Molecular Analysis of Arp2/3 Complex Activation in Cells

Brian J. Galletta,[†] Anders E. Carlsson,[‡] and John A. Cooper^{†*}

[†]Department of Cell Biology and Physiology and [‡]Department of Physics, Washington University, Saint Louis, Missouri

Galletta et al.

Arp2/3 Activation in Cells

Submitted August 15, 2012, and accepted for publication October 11, 2012.

Correspondence: jcooper@wustl.edu

Supplementary Information

Figure S1. Histograms of the rates and durations of the linear phases of assembly and disassembly of Arc35 and Cap1 in wild-type, *las17* Δ *acidic myo5* Δ *acidic* and *las17* Δ *acidic myo5* Δ *acidic* cells. These plots were generated from the data in Figures 2 and 3.

Figure S2. Histograms of the rates and durations of the linear phases of assembly and disassembly of Arc35, Cap1 and Abp1 in wild type and *las17 dacidic* cells. These plots were generated from the data in Figure 4.

Figure S3. Histograms of the rates and durations of the linear phases of assembly and disassembly of Arc35, Cap1 and Abp1 in wild type and $myo3\Delta acidic myo5\Delta acidic$ cells. These plots were generated from the data in Figure 5.

Figure S4. Assembly of Arp2/3 complex as GFP-Arc35 (A-F), Capping protein as GFP-Cap1 (G-L) and F-actin as GFP-Abp1 (M-R) in wild type (blue) and *pan1* Δ *acidic* (red) cells. Data are from 3 segregants of each genotype. Panels as follows: (A, G, M) The number of molecules of the GFP-labeled protein per patch versus time. Plots were generated from data aligned at the maximal (peak) value for each patch and the mode of the distribution at each time point is presented. Error bars are ± standard error of the mode. (B, H, N) Histograms of the peak number of molecules per patch. (C, I, O) Histograms of the rates of assembly. (D, J, P) Histograms of the rates of disassembly. (E, K, Q) Histograms of the duration of the assembly phase. (F, L, R) Histograms of the duration of the disassembly phase. Strain numbers and numbers of patches analyzed were as follows. Wild type data are from Figures 2 and 3. Arc35-GFP: *pan1* Δ *acidic*, YJC7102-3, N = 121, 123. Cap1-GFP: *pan1* Δ *acidic*, YJC7024-6, N = 83, 82, 90. Abp1-GFP: *pan1* Δ *acidic*, YJC6958-60, N = 115, 103, 152. Cse4-GFP: YJC6725-6.

Figure S5. Histograms of the rates and durations of the linear phases of assembly and disassembly of Arc35, Cap1and Abp1 in wild type and *las17* Δ *acidic pan1* Δ *acidic* cells. These plots were generated from the data in Figure 6.

Figure S6. Histograms of the rates and durations of the linear phases of assembly and disassembly of Arc35, Cap1 and Abp1 in wild type and $myo3\Delta acidic myo5\Delta acidic pan1\Delta acidic cells$. These plots were generated from the data in Figure 7.

Figure S7. Quantitative analysis of actin patch motility in cells lacking the acidic Arp2/3-binding regions of Myo3, Myo5 and Pan1. Cells express Abp1-GFP. (A) MSD plots for wild-type (blue) and mutant patches (red) aligned at the start (left) or end (right) of their lifetimes. The curves on the left are truncated at the median lifetime. (B) Percentage of patches that leave the origin. Mean of values for three segregants is shown. (C) Average time at the origin, from the appearance of a patch until it moved away or disappeared. (D) Phase III movement only. For each patch, data prior to the time the patch traveled 200 nm were removed. Only patches that moved more than 200 nm from the origin were included. Wild type data are replotted from (23). Strain numbers and numbers of patches: $myo3\Delta acidic myo5\Delta acidic pan1\Delta acidic$, YJC7310-2, N = 68, 59, 109. Error bars are ± one standard error.

Figure S8. Localization of acidic domain mutants to patches. Representative micrographs of cells expressing GFP fusions of the Arp2/3 regulator mutants used in this study. GFP fusion proteins are expressed from their endogenous locus. (A) Las17 Δ acidic-GFP (YJC7440) (B) Myo3 Δ acidic-GFP (YJC7453) (C) Myo5 Δ acidic-GFP (YJC7458) (D) Pan1 Δ acidic-GFP (YJC7430). Scale bar = 5 µm.

