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1 Selection-mutation balance in the absence

of cheaters

Some important aspects of the system can be described by means of ordinary
differential equations. In this section we present these equations and show
under which circumstances the emergence of m-hit mutants can be observed.
We start with a simple, 2-component example, and then expand it to the
case relevant for this paper.

1.1 A two-component system

Let us consider a very simple selection-mutation network of the form a → A
where the type a has the division rate r0, the type A had the division rate
r1, both types have the death rate of d, and the mutation rate is given by u.
We are assuming that both are viable types, such that

r0(1− u) > d, r1 > d. (1)

We further assume that the second type is disadvantageous,

r1 < r0.

Imposing logistic growth of the species with a carrying capacity, K, we can
describe the dynamics of such a system by a set of ODEs,

ẋ0 = r0x0

(

1−
x0 + x1

K

)

(1− u)− dx0, (2)

ẋ1 = (r0x0u+ r1x1)
(

1−
x0 + x1

K

)

− dx1, (3)

where x0 is the number of cells of the first type (unmutated), and x1 is
the number of cells of the second type (mutated). Note that the symbol
K stands for carrying capacity in the ODEs, and the same symbol is used
for the replication/cooperation radius in the main paper. Insights obtained
from the theory developed here are applicable to spatial systems when the
replication and cooperation radii are the same and equal to K.

Equations (2-3) have three equilibria:

• The trivial equilibrium, xt
0 = xt

1 = 0. This equilibrium is unstable as
long as any of the conditions (1) holds.
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• The selection-mutation balance equilibrium,

x
(0)
0 =

K(r0(1− u)− d)
(

1− r1
r0
− u

)

(r0 − r1)(1− u)
, x

(0)
1 =

K(r0(1− u)− d)u

(r0 − r1)(1− u)
.

This equilibrium is stable if

u < 1−
r1
r0
, (4)

that is, if the mutation rate is smaller than the relative difference in
the two types’ growth rates. At this equilibrium, the weaker phenotype
is maintained by a constant production through mutations from the
stronger phenotype.

• The dominance of the second phenotype equilibrium,

x
(1)
0 = 0, x

(1)
1 = K

(

1−
d

r1

)

,

where the second phenotype reaches the effective carrying capacity.
This equilibrium is stable when condition (4) is reversed. If the muta-
tion rate is high enough to offset the difference in division rates, the
second phenotype becomes effectively stronger and dominates the sys-
tem.

This picture changes somewhat in the presence of back-mutations. Now,
the equations are

ẋ0 = (r1x1u1 + r0x0(1− u))
(

1−
x0 + x1

K

)

− dx0, (5)

ẋ1 = (r0x0u+ r1x1(1− u1))
(

1−
x0 + x1

K

)

− dx1, (6)

where we denoted by u1 the rate of back-mutations. For a non-zero rate
u1, there is only one stable solution, as illustrated in figure 1(a). When the
value of u is small, the stronger phenotype, x0, dominates the system, and
the weaker phenotype is maintained at a selection-mutation balance. As u
increases, the frequency of x1 increases. When the value of u approaches
1 − r1/r, the relative fitness difference, the type x1 increases in proportion,
and for sufficiently large u it starts dominating the system. Exactly when
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Figure 1: Dynamics of the two-component system in the presence of back-mutations,
equations (5-6). (a) Stable equilibrium values of for the variables x0 (thick lines) and x1

(thin lines). The horizontal axis is log10 u, and the solutions for three different values of
u1 are presented. (b) A contour plot showing the regions in the u− u1 space where types
x0 and x1 dominate (the contour corresponds to the equation x1 = K(1− d/r)/2). Other
parameters are: K = 100, r0 = 1, r1 = 0.999, d = 0.1.

that happens depends on the value of u1. The larger u1, the harder it is for
x1 to dominate, see figure 1(b). For small values of u1, there is a more or
less constant threshold value of u after which the weaker type can dominate.
For larger values of u1, the value of u has to be larger than u1 to sustain a
large frequency of x1.

