the radicals are created 
at a separation which is larger than their encounter distance, there is an initial delay before any 
encounters can occur, corresponding to the time required for the radicals to diffuse over their 
initial separation distance (~(r0-σ)2/D). 

Thus, several regions of the time-dependence of the reencounter probability of the two 
radicals/polypeptide sections are expected: (i) increasing probability, if the initial pair separation 
is larger than the contact distance, (ii) ~ t-0.5 while t < σ2/D, and finally (iii) ~ t-1.5, once radicals 
have diffused over a distance larger than the contact distance. The transition between each of 
these regions is fast (less than an order of magnitude in time). 

1.1.3. Survival Probability and Instantaneous Rate Constant of Geminate Recombination 

It is also possible to take into account the distortion of the particle density near the encounter 
distance due to geminate recombination. Geminate recombination governed by free diffusion 
under these conditions has been studied extensively. A re-encounter at the contact distance σ 
leads to recombination with a probability which is described by a second-order rate coefficient, 
krec, and which is included into the diffusion equation via suitable boundary conditions. 
Ultimately, all geminate molecular pairs created at t = 0 will either have recombined or escaped 
from each other. The pair survival probability P(t) at time t after pair creation is given by (27) 
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Figure S2.  Time dependent encounter probability density at contact distance for (non-reacting) 
radicals, calculated from Eq. (S2) for a range of parameters: D = 1 Å2/ns (red lines), 4 Å2/ns 
(black lines) and 20 Å2/ns (blue lines); r0 = σ = 0 (dashed lines, results identical to Eq. (S1)), 
r0 = σ = 1 Å (dash-dotted lines), r0 = σ = 7.2 Å (solid lines). Also shown are results for D = 4 
Å2/ns, σ = 7.2 Å, and r0 = 7.3 Å, 7.5 Å and r0 = 8 Å. The grey dashed lines indicate power laws 
t-0.5 and t-1.5, respectively. 
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where κ = r0/σ , λ = krec/kD, kD = 4πσD, and τ0 = σ2/D is the time constant for diffusion over the 
contact distance; erfc(x) is the complementary error function.  

This equation has been shown to well describe the experimentally observed geminate 
recombination of aromatic thiyl radicals in solution (21, 22). The value of the recombination 
rate constant krec for aminophenyl thiyl radicals depends critically on the polarity of the solvent 
due to internal charge transfer between the amino group and the sulfur atom (28, 29). Values of 
krec of the order 1012 cm3mol-1s-1 yield reasonable agreement between our experimental and 
simulated values for kinst(t), assuming a value of  1-20 Å2/ns for D (see above); this compares 
well with values for krec reported for model aminophenyl thiyl recombination (22). It has to be 
noted that aminophenyl thiyl radicals are strongly stabilized against recombination in polar 
solvents by internal charge transfer (22, 30-32). 

Figure S3a shows the expected effects for the time-dependent radical survival probability: 
slower diffusion leads to faster geminate recombination with higher overall recombination yield 
(red vs. black vs. blue solid lines), since the radicals are more likely to re-encounter each other 
and recombine before they diffuse apart. A smaller recombination rate constant (grey solid line), 
has the opposite effect. Finally, if the radicals are created at slightly larger initial separation, 
there is a delayed onset of recombination and a somewhat increased probability of cage escape. 

The instantaneous rate constant kinst(t) = -(dP(t)/dt)/P(t) was calculated from Eq. (S3) for a wide 

 

Figure S3. Time dependent survival probability (a) and resulting instantaneous rate constant of 
geminate recombination, kinst = -(dP(t)/dt)/P(t), (b, c) calculated from Eq. (S3) for a radical pair 
with encounter distance σ, initial pair separation r0 and relative diffusion coefficient D 
recombining on encounter with a recombination rate coefficient krec. a, b: σ = 7.2 Å; D = 1 
Å2/ns (red line), 4 Å2/ns (black and grey lines) and 20 Å2/ns (blue line); r0 = 7.2 Å (solid line), 
7.3 Å (dash-dot-doted line), 7.5 Å (short dash-dotted line) and 8 Å (short dashed line); krec = 
1.1 1012 cm3mol-1s-1 (black, red, and blue lines) and 1.1 1012 cm3mol-1s-1 (grey line). c: effect of 
varying r0 and σ on the time dependence of kinst for D = 4 Å2/ns and krec = 1.1 1012 cm3mol-1s-1. 
The grey dashed lines in b and c indicate power laws t-0.5 and t-1..5, respectively. 
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range of parameters, only a few are shown in Figures S3b and c. The time dependence of kinst(t) 
shows essentially the same behavior as that of the encounter probability density, Figure S2; for 
r0 > σ, there is a delay before recombination starts, since the radicals first need to diffuse 
together. Following this initial delay, kinst(t) decays ~ t -0.5 for short times, whereas at longer 
times it proceeds ~ t -1.5. The transition between the two regimes spans at most a few orders of 
magnitude in time. This shows that under the conditions prevailing for recombination of 
aromatic thiyl radicals on polypeptide side chains, the time dependence of kinst(t) is essentially 
governed by the time dependent encounter probability calculated from diffusion in the absence 
of recombination; only minor effects are introduced by the local distortion of the particle 
density near the encounter distance due to recombination. This is due to the small intrinsic 
recombination rate constant of aminophenyl thiyl radicals, which results in a non-diffusion 
controlled reaction (22, 30-32).  For some of the models described below, it will not be possible 
to explicitly calculate the instantaneous recombination rate constant, but only the time-
dependent probability density for radical re-encounters in the absence of recombination; in these 
cases, we will make use of this similarity in the time dependence of these two quantities. 

In summary, we conclude that free diffusion of the peptide ends is not able to account for the 
experimentally found uniform power law for the decay of the instantaneous recombination rate 
constant kinst(t) ~ t-0.94 over 9 order of magnitude in time. 

