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SI Methods
S1. Construction of the Surge Index.The selection criteria for the six
tide gauges used in the construction of the surge index are
presented in the main text. Here we summarize the steps involved
in our calculation of the surge index.

i) For each station we do the following:
a) Apply a 24-h smoothing to the hourly series, thus obtain-

ing a moving average daily average sea-level series. Gaps
shorter than 3 h are in-filled by linear interpolation.

b) Calculate the squared day-to-day differences from this
daily sea-level series.

c) Down-sample this series to a daily surge series, using daily
block maxima.

d) Remove the annual cycle by division. The different tide-
gauge locations have different sensitivities, due to local ef-
fects such as bathymetry, and normalizing by the seasonal
cycle brings the records to a common reference. The back-
ground seasonal cycle is determined from the second per-
centile of data within a moving 21-d-wide seasonal slice.
The estimated seasonal cycle is smoothed using a 180-d-
long robust loess filter with periodic boundary conditions.

e) Decluster the record. Single storm events may cause broad
peaks that last several days. We therefore remove samples
that are smaller than the local 3-d maximum value.

ii) Combine the six deseasonalized surge records into a single
record of daily maximum values. We allow a maximum of
one station missing when calculating the maximum value.
Declustering (step i, e) is ignored on the rare dates, when
it would have removed data from all six stations.

iii) Rescale the final surge index containing the record of daily
maximal surge values to have median = 1.

The conclusions of this paper are insensitive to minor changes in
the procedure. However, the justification for our further analysis
using the generalized extreme value distribution hinges on the
series being approximately stationary on subannual scales. There-
fore, the performance of step i, d is important. We have therefore
verified that step i, d removes the kink in the distribution at fre-
quencies corresponding to annual return periods.
Steps i, a and i, b act to remove the tidal signal and the trend.

The remaining signal is completely dominated by nontidal com-
ponents and primarily wind-driven changes in sea level. This can be
easily verified as steps i, a and i, b can be combined into a simple
finite impulse response filter and the resulting frequency response
can be examined. As an example, for Mayport the modeled hourly
tidal signal [from National Oceanic and Atmospheric Adminis-
tration (NOAA)] has a SD of 0.50 m; applying step i, a reduces this
to 0.10 m; and applying step i, b reduces this to 0.01 m. Finally, we
have repeated the entire analysis but explicitly remove the tidal
signal before step i, a and obtain near identical results.
There are unfortunately a few gaps in the tide-gauge records,

and some of these gaps could have been caused by extreme
weather. Here we compare the tide-gauge records with the Atlantic
Hurricane Database (HURDAT) to determine which gaps could
be caused by the passing of a storm. It is implausible that storms
passing close to tide gauges were not well documented. We have
chosen a few simple criteria to screen for gaps that might be
related to the passing of a storm:

The data gap start must overlap the timing of the storms
making landfall within a ±24-h margin.

The storm must have been within 250 km of the tide gauge at
the onset of the gap.
The start of the storm must precede the onset of the data gap
(allowing for a 6-h slack).

From Table S1 (and Fig. S2) we see that by these criteria only
eight data gaps can possibly be related to the passing of a storm.
These gaps in the tide-gauge records quite likely correspond to
some large storm surges that are missing in the surge index record.
We have therefore made a sensitivity test where we set the surge
index at the “gap-start” dates manually to have the same magnitude
as Hurricane Katrina 2005. Our results are robust to this test.

S2. Events with the Largest Surge Index. In Table S2 we show the
surge index of the 50 greatest events. A surge will generally also
lead to a secondary peak the following day as sea level returns
toward the background level. For this reason dates are not exact.
Secondary peaks within 4 d of larger peaks are excluded from this
list as they are considered to be the same event. In Table S2 we
have also calculated accumulated cyclone energy (ACE) and US-
ACE over the week centered on the date shown.We caution against
comparing the relative rank of individual events. The surge index
ranking reflects the impact at the specific tide-gauge locations and
therefore should not be interpreted as a storm ranking. The pur-
pose of this list is to demonstrate that the surge index truly captures
cyclone activity, rather than providing a storm severity ranking.
A few events outside the hurricane season cannot be attributed

to tropical cyclones. Several of these events, however, show up in
other records of extreme weather; e.g., the large March 13, 1993
event is commonly known as the 1993 superstorm (1). NOAA has
an extensive record of this event.