In the important case where u1 = u, we can see that making the mutation
rates large does not lead to a dominance of the weaker phenotype. Instead,
x1 at equilibrium is maintained at a frequency similar to that of x0 (figure
1(b)).

1.2 A multiple-component system

Next, we consider a more general system relevant for this work. Assuming m
sites that can be mutated, we have the total of 2m possible types, connected
by mutation processes. If we assume that the division rates of different types
are only defined by the number of mutated sites, then all the types can be split
into m+1 symmetric classes according to the number of mutated sites. The
equations for all the types within one class are identical, and the solutions
are also identical (if we assume that the initial conditions are the same within
classes). Let us denote by ri the division rate of cells with i sites mutated.
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Figure 2: A schematic illustrating the derivation of equations (8) (without cheaters, (a))
and (9) (with cheaters, (b)). Index i refers to the number of cooperating sites, and index
j to the number of cheating sites.

We further denote by yi the number of cells of any one type in class i (i sites
mutated). The number of types within class i is given by m!/i!/(m − i)!,
and therefore the total number of cells in class i is yim!/i!/(m − i)!. The
equations that these variables satisfy (and which are a direct generalization
of equations (2-3)) are as follows:

ẏi = [iri−1yi−1u+ riyi(1− (m− i)u)]W − dyi, 0 ≤ i ≤ m, (7)

where the logistic growth restriction factor is

W = 1−
∑m

j=0
yjm!

j!(m−j)!

K
.

To illustrate the derivation of equation (7), we use a specific example. Sup-
pose that m = 5, and i = 3. Then yi represents any type with three muta-
tions, for example type xxx00 (where x stands for a mutated site and 0 for
a wild-type site). Such cells can be generated by one mutation in only three
ways: from type xx000, from type x0x00 and from type 0xx00. There are
i = 3 such types, and the abundance of each of them is yi−1. Therefore, the
corresponding production term in equation (7) is iri−1yi−1.
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In the presence of back-mutations, the system corresponding to equations
(5-6) is as follows:

ẏi = [iri−1yi−1u+ (m− 1)ri+1yi+1u1 + riyi(1− (m− i)u− iu1)]W

− dyi, 0 ≤ i ≤ m. (8)

Figure 2(a) illustrates the derivation of these equations. Each cell type char-
acterized by i mutations can give rise to (m − i) other types by a forward
mutation, u, and to i other types by a back-mutation, u1. This is because
type i has m − i unmutated sites, which can give rise to a type i + 1 cell.
It has i mutated sites, which can give rise to a type i − 1 cell. Thus the
total mutation rate of type i is (m − i)u + iu1; this is reflected in the term
riyi(1− (m− i)u− iui) in equation (8). On the other hand, the same types
that can originate from type i, can give rise to type i: types i−1 result in type
i by means of a forward mutation (this corresponds to the term iri−1yi−1u in
equation (8)), and types i + 1 result in type i by means of a back-mutation
(term (m− 1)ri+1yi+1u1 in equation (8)).

The fitness parameters are as follows. The various classes of mutants
have division rates R < ri = R+ − if < R+. The wild-type cells have the
division rate r0 = R if they do not participate in the division of labor, and
r0 = R+ otherwise. Note that in this description we are assuming that the
partial mutants always cooperate with each other, and therefore their fitness
never falls to the value R− < R. The m-hit mutants are the least fit of all
the mutants, because they share the largest number of gene products. The
question is, can the m-hit mutants get established at significant frequencies
in this setting?