Figure S9. A summary of the changes in actin patch composition and behavior in Arp2/3 regulator mutants reported in this study. (A) Number of Arp2/3 complexes, assayed by Arc35-GFP, vs. time. (B) Number of CP, assayed by Cap1-GFP, vs. time. (C) Amount of F-actin, assayed by the number of Abp1-GFP molecules, vs. time. (A-C) Aligned at peak number of molecules. (D, E) MSD plots of Abp1-GFP movement, aligned at the beginning of patch lifetimes (D) or the end of patch lifetime (E). Error bars have been removed for ease of viewing. Data in panel D and E are reproduced from our previous publication (1).

Table S1. Yeast strains used in this study.

Strain	Genotype	Source
BY4741	MATa his3∆1 leu2∆0 met15∆0 ura3∆0	(2)
YJC6494	MAT $lpha$ /MATa his3 ${}\Delta1$ /his3 ${}\Delta1$ leu2 ${}\Delta0$ /leu2 ${}\Delta0$ met15 ${}\Delta0$ /met15 ${}\Delta0$ ura3 ${}\Delta0$ /ura3 ${}\Delta0$	This study
YJC6718	MATa Abp1-GFP-SpHIS5 his3 ${}^{\Delta}$ 1 leu2 ${}^{\Delta}$ 0 met15 ${}^{\Delta}$ 0 ura3 ${}^{\Delta}$ 0	This study
YJC6719	MAT $lpha$ Abp1-GFP-SpHIS5 his3 ${}^{\Delta}$ 1 leu2 ${}^{\Delta}$ 0 met15 ${}^{\Delta}$ 0 ura3 ${}^{\Delta}$ 0	This study
YJC6720	MATa Abp1-GFP-SpHIS5 his3 ${}_{\Delta}$ 1 leu2 ${}_{\Delta}$ 0 met15 ${}_{\Delta}$ 0 ura3 ${}_{\Delta}$ 0	This study
YJC6721	MAT $lpha$ Abp1-GFP-SpHIS5 his3 ${}^{\Delta}$ 1 las17 ${}^{\Delta}$ acidic-CaURA3MX4 leu2 ${}^{\Delta}$ 0 met15 ${}^{\Delta}$ 0 ura3 ${}^{\Delta}$ 0	This study
YJC6722	MAT $lpha$ Abp1-GFP-SpHIS5 his3 ${}^{\Delta}$ 1 las17 ${}^{\Delta}$ acidic-CaURA3MX4 leu2 ${}^{\Delta}$ 0 met15 ${}^{\Delta}$ 0 ura3 ${}^{\Delta}$ 0	This study
YJC6723	MATa Abp1-GFP-SpHIS5 his3 ${}^{\Delta}$ 1 las17 ${}^{\Delta}$ acidic-CaURA3MX4 leu2 ${}^{\Delta}$ 0 met15 ${}^{\Delta}$ 0 ura3 ${}^{\Delta}$ 0	This study
YJC6725	MATa Cse4-GFP-SpHIS5 his3 ${}_{\Delta}$ 1 leu2 ${}_{\Delta}$ 0 met15 ${}_{\Delta}$ 0 ura3 ${}_{\Delta}$ 0	This study
YJC6726	MAT $lpha$ Cse4-GFP-SpHIS5 his3 ${}^{\Delta}$ 1 leu2 ${}^{\Delta}$ 0 met15 ${}^{\Delta}$ 0 ura3 ${}^{\Delta}$ 0	This study