1.2. Geminate Recombination of Tethered Radicals 

Eq. (S3) does not include the tethering effect of the polypeptide chain which links the two 
residues to which the radicals are bound. Although many authors have treated diffusion-
controlled intrachain polymer reactions theoretically (33-39), often in the context of quenching 
or ring closure experiments, all of these treatments assume an initial fully equilibrated con-
figurational ensemble and are therefore not applicable to the geminate recombination problem 
encountered here. Therefore, a series of simulations were performed to investigate the effects of 
the tether on geminate recombination dynamics. Following previous approaches to the tethering 
problem, these simulations model the effect of the tether by assuming that the radicals diffuse in 
a harmonic potential (33, 37) which allows for virtually free diffusion at short radical distances, 
but introduces an increasing energy penalty when the radicals separate to larger distances, 
resulting in the Gaussian distribution of the end-to-end distance expected for a random coil 
tether. Thus, the potential energy at radical-radical distance r, Uharm(r), is given by 

2
2harm

2

3
)( B r

L

Tk
rU =  (S4) 

where L is the root mean square distance of the radicals in equilibrium, kB is the Boltzmann 
constant and T the temperature. The root mean square end-to-end distance of an unfolded 
polypeptide with N residues has a typical value given by L2 ≈ cN N a

2, where a is the Cα-Cα-
distance (3.8 Å) and cN is Flory’s characteristic ratio, which accounts for chain stiffness/ 
persistence length effects and has a typical value of 7-10, depending on composition and length 
of the polypeptide (5, 8, 19, 20, 24, 40, 41). Similar values have been reported in the absence 
and presence of denaturant, although indirect evidence exists showing that the addition of 
denaturant can lead to an increase of L (24). The segment of polypeptide backbone connecting 
the radicals consists of 11 residues in N-PGK and of 17 residues in the model peptide studied by 
Volk et al (31), predicting values for L on the order of 35 Å and 45 Å, respectively.† For fully 
exploring the effects, values between 15 and 100 Å were used for simulations, although only 
results for 25 Å and 45 Å are shown; simulations using other values did not yield any 
significantly different results, except for the expected change of the time at which 

                                                 
† For the model peptides studied by Volk et al (31), this corresponds to the full length of the peptide. For  
N-PGK, the backbone sections on either side of the loop formed by the disulfide bond cross-link will to 
some extent modify the dynamic behavior, but this can be accounted for by changing the effective 
diffusion constant (7). Since the simulations performed here are not aimed at providing an exact 
quantitative comparison with experimental data, this does not affect our conclusions. 
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conformational equilibration is reached, which leads to a leveling off of the re-encounter 
probability or the instantaneous rate constant, see below. 

In the following, we first calculate the reencounter probability for two infinitely small radicals 
created at the origin and diffusing in a harmonic potential (i.e. tethered); next, the equations for 
two radicals making contact at a contact distance σ after being created at an initial pair 
separation r0 will be derived; finally, we will present numerical simulation results of the same 
problem including a finite reaction probability at the encounter distance. 

1.2.1. Reencounter Probability for Non-Reacting Infinitely Small Particles 

The probability density p(x,t) of finding a particle at position x at time t, whose motion is 
governed by diffusion in a potential U(x), is given by the Smoluchowski equation (33, 37) 

( )kTUtptpDtp
t

/)(),(),(),( xxxx ∇+∇∇=
∂

∂
 (S5). 

Making use of the starting condition that the particle at t = 0 is at r = 0, i.e. p(r,t=0) = δ(r), and 
the spherical symmetry of the problem, it is straightforward to derive the solution of this 
equation for the harmonic potential, Uharm(r): 
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As expected, this reduces to Eq. (S1) for Dt << L2, i.e. for a long tether or for short times.  

Again, this equation can be used for calculating the re-encounter probability of two radicals by 
assuming that one radical remains fixed at the origin whereas the other one diffuses with a 
relative diffusion constant D. As shown in Figure S4, this re-encounter probability p(r=0,t) for 
infinitely small particles initially decreases ~ t -1.5, just as in the case of free diffusion. Only at 
times of the order t ~ L2/D, i.e. when diffusion has taken place over the length scale of the po-
tential/tether, does p(0,t) show any deviation from free diffusion. On this time scale, the system 
reaches its equilibrium conformational distribution, and p(0,t) becomes time-independent. The 
transition between the two regions occurs within one order of magnitude in time. 

1.2.2. Finite Initial Pair Separation and Contact Distance 

Diffusion of two radicals in a harmonic potential is governed by Eq. (S5). In this case, the 
reduced Green function, G(u1,u2,t), which describes the probability that the radical separation 
vector (r2 – r1) is given by u2 at time t if it was u1 at time t = 0 (averaging over all equilibrium 
polymer configurations with (r2 – r1) = u1), has the following form (35): 
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where ρ(t) is the normalized time correlation function of the polymer end-to-end vector, here 
approximated by a single harmonic spring connecting the ends.  

Calculating the re-encounter probability of two (non-reacting) radicals at a contact distance σ 
after being created at an initial pair separation r0 (in the absence of recombination) requires 
averaging u1 over all polypeptide backbone conformations giving an initial pair separation r0 
and integrating u2 over all conformations corresponding to a distance σ, which yields:‡
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As expected, this equation reduces to Eq. (S2) for Dt << L2, i.e. for a long tether or for short 
times. This is shown exemplary in Figure S4, where solid lines show results obtained for r0 = σ  
= 7.2 Å with Eq. (S8), i.e. in the presence of a harmonic potential, and dotted lines show results 
for the same conditions obtained with Eq. (S2), i.e. in the absence of a tether.  

In general, for short times, during which the radicals have not yet had sufficient time for 
diffusion over the length scale of the tether, the results obtained with Eqs. (S2) and (S8) are 
identical. After this time, the tethered radicals assume their conformational equilibrium, 
yielding a time-independent re-encounter probability. The transition between these regions 
occurs in less than one order of magnitude in time. 

Thus, in the presence of a tether, several regions of the time-dependent behavior of the 
reencounter probability of the two radicals are expected: (i) increasing probability, if the initial 
pair separation r0 is larger than the contact distance σ, (ii) ~ t -0.5 until t ≈ σ 2/D, (iii) ~ t -1.5 until 
t ≈ L2/D, and (iv) independent of time once conformational equilibrium has been attained. Each 
transition between these different regions is fast (less than one order of magnitude in time). 