Analysis of equation (7) shows that m-hit mutants can dominate the sys-
tem in the absence of back-mutations as long as the fitness cost of cooperation
(given by mf/(aR)) is less than the mutation rate, u, see figure 3. When we
add back-mutations, however, the picture changes. If we assume that u1 = u,
then, although the population of the m-hit mutants can reach the abundance
similar to that of the other types (as in figure 1(b)), the combinatorial factors
make the overall relative frequency of the m-hit mutants low. We conclude
that even for high mutation rates, in the presence of back-mutations, m-hit
mutants cannot dominate without cheaters in the system.
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Figure 3: The m-component system without cheaters in the absence and in the presence
of back-mutations, equations (8). The number of cells of each type at equilibrium is shown.
The parameters are K = 90, 000, R = 0.4, R+ = 0.5, d = 0.1, f = 1/200, u = 10−2. In
the presence of back-mutations, u1 = u.

2 Cheaters

We can include cheaters in the equations, as illustrated in figure 2(b). Let
us denote by i the number of cooperating sites and by j the number of
cheating sites. All the types can be split into classes, (i, j). We will denote
by yij the abundance of cells of a particular type from class (i, j). There
are m!/(i!j!(m − i − j)! different types in such a class. In the most general
case, there are three possible forward mutation rates, u, v and w, as shown
in figure 2(b). Each of them has a corresponding back-mutation rate, u1, v1
and w1. A type (i, j) can give rise to six different types (and be created from
6 different types). All the connections result in the following equations:

ẏi,j = [ri,jyi,j(1− (m− i− j)u− iu1 − (m− i− j)w − jw1 − iv − jv1)

+ ri−1,jyi−1,jiu+ ri+1,jyi+1,j(m− i− j)u1 + ri,j+1yi,j+1(m− i− j)w1

+ ri,j−1yi,j−1jw + ri−1,j+1yi−1,j+1iv1 + ri+1,j−1yi+1,j−1jv]W

− dyi,j, 0 ≤ i+ j ≤ m. (9)

The division rates of the various types are defined by the number of coop-
erating sites. In the case where the wild type does not participate in the

7



division of labor, we have

r0,0 = R, R < ri,j = R+ − if ≤ R+, ij > 0. (10)

In the case where the wild type participates in the division of labor, we have

r0,0 = R+,

with the rest of the fitness values the same as in (10).
It is convenient to split the population into the following 4 groups:

• The wild type, Yw.t. = y0,0;

• The full cheaters: m-hit mutants that cheat at all the sites, Yfull cheat =
y0,m;

• The cooperators: cells that cooperate at one or more sites, Ycoop =
∑m

i=1

∑m−i
j=0

yi,jm!

i!j!(m−i−j)!
;

• The partial cheaters: cells that do not cooperate, and have between 1
and m− 1 cheating sites, Ypart. cheat =

∑m−1
j=1

y0,jm!

j!(m−j)!
.

Note that the population of group Ycoop includes m-hit mutants (types yi,m−i

for 1 ≤ i ≤ m). However, these types have a slower replication rate than
the type Yfull cheat, because they are penalized for cooperation. Therefore,
the m-hit mutant which has a potential to dominate the population is the
Yfull cheat type.

In the presence of cooperators, the replication rate of the class Ypart. cheat is
identical to that of Yfull cheat. In this case the groups Ypart. cheat and Yfull cheat

have the highest fitness. If the class Ycoop is not present, the cooperation
disappears and the class Ypart. cheat operates at low fitness, R− < R, and
class Yfull cheat wins. If only some of the components are missing from the
cooperating pool, the group Ypart. cheat has a lowered average fitness compared
to that of Yfull cheat.

Let us suppose that cooperation is fully present in the system. Then the
following is observed. If all the mutation rates are equal to each other, then
because of combinatorial effects, the relative proportion of the middle types
(with j ∼ m/2) is the largest among the fittest types (the types (0, j), with
1 ≤ j ≤ m). If we set w1 = 0, then the group Yfull cheat acquires an advantage
because it has fewer mutations radiating from it than the group Ypart. cheat.
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If we set w1 = v1 = 0, then group Yfull cheat is the absolute winner, no mu-
tations come out of it, and this makes it the fittest type. This demonstrates
that in the absence of some back-mutations, m-hit mutants can arise quite
rapidly in this setting; this can happen on a much faster time-scale than in
the absence of cooperators or cheaters (sequential evolution). However, this
requires the assumption about the unidirectionality of mutations. Below we
will concentrate on the more subtle scenario where all back-mutations are
present.

