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I. Materials. A. Synthesis.The three mesoporous materials studied in
this work are hexagonal-ordered mesoporous silicas.
MCM-41 (Mobil Crystalline Material 41) (1) is a model ma-

terial: it presents independent cylindrical pores that are hexag-
onally ordered and a narrow pore-size distribution. For our
study, we synthesized an MCM-41 formed from the structuring
agent octadecyltrimethyl ammonium bromide (C18NMe3Br) in
basic conditions at 115 °C for 24 h. The protocol used is detailed
in the text (2).
SBA-15 (Santa Barbara Amorphous 15) (3) also has cylindrical

pores in hexagonal arrangement, but contrary to MCM-41, these
mesopores can be interconnected by a secondary pore network.
According to the synthesis temperature, we are able to control the
formation of this secondary pore network. To study a SBA-15
close to a model material, we chose a synthesis temperature of
60 °C, which prevents the secondary network of micropores from
expanding and creating interconnections between pores (4). The
SBA-15 studied was structured with a triblock poly(ethylene
oxide)-poly(propylene oxide)-poly(ethylene oxide) copolymer
(EO20PO70EO20) under acidic medium at 60 °C for 24 h. The
protocol is detailed in ref. 4.
The third material studied in this work is an HMS (Hexagonal

Mesoporous Silica) (5). It shows a principle hexagonal pore net-
work that can randomly be connected in a few locations. There-
fore, this material is a bit less ordered than MCM-41. It was pre-
pared with CN16H2 as the structuring agent, with a ratio EtOH/
H2O = 0.19 at Tamb for 24 h. The synthesis protocol is described
in the text (6).
The three mesoporous silicas were silanized by grafting chlor-

odimethyloctylsilane. The reaction was carried out in anhydrous
refluxing toluene containing pyridine under nitrogen for 15 h at
120 °C. The functionalization protocol applied is explained in ref. 7.
B. Materials characteristics. The three ordered mesoporous silicas
before and after silanization were characterized by nitrogen
adsorption at 77 K with a Micromeritics ASAP 2000 apparatus.
The isotherms are presented in Fig. S1.
Table S1 summarizes the textural properties of the parent and

graftedmaterials determined from the nitrogen sorption isotherms.
The Broekhoff–de Boer method (BdB) was chosen to calculate
the pore radius of the parent materials (8). This method was,
indeed, shown to be the most appropriate to determine the pore
size of siliceous materials (9). The as-synthesized MCM-41 has a
Brunauer–Emmett–Teller (BET) surface area of 847 m2/g and a
BdB pore radius of 2.07 nm. The as-synthesized SBA-15 presents
a BET surface area of 702 m2/g and a BdB pore radius of 3.15 nm.
The as-synthesized HMS presents a BET surface area of 935 m2/g
and a BdB pore radius of 2.24 nm (Table S1).
To evaluate the pore size of the grafted materials, we calculate

two pore radii using the BdB method and the Barret–Joyner–
Halenda method, which is one of the most used methods (10).
These methods provide upper and lower bounds of the pore size
for the silanized materials. For our study, we took the mean of
these two radii, Rads.
The values of the intrusion and extrusion pressures of water in

the grafted materials measured in our experiments in quasistatic
conditions (that is, with text = 10 s) are reported in Table S2.

II. Influence of a Wall Defect on the Nucleus Energy.We first consider
a localized bump in the form of a half-sphere of radius Rdef on the
wall of the cylindrical pore (Fig. S2). The defect lowers the en-
ergy of a vapor nucleus by increasing the area of the hydrophobic

surface compared with the pore wall and by decreasing the nu-
cleus volume. The classical energy barrier is

ΔΩ ¼ PLK1ðθÞR3
p þ γlυK2ðθÞR2

p −ΔΩdef

and

ΔΩdef ¼ ðγsl − γsυÞ×
�
Adef −Awall

�þ PLVdef ;

where Adef is the area of the sphere portion inside the cylinder,
Awall is the area of the sphere intersection with the wall, Vdef is
the portion of the sphere volume inside the cylinder, and PL =
Pext is the water pressure at extrusion.
Clearly, Adef < 2πR2

def and Awall > πR2
def , and therefore,

Adef −Awall < πR2
def and Vdef < 2πR3

def=3. We know the value of
γsl − γsυ from the intrusion pressure (Eq. 1): (γsl − γsυ) = RpPint/2.
We get

ΔΩdef <
Pint

2
πR2

defRp þ 2Pext

3
R3
def :

With Rdef = Rp, we get ΔΩ > 80 kBT for the MCM-41, ΔΩ > 130
kBT for the SBA-15, and ΔΩ > 110 kBT for the HMS at T= 50 °C.
The value needed for the standard model of nucleation is ΔΩ= ln
(textL/bτ)kBT ∼ 50 kBT (changing the ratio textL/bτ by a factor 10
changes ΔΩ by only 2.3 kBT). Thus, even such a large wall defect
is far from being able to provide nucleation.
We then consider a large constriction in the form of a cylinder

of radius Rdef. By replacing Rp with Rdef in Eq. 4, one can calculate
the Rdef value needed to provide the extrusion pressure and
then, calculate self-consistently the intrusion pressure Pint(Rdef)
needed to force water in this narrow portion of cylinder. For
instance, at 50 °C, one finds Rdef = 0.78 nm for MCM-41 leading to
Pint(Rdef) = 760 bars; in SBA-15, Rdef = 0.89 nm for leading to
Pint(Rdef) = 740 bars, and in HMS, Rdef = 0.79 nm and Pint(Rdef) =
726 bars. These pressures are never reached in the experiment.