                                                 
‡ It has to be noted that here, as already for the derivation of Eq. (S7), a random coil equilibrium 
distribution of the polymer backbone was assumed, i.e. any partial folding of the backbone was ignored. 

 

Figure S4. Time dependent encounter probability density at contact distance for (non-reacting) 
radicals undergoing diffusion in a harmonic potential with L = 45 Å, calculated from Eq. (S8) 
for a range of parameters: D = 1 Å2/ns (red lines), 4 Å2/ns (black lines) and 20 Å2/ns (blue 
lines); r0 = σ = 0 (dashed lines, results identical to Eq. (S6)), r0 = σ = 1 Å (dash-dotted lines), 
r0 = σ = 7.2 Å (solid lines). Also shown are results for D = 4 Å2/ns, σ = 7.2 Å, and r0 = 7.3 Å, 
7.5 Å and r0 = 8 Å. The dotted lines show the results in the absence of a harmonic potential for 
r0 = σ = 7.2 Å. The grey dashed lines indicate power laws t-0.5 and t-1.5, respectively. 
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1.2.3. Survival Probability and Instantaneous Rate Constant 

While the survival probability of a freely diffusing reactant pair undergoing geminate recom-
bination can be calculated explicitly, Eq. (S3), to the best of our knowledge no analytic solution 
is available for reactants diffusing in a harmonic potential. We therefore simulated the effects of 
a reaction at contact distance σ numerically. For this purpose, a sink term was added to the 
diffusion equation, Eq. (S5), which describes a reaction at distance σ with rate constant krec: 

( ) ),()(δ/)(),(),(),( trprkkTrUtrptrpDtrp
t

rec σ−−∇+∇∇=
∂

∂
 (S9) 

The harmonic potential, Uharm(r), of Eq. (S4) was used for U(r). The numerical simulations, 
starting from the initial condition p(r,t=0) = δ(r-r0), included reflecting boundary conditions at r 
= σ  and at the outer limit of the simulation volume (with a radius of typ. 200 Å) and were im-
plemented in MathCad, using the kinetic matrix method (4, 42, 43). The survival probability at 
time t, P(t), is calculated by integrating the probability density p(r,t) over the whole volume.  

Simulations were run for a wide range of values for all parameters, and the same general 
behavior was obtained in all cases. As expected, the time dependence of Eq. (S3) was obtained 
for short times, see Figure S5a. Only on the timescale of ~L

2/D, on which radicals diffuse over 
the length scale of the potential/tether, do any significant deviations appear. Unlike freely 
diffusing radicals, which can escape and thus avoid geminate recombination completely, all 
tethered radicals will eventually recombine, and thus their survival probability will drop to zero, 
see Figure S5a. The same behavior is seen in the instantaneous rate constant for recombination, 
kinst(t) = -(dP(t)/dt)/P(t), Figures S5b and c. The time dependence of kinst(t) is identical to that 
calculated in the absence of a potential up to times corresponding to the diffusion over length 
scale L. Only on this time scale will the radicals diffuse sufficiently far to encounter the effects 
of the harmonic potential. At this point, within one order of magnitude in time, conformational 
equilibrium is achieved, resulting in leveling off of kinst(t). 

Thus, even in the presence of a tether kinst(t) is expected to rise initially, at least if photolysis 
leads to separation of the radicals beyond the contact distance. Subsequently, kinst(t) is expected 
to decay ~ t -0.5, followed by a phase with a decay ~ t -1.5, until it becomes independent of time 
once diffusion has lead to conformational equilibration, which is expected to occur on the time 
scale of 100 ns to a few µs. This is in stark contrast to the experimentally observed power law of 
t
 -0.94 over 9 orders of magnitude in time (from the picosecond to the millisecond time scale), so 

that we conclude that the radicals do not follow a normal diffusive behavior. Again, these 
simulation also show that the time dependence of the instantaneous rate constant reflects that of 
the encounter probability, i.e. that the distortion of the particle density near the origin by the 
recombination reaction does not significantly affect the overall reaction behavior. 

2. Effect of Polymeric Nature of Polypeptide Tether  

The results described in section 1.2 only account for the tethering effect of the polypeptide 
backbone, but ignore its internal dynamics. Two models describing different aspects of the 
internal polypeptide structure on its dynamics, the Rouse model and the wormlike chain model, 
have been used to test if these could provide an explanation for the observed power law of the 
decay of the instantaneous rate constant kinst(t). It will be shown that neither of these models 
yields the experimentally observed power law of t -0.94 over 9 orders of magnitude in time. 

2.1. Rouse Model 

Internal polymer dynamics have been successfully described using the Rouse (44) or Rouse-
Zimm (45) models, often referred to as the free- and non-draining Rouse chain, respectively. 
These models assume the polymer to consist of a number of NR beads connected by harmonic 
springs, yielding NR-1 normal modes.§ Whereas in the free-draining Rouse model, each bead 

                                                 
§ NR does not correspond to the number of residues, N, but more realistically is given by N/cN, where cN is 
Flory’s characteristic ratio, which accounts for chain stiffness/persistence length effects, see above. 
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experiences solvent friction which is independent of the motion of the other beads, the more 
realistic non-draining Rouse model also accounts for hydrodynamic interactions between beads, 
i.e. the “drag” experienced by a section of the polymer because of motion of the other sections. 

