Hierarchical Model of Fibrillar Collagen Organization for Interpreting the Second-Order Susceptibility Tensors in Biological Tissue

Adam E. Tuer,^{†‡§} Margarete K. Akens,[¶] Serguei Krouglov,[†] Daaf Sandkuijl,^{†‡§} Brian C. Wilson,[∥] Cari M. Whyne,[¶] and Virginijus Barzda^{†‡§}*

[†]Department of Physics, University of Toronto, Toronto, Ontario, Canada; [‡]Department of Chemical and Physical Sciences, University of Toronto Mississauga, Mississauga, Ontario, Canada; [§]Institute for Optical Sciences, University of Toronto, Toronto, Ontario, Canada; [¶]Orthopedic Biomechanics Laboratory, Sunnybrook Research Institute, Toronto, Ontario, Canada; and [∥]Ontario Cancer Institute, University Health Network, Toronto, Ontario, Canada

Susceptibility Tensors of Collagen

Tuer et al.

Submitted August 28, 2012, and accepted for publication October 19, 2012.

*Correspondence: virgis.barzda@utoronto.ca

Supporting Material

Asymmetry

To measure the asymmetry of the PIPO plots, the following formula was utilized:

$$a = \left\langle \left| \frac{I(\theta, \varphi) - I(-\theta, -\varphi)}{\frac{1}{2} \left(I(\theta, \varphi) + I(-\theta, -\varphi) \right)} \right| \right\rangle$$
 (S.1)

where $I(\theta, \varphi)$ is the SHG intensity for the angles θ and φ , which are defined from 0 to $\pi/2$. This measure of asymmetry has distributions centered on zero for both parallel (tibia cortical bone) and non-parallel (dermis and cornea) containing tissue distributions, with the non-parallel fibril distribution having a more pronounced tail than the parallel fibril distribution (Fig. S1). The uncertainty in the asymmetry is approximately ± 0.05 .

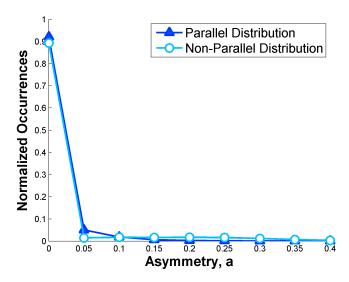


Fig. S1. Histogram of asymmetry defined by Eq. S1 for parallel and non-parallel fibril distributions.