YJC6756	MATa Arc35-GFP-SpHIS5 his3∆1 leu2∆0 met15∆0 ura3∆0	This study
YJC6757	MATa Arc35-GFP-SpHIS5 his3∆1 leu2∆0 met15∆0 ura3∆0	This study
YJC6758	MAT $lpha$ Arc35-GFP-SpHIS5 his3 ${}_{\Delta}$ 1 leu2 ${}_{\Delta}$ 0 met15 ${}_{\Delta}$ 0 ura3 ${}_{\Delta}$ 0	This study
YJC6759	MATa Arc35-GFP-SpHIS5 his3 ${}_{\Delta}$ 1 las17 ${}_{\Delta}$ acidic-CaURA3MX4 leu2 ${}_{\Delta}$ 0 met15 ${}_{\Delta}$ 0 ura3 ${}_{\Delta}$ 0	This study
YJC6760	MATa Arc35-GFP-SpHIS5 his3 ${}^{\Delta}$ 1 las17 ${}^{\Delta}$ acidic-CaURA3MX4 leu2 ${}^{\Delta}$ 0 met15 ${}^{\Delta}$ 0 ura3 ${}^{\Delta}$ 0	This study
YJC6761	MAT $lpha$ Arc35-GFP-SpHIS5 his3 ${}^{\Delta}$ 1 las17 ${}^{\Delta}$ acidic-CaURA3MX4 leu2 ${}^{\Delta}$ 0 met15 ${}^{\Delta}$ 0 ura3 ${}^{\Delta}$ 0	This study
YJC6804	MATa Cap1-GFP-SpHIS5 his3∆1 leu2∆0 met15∆0 ura3∆0	This study
YJC6805	MAT $lpha$ Cap1-GFP-SpHIS5 his3 ${}^{\Delta}$ 1 leu2 ${}^{\Delta}$ 0 met15 ${}^{\Delta}$ 0 ura3 ${}^{\Delta}$ 0	This study
YJC6806	MATa Cap1-GFP-SpHIS5 his3∆1 leu2∆0 met15∆0 ura3∆0	This study
YJC6807	MATa Cap1-GFP-SpHIS5 las17 ${\scriptstyle\Delta}$ acidic-CaURA3MX4 his3 ${\scriptstyle\Delta}$ 1 leu2 ${\scriptstyle\Delta}$ 0 met15 ${\scriptstyle\Delta}$ 0 ura3 ${\scriptstyle\Delta}$ 0	This study
YJC6808	MATa Cap1-GFP-SpHIS5 las17 ${\scriptstyle\Delta}$ acidic-CaURA3MX4 his3 ${\scriptstyle\Delta}$ 1 leu2 ${\scriptstyle\Delta}$ 0 met15 ${\scriptstyle\Delta}$ 0 ura3 ${\scriptstyle\Delta}$ 0	This study
YJC6809	MAT $lpha$ Cap1-GFP-SpHIS5 las17 ${\scriptscriptstyle \Delta}$ acidic-CaURA3MX4 his3 ${\scriptscriptstyle \Delta}$ 1 leu2 ${\scriptscriptstyle \Delta}$ 0 met15 ${\scriptscriptstyle \Delta}$ 0 ura3 ${\scriptscriptstyle \Delta}$ 0	This study
YJC6958	MATa Abp1-GFP-SpHIS5 his3 ${}_{\Delta}$ 1 leu2 ${}_{\Delta}$ 0 met15 ${}_{\Delta}$ 0 pan1 ${}_{\Delta}$ acidic-kanMX6 ura3 ${}_{\Delta}$ 0	This study