For these models, the normalized time correlation function of the polymer end-to-end 
vector, ρ(t), can be given by (35)  

chain) Rousedraining-(non/

chain) Rouse draining- free(/
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where the maximum relaxation time is given by τm = fN2
a

2/(3π2
kBT), f is the segmental friction 

coefficient, N the number of residues, a the length of a residue, kB the Boltzmann constant and T 

 
Figure S5. Time dependent survival probability (a) and resulting instantaneous rate constant of 
geminate recombination, kinst = -(dP(t)/dt)/P(t), (b, c) for tethered radicals, approximated by 
diffusion in a harmonic potential, Eq. (S4), with L = 45 Å (solid lines) or 25 Å (dashed lines), 
calculated from the numerical simulations described in the text. For comparison, also included 
are the results for free diffusion (Eqs. (S3), dotted lines). Shown are the results for a radical pair 
with encounter distance σ, initial pair separation r0 and relative diffusion coefficient D 
recombining on encounter with a recombination rate coefficient krec with the following values: 
a, b: r0 = σ = 7.2 Å; D = 1 Å2/ns (red lines), 4 Å2/ns (black and grey lines) and 20 Å2/ns (blue 
lines); krec = 1.1 1012 cm3mol-1s-1 (black, red, and blue lines). a: also included are the results for 
krec = 1 1011 cm3mol-1s-1 (grey). b: also included are results for r0 = 7.3 Å, 7.5 Å and 8 Å; c: 
effect of varying r0 and σ on the time dependence of kinst for D = 4 Å2/ns and krec = 
1.1 1012 cm3mol-1s-1. The grey dashed lines in b and c indicate power laws t-0.5 and t-1..5. 
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the temperature. With the Stokes-Einstein relation, D = kBT/f, and the root mean square end-to-
end distance L given above, L2 ≈ cN N a

2, this becomes τm = N/(π2
cN) * L2/3D. For the sake of 

simplicity, however, here we used the same value of τm, the longest relaxation time, as was used 
for the relaxation time in the single harmonic spring model, i.e. τm = L2/3D, see Eq. (S7), which 
overestimates the value of τm by a factor of 2-4. It has to be noted that no quantitative, but only 
qualitative simulations were attempted here and that the value of D, and consequently of τm, was 
varied over a wide range with no change in the general behavior. 

The reencounter probability of two radicals at contact distance σ after being created at an initial 
pair separation r0 (in the absence of recombination) in the free- or non-draining Rouse model 
was calculated using Eq. (S8) with ρ(t) from Eq. (S10). Figures S6a and S7a show simulations 
where summation over p was performed to convergence, which corresponds to modeling very 
long polymer chains with unrealistically small beads. Figures S6b-d and S7b-d compare the 
results of assuming a smaller number of larger beads, corresponding to the same polymer 
length; this situation was approximated by summing over less terms in Eq. (S10). 

 

 

Figure S6. Time dependent encounter probability density at contact distance for (non-reacting) 
radicals at the end of a free-draining Rouse chain, calculated from Eqs. (S8) and (S10); τm was 
assumed to be given by L2/3D, with L = 45 Å. a. Simulations with summation over p performed 
to convergence (very long polymer chains consisting of small beads), for a range of parameters: 
D = 1 Å2/ns (red lines), 4 Å2/ns (black lines) and 20 Å2/ns (blue lines); r0 = σ = 0 (dashed 
lines), r0 = σ = 1 Å (dash-dotted lines), r0 = σ = 7.2 Å (solid lines). Also shown are results for 
D = 4 Å2/ns, σ = 7.2 Å, and r0 = 7.3 Å, 7.5 Å and r0 = 8 Å. The grey dashed lines indicate 
power laws t-0.25 and t-0.75, respectively. b-d. Effect of assuming a smaller number (NR) of larger 
beads for D = 4 Å2/ns; NR = 2 corresponds to diffusion in a harmonic potential and yields the 
same results as shown in Fig. S4. 
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Figure S6a shows that the free-draining Rouse model for long polymers shows the same 
principal behavior of the radical encounter probability as the harmonic model, albeit with lower 
power laws; after an initial increase, which only is found if r0 > σ, the encounter probability 
decays ~ t -0.25 until diffusion has occurred over a length scale of σ,** at which point the behavior 
changes to ~ t -0.75, until full equilibration occurs on the timescale of τm, when the encounter 
probability becomes time-independent. This slower decay of the encounter probability than that 
for free diffusion are in agreement with the well-known fact that in the Rouse model the peptide 
ends efficiently explore a compact space (38). 

However, for shorter polymer chains this behavior only is found at times which are larger than 
the shortest relaxation time τm/(NR-1)2, at shorter times the model predicts a behavior identical 
to that observed for the harmonic model, i.e. encounter probability decays ~ t -0.5 and ~ t -1.5 

                                                 
** It has to be noted that in the Rouse model, diffusion of the peptide ends does not follow the normal 
diffusion equation, and therefore the time scale of diffusion over a length scale σ is not given by σ2/D. 

 

 

Figure S7. Time dependent encounter probability density at contact distance for (non-reacting) 
radicals at the end of a non-draining Rouse chain, calculated from Eqs. (S8) and (S10); τm was 
assumed to be given by L2/3D, with L = 45 Å. a. Simulations with summation over p performed 
to convergence (very long polymer chains consisting of small beads), for a range of parameters: 
D = 1 Å2/ns (red lines), 4 Å2/ns (black lines) and 20 Å2/ns (blue lines); r0 = σ = 0 (dashed 
lines), r0 = σ = 1 Å (dash-dotted lines), r0 = σ = 7.2 Å (solid lines). Also shown are results for 
D = 4 Å2/ns, σ = 7.2 Å, and r0 = 7.3 Å, 7.5 Å and r0 = 8 Å. The grey dashed lines indicate 
power laws t-0.33 and t-1, respectively. b-d. Effect of assuming a smaller number (NR) of larger 
beads for D = 4 Å2/ns; NR = 2 corresponds to diffusion in a harmonic potential and yields the 
same results as shown in Fig. S4. 
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before and after diffusion over length scale σ, respectively (Fig. S6 b-d). Thus, depending on 
the relative values of the shortest and longest relaxation times and the time for diffusion over 
the length scale of σ, a complex behavior can be observed, e.g. the decay of the encounter 
probability decaying initially ~ t -0.5, followed by a period where it decays ~ t -0.25, then changing 
to ~ t -0.75, before it levels off, see in particular Figure 6b. In all cases, the transition between the 
different power laws is found to occur within one or two orders of magnitude in time.  