Let us suppose that all the mutation rates are the same. Then the only
way for group Yfull cheat to dominate is to get rid of cooperation, such that
the fitness of group Ypart. cheat plunges. Cooperators (the group Ycoop) have a
smaller division rate than Yfull cheat (given that cooperation is present), and
thus they are maintained at a selection-mutation balance. The population
of Ycoop is dominated by types y1,j , 0 ≤ j ≤ m − 1, and their abundance is
proportional to the mutation rate. Decreasing the mutation rate will change
the equilibrium number of the cooperators. If it is sufficiently low, coopera-
tion can be absent from the system in part for a lot of the time, thus giving
type Yfull cheat a selective advantage. This is a possible stochastic mechanism
by which an m-hit mutant can arise in this system. Figure 4 shows a typical
steady-state solution for different classes in the case where the wild types do
not participate in the division of labor. The picture is similar, except for
a higher abundance of the wild types, if they do participate in division of
labor. In the next section, we find the steady state of system (9) analytically.

3 The analytic solution for the steady state

3.1 Wild type cells do not participate in the division

of labor

We can find the steady state for system (9) analytically, in the limit of small
mutation rates. Let us for simplicity assume that all the mutation rates are
equal,

u1 = w = w1 = v = v1 = u,

and that u ≪ 1. We will use the following expansion:

y0,0 = 0 + uy
(1)
0,0 +O(u2), (11)

y0,j = y
(0)
0,j + uy

(1)
0,j +O(u2), 1 ≤ j ≤ m, (12)
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y1,j = 0 + uy
(1)
1,j +O(u2), 0 ≤ j ≤ m− 1, (13)

yi,j = 0 + 0u+O(u2), 1 ≤ i ≤ m, 1 ≤ i+ j ≤ m. (14)

This expansion is motivated by the fact that in the absence of mutations, only
the types with the highest fitness will be present, which are the cheaters (y0,j
with j > 0). Further, if a small mutation rate is added, the quasispecies will
contain a cloud of other types, each proportional to the number of mutational
steps separating it from the winning phenotype. The classes most closely
related to the winning phenotype are the wild type (y0,0) and the cooperators
with one cooperating site (y1,j with 0 ≤ j ≤ m− 1). Their abundances scale
with u. All the other types will be significantly less frequent.

For the saturation term, we have W = W (0) + uW (1) +O(u2), where

W (0) = 1−
1

K

m
∑

j=1

y
(0)
0,jm!

j!(m− j)!
, (15)

W (1) = −
1

K





m
∑

j=0

y
(1)
0,jm!

j!(m− j)!
+

m−1
∑

j=0

y
(1)
1,jm!

j!(m− 1− j)!



 . (16)

The zeroth order term of equations (9) yields,

r0,jy
(0)
0,jW

(0) − dy
(0)
0,j = 0, 1 ≤ j ≤ m. (17)
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Noting the r0,j = R+ for all j > 0, we obtain the nontrivial solution

W (0) =
d

R+
, (18)

or equivalently,
m
∑

j=1

y
(0)
0,jm!

j!(m− j)!
= K(1− d/(R+)). (19)

The left hand side of this equation is the total number of cheaters. At the
zeroth order, it is equal to the effective carrying capacity of the system,
K(1− d/(R+)).