YJC6959	MATa Abp1-GFP-SpHIS5 his3 ${}_{\Delta}$ 1 leu2 ${}_{\Delta}$ 0 met15 ${}_{\Delta}$ 0 pan1 ${}_{\Delta}$ acidic-kanMX6 ura3 ${}_{\Delta}$ 0	This study
YJC6960	MAT $lpha$ Abp1-GFP-SpHIS5 his3 ${}\Delta$ 1 leu2 ${}\Delta$ 0 met15 ${}\Delta$ 0 pan1 ${}\Delta$ acidic-kanMX6 ura3 ${}\Delta$ 0	This study
YJC6961	MATa Abp1-GFP-SpHIS5 his3∆1 las17∆acidic-CaURA3MX4 leu2∆0 met15∆0 pan1∆acidic-kanMX6 ura3∆0	This study
YJC6962	MATa Abp1-GFP-SpHIS5 his3∆1 las17∆acidic-CaURA3MX4 leu2∆0 met15∆0 pan1∆acidic-kanMX6 ura3∆0	This study
YJC6963	MAT α Abp1-GFP-SpHIS5 his3∆1 las17∆acidic-CaURA3MX4 leu2∆0 met15∆0 pan1∆acidic-kanMX6 ura3∆0	This study
YJC7024	MATa Cap1-GFP-SpHIS5 his3 ${}_{\Delta}$ 1 leu2 ${}_{\Delta}$ 0 met15 ${}_{\Delta}$ 0 pan1 ${}_{\Delta}$ acidic-kanMX6 ura3 ${}_{\Delta}$ 0	This study
YJC7025	MATa Cap1-GFP-SpHIS5 his3 ${}\Delta 1$ leu2 ${}\Delta 0$ met15 ${}\Delta 0$ pan1 ${}\Delta$ acidic-kanMX6 ura3 ${}\Delta 0$	This study
YJC7026	MAT $lpha$ Cap1-GFP-SpHIS5 his3 ${}^{\Delta}$ 1 leu2 ${}^{\Delta}$ 0 met15 ${}^{\Delta}$ 0 pan1 ${}^{\Delta}$ acidic-kanMX6 ura3 ${}^{\Delta}$ 0	This study
YJC7027	MATa Cap1-GFP-SpHIS5 his3∆1 las17∆acidic-CaURA3MX4 leu2∆0 met15∆0 pan1∆acidic-kanMX6 ura3∆0	This study
YJC7028	MATa Cap1-GFP-SpHIS5 his3∆1 las17∆acidic-CaURA3MX4 leu2∆0 met15∆0 pan1∆acidic-kanMX6 ura3∆0	This study
YJC7029	MAT α Cap1-GFP-SpHIS5 his3 Δ 1 las17 Δ acidic-CaURA3MX4 leu2 Δ 0 met15 Δ 0 pan1 Δ acidic-kanMX6 ura3 Δ 0	This study
YJC7102	MATa Arc35-GFP-SpHIS5 his3 ${}_{\Delta}$ 1 leu2 ${}_{\Delta}$ 0 met15 ${}_{\Delta}$ 0 pan1 ${}_{\Delta}$ acidic-kanMX6 ura3 ${}_{\Delta}$ 0	This study
YJC7103	MATa Arc35-GFP-SpHIS5 his3 ${}_{\Delta}$ 1 leu2 ${}_{\Delta}$ 0 met15 ${}_{\Delta}$ 0 pan1 ${}_{\Delta}$ acidic-kanMX6 ura3 ${}_{\Delta}$ 0	This study
YJC7104	MATa Arc35-GFP-SpHIS5 his3∆1 las17∆acidic-CaURA3MX4 leu2∆0 met15∆0 pan1∆acidic-kanMX6 ura3∆0	This study
YJC7105	MAT $lpha$ Arc35-GFP-SpHIS5 his3 $ m \Delta$ 1 las17 $ m \Delta$ acidic-CaURA3MX4 leu2 $ m \Delta$ 0 met15 $ m \Delta$ 0 pan1 $ m \Delta$ acidic-kanMX6	This study