The non-draining Rouse model (Fig. S7) yields similar results, except that for long polymers the 
encounter probability decays proportional to ~ t -0.33 until diffusion has occurred over a length 
scale of σ, and ~ t -1 after that time, until it becomes time-independent when full equilibration 
occurs on the timescale of τm. Again, for shorter polymer chains this behavior only is found at 
times which are larger than the shortest relaxation time, τm/(NR-1)2, at shorter times the model 
predicts a behavior identical to that observed for the harmonic model, i.e. encounter probability 
decays ~ t -0.5 and ~ t -1.5 before and after diffusion over length scale σ, respectively. 

For the Rouse model, it was only possible to calculate the time dependence of the encounter 
probability in the absence of a reaction; however, it was shown above that this yields a good 
approximation of the general behavior of the instantaneous rate constant due to the low inherent 
recombination rate constant of aromatic amino-thiyl radicals. In no case (free- or non-draining; 
infinitely long or shorter polymer chain, wide range of input parameters) a power law ~ t -0.94 
was found to be predicted for the encounter probability over the full time scale used in the 
experiments (ps to ms). In particular for short chain lengths, which is a more realistic model for 
the protein investigated here or the model peptide investigated by Volk et al (31), a complex 
behavior is expected with the power law changing several times before the encounter 
probability becomes constant upon equilibration on the microsecond time scale. This is contrary 
to the experimentally found uniform power law ~ t -0.94, over the full time range from 
picoseconds to milliseconds, which suggests that even a model that includes internal (Rouse) 
polymer dynamics does not account for the observed power law decay of the instantaneous rate 
constant over 9 orders of magnitude in time. 

2.2. Chain Stiffness and Excluded Volume 

Other important aspects of the diffusional behavior of the polypeptide backbone, in particular of 
short peptides or protein sections, are chain stiffness and excluded volume effects. Chain 
stiffness refers to the finite bending rigidity of the backbone, which propagates in the general 
direction of the initial section for several residues, the number of which is characterized by the 
persistence length lp. For short peptides (with N residues), whose contour length lc = N * 3.8 Å 
is on the order of lp, this results in a significant non-Gaussian equilibrium distribution of the 
end-to-end distance (4), whereas no effect of chain stiffness is expected if lc >> lp. Excluded 
volume effects, on the other hand, are based on the trivial observation that the volume occupied 
by one residue is not available to other residues. This contributes to the finite bending rigidity of 
the polymer, since the chain is prevented from folding back on itself, but in addition has effects 
on the relative conformations of residues which are further apart than lp (7). 

For the non-equilibrium situation encountered during geminate thiyl radical recombination, it 
could be expected that these effects affect the encounter rate of radicals; this is particularly true 
if the radicals are linked by relatively short peptide sections, since conformations which require 
strong local backbone bending, i.e. those with a short end-to-end distance, are less likely to be 
adopted. Thus, a priori it cannot be ruled out that chain stiffness and/or excluded volume effects 
could cause the experimentally observed uniform power law decay kinst(t) ~ t -0.94 over 9 order of 
magnitude in time. To investigate this possibility, we undertook numerical simulations of the 
time-dependent survival probability and instantaneous radical recombination rate constant 
which take these effects into account. 

For these simulation, we made use of analytical expressions for the end-to-end distance 
distribution px(r) which have been derived in the literature, based on theoretical models, 
simulations (4, 7, 46, 47) or experimental results (13). From these distributions an effective 
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potential energy at distance r, Ux(r), which describes the motion of the peptide ends and yields 
the correct equilibrium end-to-end distance distribution, can be calculated:†† 
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This potential was used in numerical simulations identical to those described in section 1.2.3, 
except for the use of Ux(r) instead of the harmonic potential in the diffusion equation, Eq. (S9). 

2.2.1. Chain Stiffness Effects 

The equilibrium distribution pcs(r) of the end-to-end distance r for a polypeptide with 
persistence length lp and contour length lc can be simulated using the wormlike chain model 
originally developed by Porod and Kratky (48).  

Based on this model, the following analytical expression for pcs(r) was derived for polymers 
with large bending rigidity (i.e. lp > lc) (47): 
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For the opposite extreme case, i.e. very small bending rigidity (i.e. lp < lc/10), a different 
distribution was found (46): 
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For polypeptides, values in the range from 2 to 15 Å have been reported for the persistence 
length lp based on a range of different experimental methods (4, 49-53). Thus, for the situation 
investigated here (N = 11 residues in the protein investigated here and 17 residues in the model 
peptide studied by Volk et al (31)), neither of these approximations is strictly valid.  

Lapidus et al (4) reported an analytical expression for pcs(r) which interpolates between the 
distributions given in Eqs. (S12) and (S13), based on extensive numerical simulations of 
wormlike chains with values for lc/lp ranging from 1 to 10 (this expression is complex, and thus 
is not reproduced here). Using this equilibrium distribution, they determined a value of 6.4 Å 
for lp from equilibrium triplet quenching data on short model peptides, which is comparable to 
the values ranging from 2 to 15 Å determined by other methods (49-53). 

We used the effective potentials Ucs(r), calculated from these analytical expressions for the end-
to-end distributions using Eq. (S11), for numerically simulating the time-dependent survival 
probability and instantaneous recombination rate constant in the presence of chain stiffness 
effects, varying the parameter lp over the range of values reported in the literature. Figure S8 
shows typical results for the instantaneous rate constant kinst(t) obtained from these simulations 
and compares them to results obtained with the harmonic spring potential.  It can be seen that at  

                                                 

†† Note that the divisor 4πr
2 is required since px(r) is usually reported as the 1-dimensional distribution of 

the end-to-end distance, whereas Eq. (S9) is written in 3 dimensions. Eq. (S11) yields the harmonic 
potential of Eq. (S4) (except for an irrelevant constant offset) for the Gaussian distribution pharm(r) ∝ 
4πr

2exp(-3r
2/2L

2) of the freely jointed chain. 
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short times, the time dependence of kinst(t) is independent of the persistence length lp and is 
identical to that obtained with a harmonic potential. As expected, kinst(t) levels off at longer 

