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 SUPPLEMENTAL MATERIAL 

 

Supplemental Methods 

Cell cultures 

HUVECs, bovine aortic ECs (BAECs), and human embryonic kidney 293 (HEK293) 

cells were cultured by standard methods1.  

Plasmid construction and luciferase assay 

The Luc-KLF2 reporter was constructed by inserting the full-length human KLF2 

3’UTR into pMIR-REPORT vector (Ambion). The FLAG-KLF2 plasmid was constructed by 

fused a CMV-driven FLAG tag with KLF2 cDNA (including 3’UTR). Luc-KLF2 (Luc-mut) 

and FLAG-KLF2(mut) with a mutated miR-92a binding site were created by using 

QuickChange site-directed mutagenesis (Stratagene, La Jolla, CA). The deletion of the 

miR-92a binding site in FLAG-KLF2(Δ) was constructed by two-step PCR2.  The miR-92a 

reporter (Luc-92a) contained a luciferase reporter and 2 copies of sequences complementary 

to miR-92a (Luc-2xmiR92a).  The reporter constructs were co-transfected with pre-92a or 

anti-92a (20 nM) into HEK293 cells or BAECs by use of lipofectamine 2000 (Invitrogen).  

Luciferase expression was measured by luciferase reporter and  β-galactosidase enzyme 

assays (Promega, Madison, WI).   
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Computational analysis for KLF2-regulated miRNAs 

  The transcriptional start sites (TSSs) of the selected miRNAs were obtained from 

miRStart database (http://mirstart.mbc.nctu.edu.tw/), which contains the predicted promoters 

of human miRNAs. The miRNA promoters were identified by the supports of several 

experimental datasets derived from TSS-relevant experiments, including CAGE tags, TSS 

Seq tags and ChIP-seq of H3K4me3 enrichment.  

JASPAR3 was utilized to identify the potential binding sites of KLF2 within the 

promoter regions (flanking -3000~+500 according to TSS) of the reported shear-regulated 

miRNAs. The position weighted matrix (PWM) of KLF4 was used to identify 

KLF2-regulated miRNAs since the binding motifs of KLF2 and KLF4 are highly similar. 

Immunoprecipitation (IP)-miR-induced silencing complex (miRISC)   

HUVECs were harvested with the lysis buffer containing 50 mM Tris, pH 7.5, 150 

mM NaCl, 0.1% NP-40, 1 mM EDTA, and 100 units/μl RNAse inhibitor.  The lysates were 

incubated with anti-Ago1 or Ago2 antibody (2 μg/mg protein) (Cell Signaling) at 4°C 

overnight and then protein A agarose beads (25 μl beads per ml) for 4 hr.  The beads were 

then spun down and the immunoprecipitated RNAs were extracted with Trizol reagent 

(Invitrogen).   

NO bioavailability assay 

The NO production from cells was detected as the accumulated nitrite/nitrate, the 
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stable breakdown product of NO, in cell culture media by using nitrate/nitrite florometric 

assay (Cayman Chemicals, Ann Arbor, MI).  HUVECs were transfected with pre-92a or 

control RNA and infected with Ad-KLF2 or Ad-GFP for 48 hr.  The DMEM in the absence 

of FBS and phenol red was then substituted and incubated further for 16 hr.  The 

conditioned medium was filtered through a 10 KD MW cut-off filter (Millipore) to remove 

ingredients that caused an interference of the fluorescence intensity.  Nitrate was first 

reduced to nitrite by nitrate reductase, and then the total nitrite concentration was determined 

by forming the fluorescent product with 2,3-Diaminonaphthalene (DAN).  The fluorescent 

readings were obtained using SpectraMax M5 Multi-Detection Reader (BD Biosciences, Palo 

Alto, CA) with excitation at 360 nm and emission at 430 nm.  The readings were normalized 

to the total cell number.  The NOx concentrations were then calculated according to an 

established calibration curve.   

Flow-induced vasodilation 

The animal experimental protocols were approved by the Institutional Animal Care and 

Use Committee of University of California, Riverside.  F-127 pluronic gel (Sigma) was used 

to deliver pre-92a into the carotid artery of 7- to 10-week old male C57BL6 mice4.  Five 

days after the local oligo delivery, animals were killed and the pluronic gel-coated vessels 

were isolated.  For the flow-induced vasodilation, the isolated mouse carotid arteries were 

mounted on 2 glass cannulae in a perfusion myograph chamber connected to the SoftEdge 
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Acquisiton Subsystem (Living Systems, Burlington, VT).  The vessel chamber was perfused 

with warmed physiological salt solution containing 130 mM NaCl, 10 mM HEPES, 6 mM 

glucose, 4 mM KCl, 4 mM NaHCO3, 1.8 mM CaCl2, 1.18 mM KH2PO4, 1.2 mM MgSO4, and 

0.025 mM EDTA, pH 7.4.   Images of carotid arteries were obtained by a video camera 

attached to a Nikon TS100 inverted microscope.  A video dimension analyzer (Living 

System) was used to measure the external diameter of arteries, and data were collected by use 

of BioPac MP100 hardware and Biopac AcqKnowledge software (BioPac, Goleta, CA).  