Strain	Genotype	Source
	ura3∆0	
YJC7106	MATα Arc35-GFP-SpHIS5 his3∆1 las17∆acidic-CaURA3MX4 leu2∆0 met15∆0 pan1∆acidic-kanMX6 ura3∆0	This study
YJC7123	MATa Cap1-GFP-SpHIS5 his3∆1 leu2∆0 met15∆0 myo3∆acidic-hphMX4 myo5∆acidic-kanMX6 ura3∆0	This study
YJC7124	MATα Cap1-GFP-SpHIS5 his3∆1 leu2∆0 met15∆0 myo3∆acidic-hphMX4 myo5∆acidic-kanMX6 ura3∆0	This study
YJC7125	MATα Cap1-GFP-SpHIS5 his3∆1 leu2∆0 met15∆0 myo3∆acidic-hphMX4 myo5∆acidic-kanMX6 ura3∆0	This study
YJC7126	MATa Cap1-GFP-SpHIS5 his3∆1 las17∆acidic-CaURA3MX4 leu2∆0 met15∆0 myo3∆acidic-hphMX4 myo5∆acidic-kanMX6 ura3∆0	This study
YJC7127	MATa Cap1-GFP-SpHIS5 his3∆1 las17∆acidic-CaURA3MX4 leu2∆0 met15∆0 myo3∆acidic-hphMX4 myo5∆acidic-kanMX6 ura3∆0	This study
YJC7128	MATα Cap1-GFP-SpHIS5 his3∆1 las17∆acidic-CaURA3MX4 leu2∆0 met15∆0 myo3∆acidic-hphMX4 myo5∆acidic-kanMX6 ura3∆0	This study
YJC7148	MATa Abp1-GFP-SpHIS5 his3∆1 leu2∆0 met15∆0 myo3∆acidic-hphMX4 myo5∆acidic-kanMX6 ura3∆0	This study
YJC7149	MAT $lpha$ Abp1-GFP-SpHIS5 his3 $ m \Delta$ 1 leu2 $ m \Delta$ 0 met15 $ m \Delta$ 0 myo3 $ m \Delta$ acidic-hphMX4 myo5 $ m \Delta$ acidic-kanMX6 ura3 $ m \Delta$ 0	This study
YJC7150	MAT $lpha$ Abp1-GFP-SpHIS5 his3 $ m \Delta$ 1 leu2 $ m \Delta$ 0 met15 $ m \Delta$ 0 myo3 $ m \Delta$ acidic-hphMX4 myo5 $ m \Delta$ acidic-kanMX6 ura3 $ m \Delta$ 0	This study
YJC7151	MATα Abp1-GFP-SpHIS5 his3∆1 las17∆acidic-CaURA3MX4 leu2∆0 met15∆0 myo3∆acidic-hphMX4 myo5∆acidic-kanMX6 ura3∆0	This study
YJC7152	MATα Abp1-GFP-SpHIS5 his3∆1 las17∆acidic-CaURA3MX4 leu2∆0 met15∆0 myo3∆acidic-hphMX4 myo5∆acidic-kanMX6 ura3∆0	This study
YJC7153	MATα Abp1-GFP-SpHIS5 his3∆1 las17∆acidic-CaURA3MX4 leu2∆0 met15∆0 myo3∆acidic-hphMX4 myo5∆acidic-kanMX6 ura3∆0	This study
YJC7167	MATa Arc35-GFP-SpHIS5 his3∆1 las17∆acidic-CaURA3MX4 leu2∆0 met15∆0 myo5∆acidic-kanMX6 ura3∆0	This study
YJC7168	MATa Arc35-GFP-SpHIS5 his3∆1 las17∆acidic-CaURA3MX4 leu2∆0 met15∆0 myo5∆acidic-kanMX6 ura3∆0	This study
YJC7169	MATα Arc35-GFP-SpHIS5 his3∆1 las17∆acidic-CaURA3MX4 leu2∆0 met15∆0 myo5∆acidic-kanMX6 ura3∆0	This study
YJC7173	MATa Arc35-GFP-SpHIS5 his3∆1 leu2∆0 met15∆0 myo3∆acidic-hphMX4 myo5∆acidic-kanMX6 ura3∆0	This study
YJC7174	MATα Arc35-GFP-SpHIS5 his3∆1 leu2∆0 met15∆0 myo3∆acidic-hphMX4 myo5∆acidic-kanMX6 ura3∆0	This study
YJC7175	MATα Arc35-GFP-SpHIS5 his3∆1 leu2∆0 met15∆0 myo3∆acidic-hphMX4 myo5∆acidic-kanMX6 ura3∆0	This study
YJC7310	MATa Abp1-GFP-SpHlS5 his3∆1 leu2∆0 met15∆0 myo3∆acidic-hphMX4 myo5∆acidic-natMX4 pan1∆acidic-kanMX6 ura3∆0	This study
YJC7311	MATa Abp1-GFP-SpHlS5 his3∆1 leu2∆0 met15∆0 myo3∆acidic-hphMX4 myo5∆acidic-natMX4 pan1∆acidic-kanMX6 ura3∆0	This study
YJC7312	MATα Abp1-GFP-SpHIS5 his3∆1 leu2∆0 met15∆0 myo3∆acidic-hphMX4 myo5∆acidic-natMX4 pan1∆acidic-kanMX6 ura3∆0	This study
YJC7344	MATα Cap1-GFP-SpHIS5 his3∆1 leu2∆0 met15∆0 myo3∆acidic-hphMX4 myo5∆acidic-natMX4 pan1∆acidic-kanMX6 ura3∆0	This study
YJC7345	MATa Cap1-GFP-SpHIS5 his3∆1 leu2∆0 met15∆0 myo3∆acidic-hphMX4 myo5∆acidic-natMX4 pan1∆acidic-kanMX6 ura3∆0	This study
YJC7346	MATa Cap1-GFP-SpHIS5 his3∆1 leu2∆0 met15∆0 myo3∆acidic-hphMX4 myo5∆acidic-natMX4 pan1∆acidic-kanMX6 ura3∆0	This study
YJC7348	MATα Arc35-GFP-SpHIS5 his3∆1 leu2∆0 met15∆0 myo3∆acidic-hphMX4 myo5∆acidic-natMX4 pan1∆acidic-kanMX6 ura3∆0	This study
YJC7349	MATa Arc35-GFP-SpHIS5 his3∆1 leu2∆0 met15∆0 myo3∆acidic-hphMX4 myo5∆acidic-natMX4 pan1∆acidic-kanMX6 ura3∆0	This study
YJC7350	MATa Arc35-GFP-SpHIS5 his3∆1 leu2∆0 met15∆0 myo3∆acidic-hphMX4 myo5∆acidic-natMX4	This study