 
Figure S8. The effect of chain stiffness on the time dependent instantaneous rate constant of 
geminate recombination, kinst(t), of two radicals which are tethered at the end of a polypeptide 
chain with N = 15 residues (contour length lc = 57 Å). kinst(t) was calculated from the survival 
probability, P(t), obtained numerically assuming diffusion in modified potentials, as described 
in the text (black solid lines). a, b: using potential for large bending rigidity (lp > lc), Eqs. (S11) 
and (S12); c, d: using potential for very small bending rigidity (lp < lc/10), Eq. (S 11) and (S13); 
e, f: using the interpolated potential as described in the text. The persistence length, lp, was 
varied from 2 Å to 12 Å, as indicated in the figures. Shown are the results for a radical pair 
with encounter distance σ, initial pair separation r0 and relative diffusion coefficient D 
recombining on encounter with a recombination rate coefficient krec with the following values: 
D = 4 Å2/ns; krec = 1.1 1012 cm3mol-1s-1;  r0 = σ = 7.2 Å (a ,c, e) or r0 = σ = 1 Å (b ,d, f). Also 
shown are the results for diffusion in a harmonic potential, Eq. (S4), with L = 15.1 Å (=(2lplc)

1/2 
for lp = 2 Å, red dashed lines) and 37 Å (=(2lplc)

1/2for lp = 12 Å, blue dashed lines), and the 
results for free diffusion, calculated from Eq. (S3) (black dotted lines).  
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times when conformational equilibrium is reached; there is a pronounced effect of lp on the 
equilibrium value of kinst(t), similar to that of L in simulations using the harmonic spring model 
(Fig. S8). There are slight differences between the time dependence of kinst(t) during the 
transition to equilibrium when taking into account chain stiffness; as expected, this is 
particularly pronounced when using Eq. (S12), i.e. for polymers with large bending rigidity 
(Figs. S8 a,b). However, for all cases, these differences are minor and the overall behavior of 
kinst(t) is very similar. Thus, it can be concluded that chain stiffness effects alone are not 
expected to drastically alter the radical recombination dynamics and are not able to account for 
the experimentally observed power law kinst(t) ~ t -0.94 over 9 order of magnitude in time. ‡‡ 

2.2.2. Excluded Volume Effects 

Excluded volume effects also contribute to chain stiffness, but are expected to have additional 
effects on the end-to-end distance distribution since residues which are distant to each other in 
the primary sequence cannot occupy the same volume. Buscaglia et al (7) reported an analytical 
expression for the end-to-end distance distribution of a peptide with N = 11 residues which takes 
into account this effect, based on extensive numerical simulations of wormlike chains which 
discard all conformations where two non-neighboring residues are closer to each other than a 
hard-sphere diameter dα: 
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Here, l, t and σev are numerical parameters which are tabulated in ref. (7) for values of dα 
ranging from 0 to 6 Å and Γ( ) is the gamma function. 

Figure S9 shows simulations of the instantaneous recombination rate constant based on the 
effective  potential Uev(r), calculated  from  this  end-to-end distribution  using Eq. (S11), in the 
absence (dα = 0) and presence of excluded volume effects, as well as simulations using the 
harmonic spring potential for comparison.§§ As with chain stiffness effects, the inclusion of 
excluded volume effects does not affect the results at short times, but changes the exact time 
dependence at longer times and affects the equilibrium value of kinst. It has to be noted that the 
root-mean-square distance increases only slightly (from 18.8 to 23.6 Å) when increasing dα 
from 0 to 6 Å, whereas the equilibrium value of kinst(t) decreases significantly, due to the lower 
probability of forming conformations with small end-to-end distances resulting from excluded 
volume effects. Taking into account excluded volume affects the time dependence of kinst(t) 
during the transition to equilibrium; in particular, the transition occurs over a shorter time than 
for the harmonic potential. However, apart from the easily understood reduced equilibrium 
values, these effects are only minor and the overall behavior of kinst(t) is very similar to the 
harmonic spring model. Thus, it can be concluded that even when including excluded volume 
effects the time dependence of the radical recombination dynamics is not drastically altered and 
thus also excluded volume effects are not able to account for the experimentally observed 
uniform power law decay kinst(t) ~ t -0.94 over 9 orders of magnitude in time. 

2.2.3. Simulations Based on an Empirical End-to-End Distance Distribution 

It has been reported that the end-to-end distance distribution taking into account excluded 
volume effects, pev(r), given in Eq. (S14) is in some disagreement with experimental FRET 

                                                 
‡‡ By comparison of the Gaussian distribution 4πr

2exp(-3r
2/2L

2) of the freely jointed chain with the stiff 
chain distribution pcs(r) given in Eq. (S13), it can be seen that the wormlike chain model yields an equili-
brium distribution with a root mean square end-to-end distance L ≈ (2lplc)

1/2, particularly for lc >> lp. 
Fig. S8 shows that for lc > lp the equilibrium values of kinst obtained with the wormlike chain and 
harmonic spring models indeed are similar when taking into account this approximation. 

§§ Simulations for r0 = σ = 1 Å yield similar results, but are not shown here because of the conceptual 
inconsistency of assuming a reaction between residues with a hard-sphere diameter of larger than 1 Å 
occurring at an encounter distance of 1 Å. 
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results. An empirical skewed Gaussian distribution was suggested instead, which is in better 
agreement with all empirical results (13): 
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Here, Cnorm is a normalization constant, whereas A and B are empirical parameters determined 
from fitting the experimental results. For the peptides (with N = 14 residues) and solvent 
conditions investigated in ref. (13), A is almost constant at a value of 10-11 Å, and B varies over 
the range 11-18 Å.  

Figure S10 shows simulations of the instantaneous recombination rate constant based on the 
effective potential Uempirical(r), for a range of values of B, corresponding to increasing chain 
swelling, which is larger than those observed.*** The results are very similar as those shown in 
the previous section, Figures S8 and S9, thus showing that the exact details of the end-to-end 
distance distribution resulting from chain stiffness and excluded volume effects do not signi-
ficantly affect the radical geminate recombination dynamics and the time dependence of kinst(t).  

