

4)	valized rpm per window		M	M			N,	AN		椾	<u>م</u>	N	M		UM	<u> </u>	 K27 densi H3 densit
	U01	0.0e+00		1	5.0e+07	X chi	omoso	1 me base po	.0e+08 sition	E.	- 11		2	1.56+	-08		
21	P/V# Start End			L Length	Length L Alignabil		I Pron	LINE I P	P/V# I S		art I I		End I Length		ath 1	Alignability	Pron.LINE
3)	peak1	ak1 5300000 79000		0 260000	00 0	0.8491		91	neaks		63750000 7		100000 11		50000	0.7509	0 3333
	vallev1	7900000	845000	55000	0000 0.419		0.49	59	2 valley8		75100000 8		0000000		00000	0716	0.4883
	peak2	eak2 8450000 14000		0 555000		0.8389		51	neak9		8000000		85500000		00000	0.8472	0 3033
	vallev2	llev2 14000000 15750000		0 175000		.7439	0.49	86 .	vallavg		85500000 80		350000 3		50000	0.6877	0.4864
	peak3	ak3 15750000 23250000		0 750000		.7706	0.37	12 0	peak10		89350000 111		000000 216		50000	0.7952	0 363
	valley3	23250000	3250000 33250000		0 0	0.0996	0.5	16 va	vallev10		111000000 129		750000 14		50000	0.6394	0.4429
	peak4	33250000	3675000	0 350000	0 0	.7468	0.25	21 0	eak11	125750000		142250000		16500000		0.8274	0.2912
	valley4	36750000	3825000	0 150000	00	0.774		49 va	lev11 1	1422	250000 146		750000 4		1500000	0.4037	0.3341
	peak5	38250000	4075000	0 250000	0 0			47 D	ak12 146		750000 150		250000 3		500000	0.8092	0.3051
	valley5	v5 40750000 43750000		300000		0.7601	0.51	53 va	lev12	1502	0250000		55000000		50000	0.758	0.3905
	peak6 43750000		5100000	0 725000		.8333	0.28	71 0	eak13	155000000		161450000		6450000		0.8595	0.2256
	valley6	51000000	5350000	0 250000		0.2989		44 va	vallev13		161450000 16		2500000 1		50000	0.7712	0.4185
	peak7 53500000		6160000	810000	0 0	0.8128		63 D	eak14	1625	162500000		450000	3950000		0.8792	0.2065
	valley7	61600000	6375000	0 215000		0.7431	0.50	195 "				1			1		
_)	Figure 3 probe ID:		Ube1x	15L	8	зн	78L	Chic1	1	87L	R	nf12	11	6L	160	H 15	2L
	start		20224883	14720724	835802	55 78	014372	100537038	8699	86998950		101145921		46 1	5965860	0 1527499	93
	stop		20264898	14919689	837734	30 78	205725	100577585	8716	87167836		7238	116079262		5986758	6 1529316	86
	length		40015	198965	1931	75	191353	40547	547 16		413		204216		20898	1816	93
	% align		92	80	199625	85	74	92	7		94		74		8	2	75
		% LINE	5	55		30	54	15		51		7		56	2	7	56
	K27me3 (rpk)		513	185	1	110	95	638		101	101		574		36	8 1	13
	% cells w/2 dots		91	94		96	95	90		94	4 98		100		10	1 0	00
	BACPAC ID		G135- P65743A11	RP23- 204P18	RP23 351J	· 1 22	8P23- 267N5	G135- P66518D5	RP2 368	RP23- 368B24		G135- P605237C7		22	RP23- 133E13	RP23- 259M1	3

----ł 0.010 0.005 0.000 Xa Xi

Determination of XCI Using Allele-Specific RNA-seq

For gene *i*, let the number of allele-specific RNA-seq reads mapped to the inactivated/activated chromosomes be $n_{i,0}$ and $n_{i,1}$, and let $n_i \equiv n_{i,0} + n_{i,1}$. We first model $n_{i,0}$ by a binomial distribution:

$$p(n_{i,0}|n_i, p_i) = {\binom{n_i}{n_{i,0}}} p_i^{n_{i,0}} (1-p_i)^{n_i-n_{i,0}},$$

where p_i indicates the expected proportion of reads from the inactivated chromosome. We further assume that p_i follows a mixture of two beta distributions:

$$f(p_i) = \pi_{i0} f_0(p_i; \alpha_0, \beta_0) + (1 - \pi_{i0}) f_1(p_i; \alpha_1, \beta_1),$$
(1)

where $f_0(p_i; \alpha_0, \beta_0)$ and $f_1(p_i; \alpha_1, \beta_1)$ are two beta distributions for inactivated genes and genes that escape inactivation, respectively, and α_0 , β_0 , α_1 , and β_1 are the unknown parameters to be estimated. Known inactivated genes, such as Rnf12, has p_i approaching 0. Therefore, in general, p_i 's from $f_0(p_i; \alpha_0, \beta_0)$ are small (e...g, < 0.01), reflecting possible sequencing errors. π_{i0} is the prior probability that gene *i* is inactivated. We integrate out p_i to obtain the posterior distribution of $n_{i,0}$ in terms of α_0 , β_0 , α_1 , and β_1 .