Strain Genotype pan1∆acidic-kanMX6 ura3∆0

Table S2. Peak number of mole	cules. The mode ±	standard error of the m	ode, median, mean	and 90% confidence	interval (C.I.) are
listed. N is the number of actin p	patches analyzed.				

Source

Genotype			Arc35					Cap1					Abp1		
	Mode ± SEM	Median	Mean	90% C.I.	Ν	Mode ± SEM	Median	Mean	90% C.I.	Ν	Mode ± SEM	Median	Mean	90% C.I.	Ν
wild type	305 ± 17	330	360	346-374	331	200 ± 14	215	233	224-242	313	822 ± 67	933	1026	980-1073	323
las17∆a	296 ± 13	360	458	430-486	247	250 ± 18	289	314	302-326	310	945 ± 66	1121	1287	1225-1349	305
myo3∆a myo5∆a	284 ± 17	336	366	349-383	273	190 ± 11	211	229	220-238	268	650 ± 39	740	844	800-887	245
pan1∆a	303 ± 33	334	363	342-382	244	220 ± 13	232	249	238-260	255	807 ± 71	926	1034	992-1077	370
las17∆a pan1∆a	361 ± 53	560	678	622-735	155	301 ± 38	366	401	382-421	218	1292 ± 113	1574	1774	1658-1890	181
myo3∆a myo5∆a pan1∆a	247 ± 8	257	287	275-300	277	187 ± 10	190	198	189-206	186	731 ± 80	838	933	881-986	216
las17∆a myo3∆a myo5∆a ª	201 ± 19	233	259	244-274	157	146 ± 12	190	219	208-230	267	765 ± 61	1040	1195	1113-1278	184

^a For Arc35 measurements, *las17 acidic myo5 acidic* cells were used.

Table S3. Ratios of peak protein levels, based on mode of numbers of molecules.

Genotype	Cap1/Arc35	Abp1/Arc35	Abp1/CP
wild type	0.66	2.7	4.1
las17∆acidic	0.84	3.2	3.8
myo3∆acidic myo5∆acidic	0.67	2.3	3.4
pan1∆acidic	0.73	2.7	3.7
las17∆acidic pan1∆acidic	0.83	3.6	4.3
myo3∆acidic myo5∆acidic pan1∆acidic	0.75	3.0	3.9
las17∆acidic myo3∆acidic myo5∆acidic ^a	0.72	3.8	5.2

^a For Arc35 measurements, *las17*\[]acidic myo5\[]acidic cells were used.