S3. GEV Distribution Fitting. The general method of fitting a dis-
tribution (f), with parameters (m), to a series (x) involves maxi-
mizing the likelihood function

LðmÞ ¼ ∏
i
fm ðxiÞ; [S1]

where i is an index into the series x. In practice, this is usually
done by minimizing −log(L). The method can be easily extended
to nonstationary distributions by having m vary with time (i). In
this study, we achieve this by letting m be dependent on global
temperature. The calculation of L can easily be parallelized and
for some distribution functions it may be advantageous to per-
form this calculation on a graphical processing unit.
The confidence intervals of the model parameters are given by

the likelihood function. We sample the parameter space according
to the likelihood density, usingMarkov chainMonteCarlo (MCMC)
using the Metropolis–Hastings algorithm (2). Regions of the
parameter space that are likely will be sampled with a high
density whereas less likely regions will be sampled less densely.
From the percentiles of the sampling density we determine the
confidence intervals. In this study we denote the median of the
likelihood distribution as the “best guess” that is more robust
than using the maximum-likelihood model.
We verify convergence of the MCMC solutions by manual

inspection of the accepted models and their autocorrelation
structure. In this study, our likelihood functions are very cheap
to calculate, and we can afford to make the MCMC runs much
longer than is strictly necessary. We speed up convergence, by
taking random steps in a linearly transformedmodel space chosen
on the basis of a principal component analysis (PCA) of the
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accepted models from an initial shorter MCMC run. We observe
that the burn-in is usually confined to the shorter initial MCMC
run, and that the transformed steps almost always gives near
optimal rejection rates.
Under certain conditions the central limit theorem states that

the sum of a set of independent random variables will approach a
normal distribution in the limit of infinitely large sets. Analogously,
the distribution of block maxima approaches the generalized
extreme value (GEV) distribution as the blocks get larger (3).
For that reason we expect that block maxima of the surge index

should follow a GEV distribution. The GEV distribution, used in
this study, can be described by
where μ, σ, and k are the location, scale, and shape parameters,
respectively. In the MCMC inference of the GEV model we use
the conventional uniform priors on μ, log(σ), and k.
We are interested in the return period of large and rare events.

We find that the surge index maxima of 7-d blocks can be ac-
curately modeled by the GEV distribution over a wide range of
magnitudes (Fig. 3). Sensitivity tests show that our results are not
sensitive to larger block sizes. TheGEVdistribution is flexible and
combines three simpler types of distributions commonly used to

model block maxima: the Weibull, Frechet, and Gumbel dis-
tributions. The flexibility lets the data decide which distribution is
appropriate.
It is sometimes argued (e.g., ref. 3) that taking block maxima

is a wasteful method to infer statistics of extreme events. The
reasoning is that there may be a small chance that two very large
events are inside the same block and that taking block maxima
could be discarding one of the already rare large events. The
peaks-over-threshold (POT) method is the usual proposed al-
ternative, where a distribution is fitted to all events that are

above a certain threshold. The advantage is that no large events
are discarded. The drawback of the POT approach is that return
periods can be calculated only if the frequency of threshold
crossing is known. The threshold return period can be estimated
using empirical cumulative distribution. However, this empirical
estimate assumes stationarity and the POT method is hence ill-
suited for nonstationary series. For that reason we use exclu-
sively the GEV distribution. However, our conclusions are in-
sensitive to different block sizes and we get compatible results
using POT analysis; we conclude that extreme event wastage is
not an issue.
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Fig. S1. Map showing locations of tide gauges used in the construction of the surge index.
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Fig. S2. Tracks of storms (blue line) that likely are the cause of gaps in the tide-gauge records. Red-yellow dots indicate wind speed at 6-h intervals; green
shows tide-gauge location. White circles indicate when the tide gauge has missing data.

Table S1. Tide-gauge data gaps that coincide with storm landfall

Tide gauge Gap start Wind, kt Distance, km Storm name

Key West, FL Dec. 1, 1925; 07:00 65 158 Not named
Charleston, SC Aug. 12, 1940; 07:00 70 77 Not named
Mayport, FL June 24, 1945; 03:00 95 118 Not named
Mayport, FL Aug. 13, 2004; 06:00 45 128 Bonnie*
Pensacola, FL Aug. 31, 1950; 14:00 83 63 Baker
Pensacola, FL Sept. 13, 1979; 17:00 115 119 Frederic
Pensacola, FL Sept. 16, 2004; 18:00 115 60 Ivan
Galveston, Pier 21 Sept. 13, 2008; 15:00 95 8 Ike

