Supporting Information

Yang et al. 10.1073/pnas.1213159109

Fig. S1. Dependence of CH₄ formation on partial pressure of CO₂. Methane production is shown under different partial pressure of CO₂ catalyzed by α -70^{Ala}/ α -195^{Gln} MoFe protein. The concentration of MoFe protein was 0.5 mg/mL, and Fe protein was 3 mg/mL. The reactions were incubated at 30 °C for 20 min. The data were fitt to the Michaelis–Menten equation, yielding V_{max} of 21 nmol CH₄/nmol MoFe protein and K_m of 0.23 atm of CO₂.

Fig. 52. Dependence of CH₄ formation on concentration of HCO_3^- . The amount of CH₄ formed as a function of the concentration of HCO_3^- is shown for the α -70^{Ala}/ α -195^{Gln} MoFe protein. The assay contained 3 mg/mL Fe protein and 0.5 mg/mL MoFe protein. The assay was at 30 °C for 20 min. The data were fit to the Michaelis–Menten equation, yielding V_{max} of 14 nmol CH₄/nmol MoFe protein and K_m of 16 mM HCO₃⁻.

Fig. S3. GC-MS analysis of methane. A portion of the gas mixture of an assay with α -70^{Ala}/ α -195^{GIn} MoFe protein and CO₂ was separated by gas chromatography, with detection by mass spectrometry. H¹²CO₃⁻ (*Upper*) or H¹³CO₃⁻ (*Lower*) were used as substrate. The peak eluting at 1.55 min was analyzed for molecular ion peak of ¹²CH₄ or ¹³CH₄ with a mass over charge ratio (*m*/z) of 16 or 17, as indicated.

Fig. 54. Effect of hemoglobin on CH_4 formation. The formation of CH_4 for the α -70^{Ala}/ α -195^{GIn} MoFe protein is shown as a function of time either without (\blacksquare) or with 0.3 mg/mL hemoglobin (\Box). The partial pressure of CO_2 was 0.45 atm, the concentration of MoFe protein was 0.5 mg/mL, and Fe protein was 3 mg/mL. The reactions were conducted at 30 °C.

DN A C

Fig. S5. GC-MS analysis of propylene. A portion of the gas mixture of an assay with α -70^{Ala}/ α -195^{GIn} MoFe protein with CO₂ and acetylene was separated by gas chromatography, with detection by mass spectrometry. H¹²CO₃⁻ (*Upper*) or H¹³CO₃⁻ (*Lower*) and ¹²C₂H₂ were used as substrates. The peak eluting around 9.4 min was analyzed for molecular ion peak of ¹²C₃H₆ or ¹³CH₃-¹²CH=¹²CH₂ with a mass over charge ratio (*m*/*z*) of 42 or 43, as indicated.

DNAS PNAS