$$p(n_{i,0}|n_i,\alpha_0,\beta_0,\alpha_1,\beta_1) = \int p(n_{i,0}|n_i,p_i)f(p_i)dp_i = \pi_{i0}h_{i0} + (1-\pi_{i0})h_{i1}$$

where h_{i0} and h_{i1} are two beta-binomial distributions

$$h_{i0} = \binom{n_i}{n_{i,0}} \frac{B(n_{i,0} + \alpha_0, n_i - n_{i,0} + \beta_0)}{B(\alpha_0, \beta_0)}$$
$$h_{i1} = \binom{n_i}{n_{i,0}} \frac{B(n_{i,0} + \alpha_1, n_i - n_{i,0} + \beta_1)}{B(\alpha_1, \beta_1)}$$

and $B(\alpha, \beta)$ is beta function with parameters α and β . Beta-binomial distribution is a generalization of binomial distribution to allow extra variance, which has been used to model RNA-seq data before [Pickrell et al., 2010]. In this study, the extra variability comes from the fact that each gene has its own proportion of reads escaping inactivation. For each read, we can obtain a base-calling quality score at the SNP location. We model the prior probability one gene escapes inactivation by a logistic regression with two predictors: the total number of escaping reads and the summation of quality scores of these reads (denoted by q_i):

$$\log\left(\frac{\pi_{i0}}{1-\pi_{i0}}\right) = b_0 + b_1 n_{i,0} + b_2 q_i,\tag{2}$$

where b_0 , b_1 , and b_2 are regression coefficients to be estimated.

Now we have finished the model setup and there are altogether seven parameters to be estimated: α_0 , α_1 , β_0 , β_1 , b_0 , b_1 , and b_2 . We estimated these parameters by Maximum Likelihood approach using Expectation-Maximization (EM) algorithm [Dempster et al., 1977]. For the robustness of the algorithm and based on the prior belief that most of genes are inactivated, we impose an extra restriction that $\pi_{i0} \geq$ 0.2. This is equivalent to adding a large penalty $\lambda I_{\pi_0<0.2}$ to the likelihood, where λ is an arbitrary large positive number and $I_{\pi_0<0.2}$ is an indicator function which equals to 1 if $\pi_0 < 0.2$ and 0 otherwise. To maximize this alternative likelihood, we simply maximize the original likelihood and set π_{i0} to be 0.2 if its estimate is smaller than 0.2. Our final results remain similar for any π_{i0} cutoff from 0.05 to 0.3. Given the parameter estimates from the EM algorithm, we can estimate the posterior probability that one gene is inactivated by

$$\hat{\tau}_{i0} = \frac{\hat{\pi}_{i0}\hat{h}_0}{\hat{\pi}_{i0}\hat{h}_{i0} + \hat{\pi}_{i1}\hat{h}_{i1}},$$

where the hat sign indicates the estimate of the corresponding parameter. We then assign one gene as activated or inactivated based on $\hat{\tau}_{i0}$. Note that $\hat{\tau}_{i0}$ can also be interpreted as local False Discovery Rate (FDR) [Efron et al., 2001]. If we claim one gene is activated when $\hat{\tau}_{i0} \leq \tau_C$, then the overall FDR is $\sum_i \hat{\tau}_{i0} I_{\hat{\tau}_{i0} \leq \tau_C} / \sum_i I_{\hat{\tau}_{i0} \leq \tau_C}$, where $I_{\hat{\tau}_{i0} \leq \tau_C}$ is an indicator function, which equals to 1 if $\hat{\tau}_{i0} \leq \tau_C$, and 0 otherwise.

References

[Dempster et al., 1977] Dempster, A., Laird, N., Rubin, D., et al., 1977. Maximum likelihood from incomplete data via the EM algorithm. *Journal of the Royal Statistical Society. Series B (Methodological)*, **39**(1):1–38.

- [Efron et al., 2001] Efron, B., Tibshirani, R., Storey, J., and Tusher, V., 2001. Empirical Bayes analysis of a microarray experiment. *Journal of the American Statistical Association*, 96(456):1151–1160.
- [Pickrell et al., 2010] Pickrell, J., Marioni, J., Pai, A., Degner, J., Engelhardt, B., Nkadori, E., Veyrieras, J., Stephens, M., Gilad, Y., and Pritchard, J., et al., 2010. Understanding mechanisms underlying human gene expression variation with RNA sequencing. *Nature*, 464(7289):768–772.