Therefore, it can be concluded that chain stiffness and excluded volume effects cannot account 
for the experimentally observed uniform power law decay kinst(t) ~ t -0.94 over 9 orders of 
magnitude in time. 

                                                 
*** Again, simulations for r0 = σ = 1 Å yield similar results, but are not shown here because of the 
conceptual problem that Eq. (S15) effectively accounts for excluded volume effects with hard-sphere 
diameters larger than such short encounter distances. 

 
Figure S9. The effect of excluded volume on the time dependent instantaneous rate constant of 
geminate recombination, kinst(t), of two radicals which are tethered at the end of a polypeptide 
chain with N = 11 residues (contour length lc = 42 Å). kinst(t) was calculated from the survival 
probability, P(t), obtained numerically assuming diffusion in the modified potential calculated 
from Eqs. (S11) and (S14), as described in the text (black solid lines). The hard-sphere 
diameter, dα, was varied from 0 to 6 Å, as indicated in the figure. Shown are the results for a 
radical pair with encounter distance σ, initial pair separation r0 and relative diffusion 
coefficient D recombining on encounter with a recombination rate coefficient krec with the 
following values: D = 4 Å2/ns; krec = 1.1 1012 cm3mol-1s-1;  r0 = σ = 7.2 Å. Also shown are the 
results for diffusion in a harmonic potential, Eq. (S4), with L = 18.8 Å (red dashed line) and 
23.6 Å (blue dashed line), corresponding to the root-mean-square distance for dα of 0 and 6 Å, 
respectively, and the results for free diffusion, calculated from Eq. (S3) (black dotted line).  
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3. Geminate Recombination Governed by Anomalous Diffusion 

Anomalous diffusion, where the mean square displacement is nonlinear in time, <r
2(t)> ∝ t

α, 
has been observed widely for the diffusion of biomolecules in the crowded cell environment or 
in membranes (54, 55); of particular importance is subdiffusional behavior, where α < 1. Such 
subdiffusional behavior can be theoretically rationalized by a wide distribution of trapping 
times, which in the case of intraprotein subdiffusion have been ascribed to the different barrier 
heights of the “rugged” potential energy landscape of protein conformation (56, 57). Thus, the 
motion of the polypeptide backbone, and hence of the thiyl radicals created by UV-photolysis in 
our experiments, may not be governed by the normal diffusion law, but rather by anomalous 
diffusion. In the following, we attempt to investigate the effect of subdiffusion on the time-
dependence of the survival probability during geminate recombination of these radicals. 

3.1. Geminate Recombination of Free Radicals Undergoing Subdiffusive Motion 

Diffusional motion in the presence of traps with a wide distribution of trapping times can be 
theoretically described by the fractional diffusion equation (here given for 1-dimensional 
diffusion in the force-free case, the extension to 3 dimensions is achieved by replacing ∂/∂x by 
the ∇  operator), which has been derived using a continuous time random walk model (58, 59) 
and can be shown to yield subnormal diffusion, i.e. <r

2(t)> ∝ Dα t
α : 
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Figure S10. The effect of chain stiffness and excluded volume on the time dependent 
instantaneous rate constant of geminate recombination, kinst(t), of two radicals which are 
tethered at the end of a polypeptide chain with N = 14 residues (contour length lc = 53 Å). 
kinst(t) was calculated from the survival probability, P(t), obtained numerically assuming 
diffusion in the modified potential calculated from Eqs. (S11) and (S15), as described in the 
text (black solid lines). The empirical parameter A was chosen as 11 Å, whereas B was varied 
from 6 to 22 Å, as indicated in the figure. Shown are the results for a radical pair with 
encounter distance σ, initial pair separation r0 and relative diffusion coefficient D recombining 
on encounter with a recombination rate coefficient krec with the following values: D = 4 Å2/ns; 
krec = 1.1 1012 cm3mol-1s-1;  r0 = σ = 7.2 Å. Also shown are the results for diffusion in a 
harmonic potential, Eq. (S4), with L = 15.1 Å (red dashed line) and 45 Å (blue dashed line), 
and the results for free diffusion, calculated from Eq. (S3) (black dotted line).  
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where p(x,t) is the probability density of finding a particle at position x at time t, Dα is a 
generalized diffusion coefficient with dimension [Dα] = Å2 ns-α, and the Riemann-Liouville 
operator is defined by 
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However, the use of this fractional diffusion equation, either for explicitly deriving expressions 
for the re-encounter probability of two radicals at contact distance σ after being created at t = 0 
at a distance r0, or for numerical simulations of their survival probability comparable to those 
described above for normal diffusion, are beyond the scope of this paper. 

Instead, we make use of the expression derived by Seki et al. for the survival probability, P(t), 
of a pair of particles undergoing subdiffusive motion and subject to geminate recombination 
(60). Here, subdiffusive motion is simulated using a continuous time random walk model with a 
fixed jump size, b, and a waiting time distribution ψ(t) which results from the assumption of an 
activated jump rate, γ(E), with an exponential distribution, g(E), of the activation energy, E:††† 
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where kB is the Boltzmann constant, T the temperature, kBTc characterizes the width of the 
distribution of the jump activation energy and γr the maximum (non-activated) jump rate. This 
model leads to subdiffusive behavior, i.e. the mean square displacement is nonlinear in time: 
<r

2(t)> ∝ tα ,with α = T/Tc. Geminate recombination was assumed to occur with a first-order 
rate constant γrc when the particles are at the contact distance.  

Unfortunately, only the Laplace transform of P(t), )(sP
)

, can be written in closed form:‡‡‡ 
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††† It has to be noted that this model is a simplified version of the continuous time random walk model 
used to derive the fractional diffusion equation (28).  
‡‡‡ Factors (sin πα)/πα in the expressions for Dα, )(sQ

)

 and )(skα
)

 which cancel in the final expression 

for )(sP
)

 have been omitted here for clarity. 
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Here, we used the numeric inverse Laplace transformation algorithm developed by Zakian (61) 

for calculating P(t) from )(sP
)

. A value of b of 0.0001 Å was used throughout. In a first step, 

the model parameters γr and γrc were chosen so that for α = 1 the results for P(t) – and 
consequently for the instantaneous rate constant kinst(t) = -(dP(t)/dt)/P(t) – from Eq. (S3) were 
reproduced as closely as possible, see Figure S11. It can be seen that the results from Eq. (S3) 
indeed are well reproduced in all cases.§§§ The effect of subdiffusion was then studied by 
decreasing α, keeping all other parameters fixed. For testing the general validity of the 
conclusions summarized below, simulations were performed for more model parameters than 
shown here; in all cases, the same general behavior was observed. 