At the first order, after some manipulations, we obtain the following
system,

y
(0)
0,j+1(m− j) + y

(0)
0,j−1j = λy

(0)
0,j , 1 ≤ j ≤ m, (20)

where we denoted

λ = 2m−
R+

d
W (1). (21)

This is an eigenvalue problem whose eigenvectors do not depend on any
parameters of the system. In particular, below we list the eigenvalues for
several small values of m, in the form (λ1, . . . , λm), such that λ1 < . . . < λm:

m = 2, (−
√
2,
√
2),

m = 3, (−
√
7, 0,

√
7),

m = 4, (−
√

2(4 +
√
10),−

√

2(4−
√
10),

√

2(4−
√
10),

√

2(4 +
√
10)),

m = 5, (−
√

15 + 2
√
19,−

√

15− 2
√
19, 0,

√

15− 2
√
19,

√

15 + 2
√
19)

The largest of these eigenvalues, λm, is the “ground state” of the system
corresponding to the only eigenvector whose components are of the same
sign. This is the relevant solution in our case. For several values of m, the
eigenvector is given below, in the form (v1, . . . , vm):

m = 2,

(

1√
2
, 1

)

,

m = 3,

(

2

3
,

√
7

3
, 1

)

,

m = 4,







1

2

√

1

6
(8 +

√
10),

1

6
(2 +

√
10),

1

2

√

√

√

√

2 +

√

5

2
, 1





 ,
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m = 5,





2

15
(1 +

√
19),

√

94

225
+

7
√
19

90
,
1

10
(5 +

√
19),

1

5

√

15 + 2
√
19, 1



 .

We have
y
(0)
0,j = Avj, (22)

where A is a scaling factor, which can be determined from the normalization
condition (19). The above eigenvectors together with condition (19) uniquely

define the components y
(0)
0,j for 1 ≤ j ≤ m. In particular, we have

A =
K(1− d/(R+))
∑m

j=1
m!vj

j!(m−j)!

.

The number of wild-type cells is obtained from the equation for i = 0, j = 0
in the first order of u,

y
(1)
0,0 =

y
(0)
0,1mR+

R+ −R
. (23)

Also, at the first order of system (9), we have the following equations,

y
(1)
1,0 =

R+

f
y
(0)
0,1, y

(1)
1,j =

R+

f
(y

(0)
0,j + y

(0)
0,j+1), 1 ≤ j ≤ m− 1, (24)

which define the components of the cooperating types in terms of the cheating
types. In particular, the total number of cooperators in the system is given
by

m−1
∑

j=0

y
(1)
1,jm!

j!(m− 1− j)!
=

uR+

f





m−1
∑

j=1

y
(0)
0,jm!

j!(m− 1− j)!
+

m−1
∑

j=0

y
(0)
0,j+1m!

j!(m− 1− j)!



+O(u2).

It it easy to show that

∑m−1
j=1

vjm!

j!(m−1−j)!
+
∑m−1

j=0
vj+1m!

j!(m−1−j)!
∑m

j=1
vjm!

j!(m−j)!

= m.

Therefore, we have for the total number of cooperators,

m−1
∑

j=0

y1,jm!

j!(m− 1− j)!
≈

uKmR+

f

(

1−
d

R+

)

.
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An important observable is the total number of cooperators that cooper-
ate on one particular site, Nc,

m
∑

i=1

m−i
∑

j=0

yi,j(m− 1)!

(i− 1)!j!(m− i− j)!
.

In our approximation, this is given by 1/m times the total number of coop-
erators, which is approximated by

Nc =
m−1
∑

j=0

y1,j(m− 1)!

j!(m− 1− j)!
≈

R+

f
uK

(

1−
d

R+

)

. (25)

Note that λm/m < 1 for all m, and limm→∞ λm/m = 1.
The approximation used here works well as long as the mutation rate is

significantly smaller than the fitness differences,

u ≪
f

R+
.

In this case, the selection-mutation balance is in place. When this inequality
is reversed, expansion (11-14) breaks down. Figure 5 demonstrates how well
the approximation (formula (25)) works by plotting the number of cooper-
ators as a function of the parameter f . We can see that for small values of
the quantity u/f , the relative error of approximation is small (the inset).