Genotype Arc35 Cap1 Abp1 Mode ± Mode ± Mode ± Median Mean 90% C I Ν Median Mean 90% C I N Median Mean 90% C.I. Ν SEM SEM SEM wild type 44.0 ± 3.2 51.6 57.6 55.2-59.9 331 31.0 ± 1.9 34.7 38.4 36.8-39.9 313 129 ± 14 160 188 176-199 323 las17∆a 36.6 ± 2.5 41.9 48.3 45.7-50.9 247 33.8 ± 2.0 37.7 42.3 40.3-44.4 310 114 ± 14 146 166 157-175 305 *my*o3∆a *my*o5∆a 43.9 ± 3.7 50.7 57.6 54.7-60.1 273 33.9 ± 2.7 37.2 40.8 38.7-42.8 268 101 ± 6 123 142 134-150 245 pan1∆a 48.9 ± 2.9 56.2 62.0 58.6-65.3 244 32.4 ± 2.2 35.5 40.0 37.8-42.1 255 130 ± 5 151 178 169-187 370 las17∆a 218 37.5 ± 6.5 59.5 74.7 68.1-81.2 155 43.2 ± 2.4 47.2 52.6 50.0-55.2 158 ± 18 182 206 192-220 181 pan1∆a myo3∆a 25.8 ± 2.9 33.4 myo5∆a 36.5 34.8-38.2 277 19.0 ± 2.0 22.6 24.5 23.1-25.8 186 96 ± 8 117 137 128-146 216 pan1∆a las17∆a 18.1 ± 1.7 20.8 23.8 22.1-25.4 157 17.3 ± 1.6 22.0 24.4 23.2-25.6 267 113 111-124 85 ± 18 118 184

Table S4. Rate of Assembly (molecules/second). The mode and one standard error of the mode are listed. N is the number of actin patches analyzed.

^a For Arc35 measurements, *las17*\[]acidic myo5\[]acidic cells were used.

myo3∆a

myo5∆a [€]

Table S5. Rate of Disassembly (molecules/second). The mode and one standard error of the mode are listed. N is the number of actin patches analyzed.

Genotype			Arc35					Cap1					Abp1		
	Mode ± SEM	Median	Mean	90% C.I.	N	Mode ± SEM	Median	Mean	90% C.I.	Ν	Mode ± SEM	Median	Mean	90% C.I.	Ν
wild type	56.9 ± 4.0	63.6	74.2	70.4-78.0	331	34.3 ± 3.2	42.3	49.9	47.0-52.7	313	152 ± 9	182	219	207-231	323
las17∆a	37.7 ± 3.4	51.5	59.1	55.7-62.5	247	44.7 ± 5.0	54.5	60.9	57.7-64.2	310	179 ± 14	220	254	239-268	305
myo3∆a myo5∆a	44.5 ± 4.3	65.7	79.4	74.4-84.5	273	37.3 ± 2.8	48.3	57.1	53.8-60.4	268	147 ± 14	171	204	191-219	245
pan1∆a	53.8 ± 3.8	64.0	77.2	72.4-82.0	244	38.4 ± 4.8	46.9	54.5	51.1-57.9	255	158 ± 17	196	226	216-237	370
las17∆a pan1∆a	60.1 ± 13.2	90.2	112	100-124	155	51.5 ± 6.8	67.9	76.6	71.9-81.3	218	222 ± 22	273	324	300-349	181
myo3∆a myo5∆a pan1∆a	32.9 ± 3.6	39.0	45.6	42.8-48.4	277	28.4 ± 2.2	33.6	39.0	36.5-41.5	186	166 ± 23	187	202	190-215	216
las17∆a myo3∆a myo5∆aª	20.7 ± 1.1	21.4	22.7	21.3-24.1	157	16.4 ± 2.3	21.1	26.0	24.1-27.9	267	69 ± 6	78	99	90-108	184

^a For Arc35 measurements, *las17*\[]acidic myo5\[]acidic cells were used.

Table S6. Time of Assembly (seconds). The mode and one standard error of the mode are listed. N is the number of actin patches analyzed.