Figures S11a,d,g,j show that the time scale over which geminate recombination occurs is 
significantly stretched by subdiffusional behavior; recombination is expected to last over many 
orders of magnitude in time for small values of α. This is a first indication that the experimental 
results reported here, which show geminate recombination to occur over 9 orders of magnitude 
in time, may be related to subdiffusional behavior of the polypeptide backbone.  

An even more intriguing observation can be made when analyzing kinst(t) (Figs. S11b,e,h,k). For 
α = 1, the simulations shown here yield essentially the same result as already obtained from Eq. 
(S3), namely an initial power law t -0.5 which turns into (approximately) t -1.5 once diffusion has 
occurred over the length scale of σ. Most interestingly, upon decreasing α, i.e. increasingly 
subdiffusional behavior, the power for the initial decrease of kinst(t) increases, whereas that for 
longer times decreases. This is shown more clearly in Figures S11c,f,i,l, which directly show the 
powers at short and long times obtained from fits of kinst(t).  For  all  sets of parameters, at  α ≤ 
0.3, the two “branches” of kinst(t) merge into a single power law, kinst(t) ∝ t -n, with a power n of 
the order of 0.95 at α = 0.3, which is highly reminiscent of the experimentally observed power 
law kinst(t) ∝ t

 -0.94. Upon further decreasing α, kinst(t) retains essentially single-power law 
behavior, although the power decreases slightly from the value at α = 0.3. Thus, we conclude 
that our experimental observation, which is not compatible with normal diffusion, is fully 
compatible with subdiffusional behavior governed by <r

2(t)> ∝ tα with a ~ 0.3.  

3.2. Recombination of Tethered Radicals Undergoing Subdiffusive Motion 

The simulations for subdiffusive motion described in the previous section do not account for the 
tethering effect of the polypeptide backbone linking the two radicals. As in the case of normal 
diffusion, it is expected that the radicals eventually reach an equilibrium distribution, having 
spread over the full range of possible separation distances, which is limited by the finite length 
of the linking polypeptide backbone. Once this equilibrium distribution has been reached, the 
probability density of radical encounter, and hence the instantaneous rate constant for 
recombination, should not change any further in time, see Figures S4-S10.  

In the experiments, no leveling off of kinst(t) was found (Fig. 3), indicating that for N-PGK it 
takes more than 1 ms to reach polypeptide conformational equilibrium, even in the presence of 8 
M urea, when the protein is denatured. This is at least 3 orders of magnitude longer than 
predicted by simulations assuming normal diffusion of the polypeptide backbone with typical 
intra-peptide diffusion constants determined from quenching experiments on model peptides, 
which show a leveling off of kinst(t) on the time scale of 0.1-1 µs (Fig. S5).  

The tethering effect of the polypeptide backbone can be accounted for by assuming that the 
radicals move under the influence of a harmonic potential, see section 1.2 and Eq. (S4). 
Subdiffusive motion in such a potential can be described by the fractional Fokker-Planck 
equation for the probability density p(x,t) of finding a particle at position x at time t (62), which 
in  effect  is  a  combination  of  the  Smoluchowski  equation of normal diffusion in a harmonic 
potential, Eq. (S5), and the fractional diffusion equation describing anomalous diffusion, 
Eq.(S16) (here again written for the 1-dimensional case): 

                                                 
§§§ It is not clear whether the remaining slight deviations result from limitations of the model, an im-
perfect choice of the model parameters or the limiations of the numerical inverse Laplace transformation. 
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Figure S11. Simulations of geminate recombination of a radical pair created at an initial pair 
separation r0, and recombining at the encounter distance σ with a recombination rate coefficient 
krec, assuming subdiffusive relative motion of the radicals with a subdiffusive parameter, α, 
between 0.1 and 1. The relative diffusion coefficient D refers to the case α = 1, the choice of 
parameters for α < 1 is described in the text. Shown are the survival probability P(t) (a,d,g,j),  
 
 …continued on next page 
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Figure S11 (cont.).  
calculated from Eq. (S19), the instantaneous rate constant kinst(t) = -(dP(t)/dt)/P(t) (b,e,h,k), and 
the power of the time dependence of kinst(t) at short and long times, obtained from fits of  kinst(t) 
(c,f,i,l). The red dashed lines are the results for normal diffusion (α = 1), calculated analytically 
from Eq. (S3).   
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with the Riemann-Liouville operator α−1
0 tD  as defined in Eq. (S17). 

The solution of this equation for long times yields the expected Gaussian equilibrium 
distribution for a random coil polymer. However, the approach to equilibrium is significantly 
slower than in the case of normal diffusion. This is exemplified in Figure 20 of reference (59), 
which describes the spreading of particles within a harmonic potential. In the case of normal 
diffusion, the transition from the free diffusion behavior at short times to the equilibrium 
distribution occurs within one magnitude of time, see also Figure S5 above. For subdiffusive 
motion, this transition is much slower, taking 4 orders of magnitude of time for α = 0.5 (Fig. 20 
of reference (59)). This is expected to contribute to the fact that no leveling off of kinst(t) is 
observed in our experimental data even at the longest time scale (1 ms). 

In summary, we conclude that our experimental observation, i.e. a uniform power law decay of 
the instantaneous rate constant for geminate recombination of thiyl radicals bound to a 
polypeptide or protein backbone, kinst(t) ~ t -0.94, over 9 order of magnitude in time, is not 
compatible with normal diffusional behavior of the polypeptide backbone. On the other hand, 
intraprotein subdiffusion, modeled by a continuous time random walk with a wide waiting time 
distribution, predicts the observed behavior perfectly well. 
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