To get the second correction to the solution, we extend expansion (11-
14) to the second order in u, and use equation (9) to write down the O(u2)
terms. We have m+1 equations with i = 0, m equations with i = 1, and the
additional equation (21), where W (1) is given by equation (16), and λ = λm.
The total number of equations is 2m + 2. These are nonhomogeneous, non-
degenerate equations.

The unknown variables to be determined at this order are:

y
(2)
00 ,

y
(1)
01 , . . . , y

(1)
0m (m variables),

y
(2)
10 , . . . , y

(2)
1,m−1 (m variables),

W (2),

totaling 2m + 2 unknown variables. Note that variables y
(2)
01 , . . . y

(2)
0,m do not

enter the equations. There are also m − 1 equations with i = 2 which we
did not count above. These equations contain m − 1 additional unknowns,
y
(2)
20 , . . . , y

(2)
2,m−2, which only appear in these equations and can be determined

once the rest of the variables in this order are known.
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Figure 5: The number of cooperators (which cooperate on a particular site) as a function
of parameter f : the numerical solution of the steady state of the ODEs (solid line) and
the analytical estimate of formula (25) (dashed line). The inset: the relative error of
this approximation and the value u/f as a function of f . Other parameters are: m = 5,
u = 2 · 10−3, K = 104, R+ = 0.9, d = 0.1.

3.2 Wild type cells participate in the division of labor

In this case, the wild type has fitness R+ in the presence of cooperation, and
instead of expansion (11) we have

y0,0 = y
(0)
0,0 + uy

(1)
0,0 +O(u2),

that is, the wild type solution has a nonzero component in the absence of
mutations. This makes the analysis simpler compared to the one presented
in the previous section. The wild type now contributes to the zeroth order
in the saturation term, such that instead of equation (15) we have

W (0) = 1−
1

K

m
∑

j=0

y
(0)
0,jm!

j!(m− j)!
,

and in equation (17) the indices now start from zero, 0 ≤ j ≤ m. Equation
(18) holds with the new definition of W (0), and the eigenvalue problem, equa-
tion (20), has indices 0 ≤ j ≤ m. This fact simplifies the task of finding the
eigenvalues and eigenvectors. Note that now, the matrix on the left of (20)
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is stochastic (that is, its entries in each row add up to m). This matrix has
the eigenvalue m corresponding to the only nonnegative eigenvector whose
entries are all equal to one. Therefore, we have from (22)

y
(0)
0,j = A, 0 ≤ j ≤ m, (26)

and the normalization factor can be found explicitly from normalization (19)
with the summation starting from zero. We have

A =
K(1− d/R+)

2m
.

Equation (23) now does not apply as y
(0)
0,0 is now determined by (26). Ex-

pressions (24) now simplify to

y
(1)
1,j =

R+

f
(y

(0)
0,j + y

(0)
0,j+1), 0 ≤ j ≤ m− 1,

and the total number of cooperators that cooperate on a particular site is
again given by equation (25).

4 Numerical simulations

4.1 Patterns of cooperation and cheating

It was observed that cheaters can speed up the emergence of m-hit mutants
compared to the sequential evolution in the absence of cooperation. Below we
will describe all the patterns of cooperation and cheating that are observed
in the simulations and can be explained by our theory. We assume that
all mutation rates are equal to each other (or, more generally, the back-
mutations are characterized by rates comparable to forward-mutations). We
will refer to the case where the wild types do not participate in division of
labor as the WT− model, and the case where the wild types do participate
in division of labor as the WT+ model. The results depend on the size
of the local steady state solution for the cooperators, Nc, approximated by
equations (25). We start the simulation with wild-type cells only. These are
the observed scenarios, depending on the mutation rates.