Genotype			Arc35					Cap1					Abp1		
	Mode ± SEM	Median	Mean	90% C.I.	Ν	Mode ± SEM	Median	Mean	90% C.I.	Ν	Mode ± SEM	Median	Mean	90% C.I.	Ν
wild type	5.8 ± 0.3	6	6.4	6.2-6.6	331	5.6 ± 0.3	6	6.0	5.9-6.2	313	5.2 ± 0.3	6	5.9	5.7-6.0	323
las17∆a	7.4 ± 0.3	9	9.1	8.8-9.4	247	7.2 ± 0.3	7	7.5	7.2-7.7	310	7.4 ± 0.3	8	8.1	7.9-8.3	305
myo3∆a myo5∆a	5.9 ± 0.3	6	6.5	6.3-6.8	273	5.3 ± 0.2	5	5.6	5.5-5.8	268	5.7 ± 0.5	6	6.2	6.0-6.3	245
pan1∆a	5.2 ± 0.3	6	6.0	5.8-6.2	244	5.9 ± 0.3	6	6.3	6.1-6.5	255	5.3 ± 0.3	6	6.2	6.1-6.4	370
las17∆a pan1∆a	9.1 ± 0.5	9	9.1	8.8-9.5	155	7.4 ± 0.5	7	7.5	7.3-7.8	218	8.9 ± 0.2	9	9.5	9.1-9.9	181
myo3∆a myo5∆a pan1∆a	7.1 ± 0.5	7	7.8	7.5-8.0	277	6.7 ± 0.4	7	7.6	7.4-7.9	186	7.0 ± 0.2	7	7.2	6.9-7.4	216
las17∆a myo3∆a myo5∆a ª	7.8 ± 0.6	9	10.1	9.6-10.6	157	6.3 ± 0.5	7	7.6	7.3-7.9	267	9.1 ± 0.6	9	9.5	9.1-10.0	184

^a For Arc35 measurements, *las17∆acidic myo5∆acidic* cells were used.

Table S7. Time of Disassembly (seconds). The mode and one standard error of the mode are listed. N is the number of actin patches analyzed.

Genotype	Arc35		Arc35					Cap1					Abp1		
	Mode ± SEM	Median	Mean	90% C.I.	Ν	Mode ± SEM	Median	Mean	90% C.I.	Ν	Mode ± SEM	Median	Mean	90% C.I.	N
wild type	5.0 ± 0.1	5	5.1	5.0-5.2	331	4.5 ± 0.3	5	5.1	4.9-5.3	313	5.2 ± 0.4	6	5.2	5.0-5.3	323
las17∆a	6.2 ± 0.2	7	7.5	7.2-7.7	247	5.2 ± 0.2	5	5.6	5.4-5.8	310	5.0 ± 0.2	5	5.7	5.5-5.9	305
myo3∆a myo5∆a	4.2 ± 0.3	5	5.0	4.8-5.1	273	4.3 ± 0.3	4	4.5	4.3-4.6	268	4.6 ± 0.3	5	4.8	4.6-5.0	245
pan1∆a	4.2 ± 0.2	5	4.8	4.7-5.0	244	4.5 ± 0.3	5	4.9	4.7-5.0	255	4.9 ± 0.1	5	5.1	5.0-5.3	370
las17∆a pan1∆a	5.6 ± 0.3	6	6.3	6.0-6.6	155	5.3 ± 0.3	5	5.5	5.3-5.7	218	5.3 ± 0.3	6	6.2	5.8-6.4	181
myo3∆a myo5∆a pan1∆a	5.2 ± 0.3	6	6.5	6.3-6.8	277	5.0 ± 0.1	5	5.3	5.1-5.5	186	4.2 ± 0.2	5	5.2	5.0-5.5	216
las17∆a myo3∆a myo5∆a ª	9.1 ± 0.6	10	10.2	9.8-10.6	157	7.5 ± 0.3	8	7.8	7.5-8.1	267	10.0 ± 0.7	11	11.9	11.3-12.4	184

^a For Arc35 measurements, *las17*_{\(\Delta\)} *acidic myo5*_{\(\Delta\)} *acidic* cells were used.

Supporting References

1. Galletta, B.J., D.Y. Chuang, and J.A. Cooper. 2008. Distinct Roles for Arp2/3 Regulators in Actin Assembly and Endocytosis. PLoS Biol. 6:e1.

2. Brachmann, C.B., A. Davies, G.J. Cost, E. Caputo, J. Li, P. Hieter, and J.D. Boeke. 1998. Designer deletion strains derived from Saccharomyces cerevisiae S288C: a useful set of strains and plasmids for PCR-mediated gene disruption and other applications. Yeast. 14:115-132.