List of HURDAT storms that coincide with data gaps in the tide-gauge records (see text for selection criteria).
“Gap start” shows the date of the first missing sample. “Wind” shows the maximum wind speed in the 24-h days
preceding the gap. “Distance” refers to the closest distance to tide gauge in the 24 h centered on the gap start.
*Tropical storm Bonnie had similar timing to hurricane Charley and both could be responsible for the tide-
gauge outage.
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Table S2. 50 greatest events

Rank Event date Candidate storm (category) Surge index ACE US-ACE Wind, kt

1 Sept. 20, 1926 “Great Miami hurricane” (4) 283 422,098 228,174 125
2 July 25, 1934 Not named (1) 153 39,450 39,450 65
3 Sept. 19, 1947 Not named (5) 139 223,806 223,806 130
4 Sept. 10, 1961 Carla (5) 114 588,267 312,007 125
5 Aug. 30, 2005 Katrina (5) 113 189,274 167,424 110
6 July 10, 2005 Dennis (4) 107 207,799 188,024 120
7 Sept. 12, 2008 Ike (4) 104 146,499 143,599 100
8 Sept. 10, 1965 Betsy (4) 94 169,699 169,699 135
9 Sept. 1, 1932 Not named (1) 89 172,324 65,775 70
10 June 28, 1957 Audrey (4) 86 79,474 79,474 125
11 Sept. 27, 1998 Georges (4) 85 463,173 155,699 95
12 Sept. 1, 2008 Gustav (4) 70 326,423 300,849 125
13 Oct. 6, 1995 Opal (4) 59 180,099 91,975 110
14 Aug. 5, 1940 Not named (1) 57 117,449 117,449 70
15 Aug. 18, 1969 Camille (5) 57 362,419 217,996 165
16 Aug. 13, 1932 Not named (4) 55 64,600 64,600 125
17 Oct. 25, 2005 Wilma (5) 55 190,674 161,224 110
18 July 15, 2003 Claudette (1) 55 81,050 56,875 75
19 Oct. 4, 1964 Hilda (4) 53 166,994 166,994 83
20 Sept. 15, 2004 Ivan (5) 53 406,723 364,298 105
21 Aug. 17, 1983 Alicia (3) 52 68,500 68,500 100
22 Aug. 31, 1942 Not named (3) 49 162,324 93,275 70
23 Aug. 26, 1926 Not named (3) 48 110,974 110,974 95
24 Sept. 27, 2002 Isidore (3) 47 180,174 180,174 110
25 8-Sep-1974 Carmen (4) 47 168,899 124,474 120
26 Sept. 12, 1979 Frederic (4) 42 272,524 134,274 115
27 Sept. 25, 1941 Not named (1) 40 229,774 57,725 70
28 April 8, 1938 39
29 Sept. 19, 1928 Not named (5) 39 152,974 152,974 140
30 Feb. 27, 1984 39
31 Sept. 30, 1959 Gracie (4) 36 281,526 104,798 96
32 Aug. 9, 1980 Allen (5) 36 345,148 345,148 100
33 Sept. 24, 2005 Rita (5) 35 253,274 222,699 100
34 March 14, 1993 35
35 Sept. 11, 1964 Dora (3) 35 307,606 121,637 83
36 Oct. 28, 1985 Juan (1) 34 79,850 79,850 65
37 June 12, 2005 Arlene (0) 34 31,175 31,175 50
38 Feb. 25, 1965 33
39 Sept. 2, 1985 Elena (3) 33 145,274 145,274 100
40 Aug. 3, 1933 Not named (1) 31 63,500 63,500 70
41 July 6, 1933 Not named (2) 31 118,524 70
42 July 30, 1995 Erin (1) 30 65,150 65,150 80
43 Sept. 5, 1979 David (5) 29 206,774 158,549 150
44 Sept. 22, 1948 Not named (3) 29 143,824 143,824 90
45 Oct. 19, 1944 Not named (3) 29 124,557 124,557 58
46 Oct. 5, 1949 Not named (3) 28 75,853 75,853 112
47 Dec. 7, 1969 28
48 July 24, 1933 Not named (0) 27 69,000 69,000 40
49 Aug. 4, 1995 Erin (1) 26 68,925 68,925 80
50 Jan. 21, 1979 26

ACE and US-ACE are calculated over the week centered at the date shown. Wind shows the maximum landfalling wind speed.
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