(i) For a relatively large mutation rate, the cooperators gradually appear
and are maintained at a relatively high level, totaling approximately mNc.
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The partial cheaters typically have a much higher abundance. The wild type
cells quickly disappear from the system in case WT−, and they remain in the
system in caseWT+. The full cheaters are produced, but disappear relatively
quickly. This situation can persist for quite a long time. However if we look at
the population of cooperators more closely, we observe interesting dynamics.
If we track separately all the cooperators that cooperate on a given site,
this population sometimes takes a ”dip”, such that no more product from
this site is available for the cheaters to utilize. This leads to a temporary
dip in the cheaters population. The lower the steady-state population of
cooperators, the more often this happens. If it so happens that during such
a ”dip” full cheaters are generated, it is possible that they rise to a very
high level, because their fitness in unaffected by the presence of cooperators.
Once they rise, they can be maintained at a level higher than the level of
partial cheaters. Interestingly, this is not because their steady-state level is
higher (it is in fact lower than that of partial cheaters). They are winners
of the evolutionary competition because the partial cheaters constantly take
”hits” from the disappearance of one or another public goods products from
the system. The partial cheaters simply cannot rise high enough (without
crushing temporarily) to displace the full cheaters.

(ii) Next, we consider the scenario where the mutation rate is lower, and
the steady-state level of cooperators, mNc, is lower than in the previous case.
Now, the public-goods products disappear from the system quite regularly,
which leads to a significant decrease in the fitness of the partial cheaters
(and the wild types in case WT+). This happens because more than one, or
even all m products can simultaneously disappear from the system. At such
moments, the partial cheaters greatly decrease in levels. In the WT− case,
the partial cheaters give way to the wild-type, which temporarily invades the
system. This is because in the absence of cooperation the fitness of wild-
types exceeds that of partial cheaters. After a while, the cooperators, and
thus the cheater populations build up again. Now the dynamics consist of
periods where partial cheaters are abundant, and periods where the wild-type
dominates. Depending on the mutation rate, the periods of wild-type dom-
ination can be longer (for lower mutation rates) or shorter. This proceeds
until an m-hit mutant is generated which then replaces the partial cheaters
(and the wild types) next time the cooperation breaks down, leading to its
subsequent domination. For the WT+ case, the dynamics remain similar
as those described in the previous paragraph because the wild-type and the
partial cheater populations are neutral towards each other (both of their fit-

16



nesses are influenced by cooperators, and neither contain costly cooperating
sites). Therefore, the regular switching in their dominance is not observed.

It is clear that in the scenarios described in (i) and (ii), the m-hit mutant
will rise faster than in the scenario with sequential evolution. The reason for
this is the periods during which partial cheaters exist at elevated abundances,
which increase the probability of generating an m-hit cheater.

(iii) When the mutation is even lower (Nc < 1), no cooperating population
can get established and the dynamics are identical to those of sequential
evolution.

(iv) When the mutation rate is very high, the cooperation never disap-
pears from the system, and the m-hit mutants never come to dominate the
system. In this case, the sequential dynamics are faster than those governed
by cooperation and cheating.

4.2 The number of reproductive events

In this paper we report that over a wide range of parameters, cooperation
and cheating accelerate evolution. This is for example demonstrated in figure
2 of the main text, where we present histograms of times it takes for an
m-hit mutant to spread to 90% of the total population. It is clear that
the amount of time it takes is significantly less in the cooperation/cheating
scenario compared with the sequential evolution scenario.

One of the reasons why cooperation/cheating interactions accelerate evo-
lution is the relatively higher number of reproductive events among partial
mutants, which makes the rate of the m-hit mutant production faster. This
is what is quantified in figure 4(a) of the main text. However, the difference
in the numbers of reproductive events in the two scenarios is not the whole
story.