III. Nucleation Theory in a Cylinder with Line Tension. The nucleation
barrier that controls the formation of a bubble in a cylindrical
pore corresponds to the saddle point of the grand canonical
potential landscape that the system has to cross on its way from
the liquid to the vapor phase. Because the saddle point is an
extremum of the grand canonical potential, it corresponds to an
equilibrium (but unstable) state. A simple way to calculate the
nucleation barrier is, thus, to generate a path of equilibrium states
that bridges the liquid and vapor phases. The barrier corresponds
to the maximum of the grand canonical potential along this path.
Getting equilibrium states for a bubble in a cylinder with line
tension is a nonstandard task, and approximate treatments have
been done in a previous study (11). The path used to compute the
barrier was generated without line tension, and the line tension
contribution was simply added to the grand canonical potential
a posteriori by computing the contact line length. This result
adds a term τK3(θ)Rp to the critical nucleus energy, with K3(θ)Rp
the perimeter of the nucleus contact line calculated without line
tension. This approximate scheme is Eq. 6. The values of the
functions K1, K2, and K3 calculated in ref. 11 are reproduced
hereafter (Table S3).
This procedure is expected to overestimate the nucleation

barrier, because the path does not strictly cross the saddle point.
To test the validity of this approach, we computed the path
corresponding to the equilibrium shapes with line tension using
a simple relaxation method. For each value of the bubble inter-
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nal volume V, a triangulated mesh is generated initially as
shown in Fig. S3, and an iterative procedure is applied to get the
equilibrium shape.
For a given step, the local curvature vector is computed for each

vertex ri using the equation (12)

K ¼ 1
2Ai

X
j∈ni

�
cot αij þ cot βij

��
ri − rj

�
;

where ni represents the set of neighboring sites (connected to
site i by a link), and αij and βij are the two angles defined in Fig.
S3. Ai is the area attributed to site i: it is computed by summing
one-third of the area of the three triangles containing site i. The
local curvature is obtained as

cðriÞ ¼ − kKk ifK:n̂ > 0
þkKk otherwise

where n̂ is the normal vector in ri pointing to the external me-
dium. A sphere shall, thus, have a negative curvature with these
conventions.
For a vertex in contact with the cylinder, the curvature of the

contact line is computed aswell by a finite difference of the tangential
vector (leading directly to the curvature times the normal vector).

The forces caused by the surface and line tensions can thus be
computed easily at each vertex from the knowledge of the normal
vectors and the local curvatures as well as the force caused by the
internal pressure. The vertices are then moved with a displace-
ment proportional to the local forces (overdamped dynamics).
The internal pressure of the drop is adjusted at each step to fix the
internal volume V of the bubble. The procedure is repeated until
a convergence of the grand canonical potential of the bubble is
reached with a relative accuracy better than 10−6.
The path corresponds to bubbles with growing volumes V with

a maximum volume V ¼ 4:4R3
p, where a morphological transi-

tion to an axisymmetric bubble with lower energy occurs (11).
The variation of ΔΩ with V is plotted in Fig. 4 for various values
of the liquid pressure PL. The nucleation kernel corresponds to
the maximum of these curves. Quite interestingly, most of the
time, it corresponds to V ¼ 4:4R3

p. Thanks to this procedure, we
could generate a path of equilibrium shapes accounting for the
line tension (Fig. 4) and compare the energy barrier with the
approximate scheme mentioned above (Fig. 6). The computations
were done for the reduced line tension τ* = τ/γlvRp = ±0.1. The
agreement between the approximate estimation (11) and the
present work is impressive. Although the approximate theory
overestimates the nucleation barrier slightly, as expected, the
difference is, in general, barely visible.
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Fig. S1. Nitrogen adsorption–desorption isotherms for three both grafted (closed symbols) and parent (open symbols) mesoporous silicas MCM-41, SBA-15,
and HMS. The surface functionalization is performed with chlorodimethyloctylsilane as grafting agent.
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Fig. S2. (Left) Localized defect. (Right) Cylindrical pore constriction.
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Fig. S3. (Left) Example of triangulated mesh used for the computation. The lower vertices are in contact with the cylinder. (Right) Angles used for curvature
computation.
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Table S1. Textural properties of the parent and grafted materials
determined from nitrogen sorption analysis

MCM-41 SBA-15 HMS

Parent materials
SBET (m2/g) 847 702 935
Vp (mL/g) 0.79 0.71 1.06
RBdB (nm) 2.07 3.15 2.24

C8-grafted materials
SBET (m2/g) 495 234 726
Vp (mL/g) 0.33 0.29 0.44
RBJH (nm) 1.25 1.91 1.44
RBdB (nm) 1.43 2.40 1.64
Rads (nm) 1.34 2.16 1.54

Table S2. Mean intrusion/extrusion pressures (in MPa) measured
for quasistatic cycles (text = 10 s)

T (°C)

Intrusion pressure Extrusion pressure

MCM-41 SBA-15 HMS MCM-41 SBA-15 HMS

20 44.1 11.6
30 44.1 35.2 14.1 7.1
40 43.7 35.3 16.1 9.2
50 43.2 29.1 35.3 17.8 6.0 10.9
60 42.6 29.0 35.2 19.2 6.9 12.7
70 28.9 34.9 8.0 14.0
80 28.8 9.1

Table S3. Functions appearing in Eqs. 4 and 6 as tabulated in ref. 1

θ (°)

95 100 105 110 115 120 125 130

K1 4.06 4.11 4.17 4.22 4.27 4.28 4.25 4.18
K2 6.16 5.46 4.73 3.97 3.19 2.42 1.70 1.02
K3 11.85 12.00 12.16 12.28 12.38 12.43 12.46 12.48
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