The arteries were maintained at an intraluminal pressure of 100 mmHg for the duration of the 

experiment, then equilibrated for 30 min before extraluminal administration of 1 μM 

phenylephrine (Sigma).  After maximal constriction, flow rate was increased to 400 μl/min, 

which corresponds to the physiological range in mouse carotid arteries5.  L-NAME (1 mM), 

acetylcholine (1 μM), and sodium nitroprusside (SNP) (1 μM) was applied.  The vessel 

diameter changes induced by flow were then recorded.   
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Supplemental Table 1: Flow-induced dilation of carotid arteries 

Diameter (μm) 
       Treatment            n* 

Control RNA Pre-92a 
Initial 9 306.0±7.1 298.3±6.9 

Constricted 9 274.3±7.6 251.9±9.9 
Δ constriction† 9  30.7±5.4  46.4±11.1 

Post-flow 9 285.9±8.6 257.1±9.3 
Δ dilation† 9  11.6±2.2   5.2±1.6 

Dilation ability‡ 9  43.7%±9.3%   11.9%±3.0%§ 

Control 
 

    
Initial 5 298.0±9.1 299.0±9.5 

Constricted 5 243.8±8.4 238.8±8.5 
Δ constriction† 5  34.8±5.0   38.4±12.4 

Post-flow 5 250.4±6.5 243.2±7.6 
Δ dilation† 5   6.8±2.2   5.4±2.0 

Dilation ability‡ 5   18.1%±5.5%§  15.6%±5.4% 

L-NAME 

    
Constricted 5 274.4±7.8 264.7±7.0 

Ach 5 289.1±8.6 263.0±9.6 Ach 
Δ dilation† 5  14.7±1.8  -1.7±6.5 

    
Constricted 5 254.9±9.0    252.0±6.7 

SNP 5 294.7±7.0 298.9±7.5 
 

SNP 
Δ dilation† 5  40.0±6.0 46.7±5.9 

* n denotes the number of animals 

† Δ: the diameter changes of the carotid arteries after the treatment.  

‡ Dilation ability: the diameter change of the flow-induced dilation compared to the diameter 

change of the PE-induced constriction.  

§ p < 0.05 pre-92a treated group vs. corresponding control group; L-NAME treated group vs. 

non-treated control group.   

Data are presented as mean±SEM.   
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Supplemental Table 2.  Transcription factors regulating KLF2 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

TF Regulation mode Shear regulated References 

MEF2A Activated yes 6-8 

MEF2C Activated yes 6-8 

BRG1 Unspecified unknown 9 

p300 Activated yes 10-13 

PCAF Activated Yes 11,13 

hnRNP D Activated Yes 11,13 

hnRNP U Activated Yes 11,13 

Nucleolin Activated Yes 14 

SP1 Activated yes 15 

Oct-3/4 Activated unknown 16-19 

SOX2 Activated unknown 16,17,20 



  7

 

Supplemental Table 3.  Transcription factors regulating the miR-17~92 cluster 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

TF Regulation mode Shear inducible References 

c-Myc Activated Inhibited 21,22 

E2F Activated Inhibited 23,24 

STAT3 Activated Inhibited 25,26 

cyclin D1 Activated Inhibited 27 

P53 Inhibited Activated 28,29 

RUNX1 Inhibited Inhibited 30 

ATF2 Predicted Inhibited 31 

CREB Predicted Activated 32 

PPARG Predicted Inhibited 33 

SP1 Predicted Activated 34 



  8

Supplemental Table 4. KLF2-targeted miRNAs   

 

    
 

 

 

 

 

 

 

 

 

 

 

Gene Host gene function Validated Reference 

hsa-miR-126 Egfl7 
Angiogenesis 

Anti-inflammation
Yes 35,36 

hsa-miR-30a C6orf155 angiogenesis predicted 36-38 

hsa-miR-483-5p IGF2 metabolism predicted 39 

hsa-miR-101-1 Intergenic Cell growth predicted 37,40 

hsa-miR-181d Intergenic differentiation predicted 37,41 

hsa-miR-15a DLEU2 apoptosis predicted 37,42 

hsa-miR-148a Intergenic Cell survival predicted 37,43 

hsa-miR-365-1 Intergenic unknown predicted 37 
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Supple Fig. 1.  HUVECs were exposed to a PS (12±4 dyn/cm2) or OS (0±4 dyn/cm2) for 8 hr and then 
lysed. Protein levels of Ago1 and Ago2 assessed by Western blot analysis with anti-Ago1 and anti-Ago2 
and normalized to that of α-tubulin. 

Supple Fig. 1
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Supple Fig. 2.  HUVECs were transfected with pre-92a (20 nM) and infected with Ad-mKLF2 
(without 3’UTR) (ref. 44) or Ad-GFP (10 MOI) for 48 hr.  The level of eNOS mRNA was assessed 
by qRT-PCR and the released NOx was measured by nitrate/nitrite florometric assay. 

Suppl. Fig. 2
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Supple Fig. 3.  HUVECs were exposed to a PS (12±4 dyn/cm2) or OS (0±4 dyn/cm2) for 24 hr and then 
lysed.  The amount of miRNAs were assessed by miRNA microarray.  The level of ECs exposed to OS, 
averaged from 3 experiments was normalized to that of cells exposed to PS.  

Supple Fig. 3
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