The increase in the reproductive events of mutants is naturally coupled
with the increase in the total reproductive events in the cooperation/cheating
system. This comes from the fact that in the cooperation/cheating system,
there is a large abundance of cooperating and cheating phenotypes, all of
which have an elevated fitness (at least, most of the time), thus increasing
the overall turnover in the system. Hypothetically it could happen that the
acceleration of the evolutionary process observed in the cooperation/cheating
scenario is simply due to the larger total number of reproductive events that
occurs per unit time. Is this the only mechanism of acceleration that is at
work?
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Figure 6: Distribution of times until the complex phenotype reaches 90% of the total
population, based on repeated runs of the computer simulation. The simulations are the
same as in figure 2(a) of the main text, with the same parameter values, except the time
is measured in terms of the number of reproductive events.

To answer this question, we ran simulations in the sequential and co-
operation/cheating scenarios, where instead of measuring time in terms of
uniform units, we measured it in terms of reproductive events, see figure
6. This (generally, non-uniform) time-scale eliminates any advantage gained
by a system with a larger abundance of fitter individuals (in our case, the
cooperation/cheating system). We created histograms of m-hit mutant gen-
eration for the two scenarios, and we observed that despite the control over
the number of reproductive events, the cooperation/cheating dynamics still
give rise to an m-hit mutant at a significantly shorter time-scale. This high-
lights additional, less trivial aspects of the cooperation/cheating dynamics
(apart from simply accelerating divisions). Partially-mutated individuals
(cooperators and cheaters) exist at much higher levels compared to those
of sequential evolution, thus making them much more likely to produce an
m-hit mutant, and once produced, the m-hit mutant has an advantage over
partially-mutated cheaters because it can resist the plunge of cooperators
and survive the lean periods, when one or more gene products stop being
supplied by cooperators.
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Figure 7: The mean and the standard deviation of the number of cooperators (a) and
cheaters (b) in the cellular automaton simulations, as a function of the cooperation radius.
The dashed lines correspond to the steady-state solution of the ODEs, equation (9). The
parameters are R = 0.33, R+ = 0.8, R− = 0.72, d = 0.1, f = 0.05, u = 7.92 · 10−4, total
grid size 300× 300. The wild type participates in the division of labor. The fully-mutated
cheaters are suppressed.

4.3 Parameter dependence of the results

Theory in developed in sections 2 and 3, although derived under the mass-
action assumption, presents a surprisingly useful tool to study parameter
dependence of the division of labor dynamics. Figure 7 shows that the steady-
state levels of various species are independent of the cooperation radius. We
ran time-evolution simulations, where we changed the cooperation radius.
For example, if the cooperation radius is 50, this means that the cells co-
operate in a 101 × 101 square. We suppressed the rise of m-hit cheaters by
setting their reproduction rate to zero, and observed the steady-state levels
of other species. The mean values and the standard deviations were then
calculated to produce the plots in figure 7. The steady-state solutions of
equations (9) are plotted with dashed lines for comparison. We can see that
results from the mass-action theory can be used to study the behavior of the
spatial systems.

Although the overall total steady-state levels of various species remain
the same across different cooperation radii, the dynamics of division of labor
systems change. In particular, the time it takes for the m-hit mutant to arise
and dominate the system is a function of all the parameters, including the
neighborhood size, K. For example, for a fixed number m, the cooperation
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Figure 8: The contour-plots of the number of cooperators per site per neighborhood
of size K, as given by equation (25), plotted as a function of different parameters. (a)
Parameters f and K are varied, and d = 0.1. (b) Parameters d and K are varied, and
f = 1/70. The other parameters are R = 0.15, R− = 0.135, R+ = 0.3, u = 5 · 10−4.

radius may be too small for the neighborhood K to simultaneously contain
all m cooperating types. In this case, cooperation is not likely to arise, and
the mutation accumulation will proceed by sequential evolution.

Other aspects of the parameter dependence can be seen from formula
(25), where K has the meaning of the local neighborhood size. The quantity
Nc tells us the steady-state number of cooperators per site, per neighbor-
hood, before the m-hit mutants have arisen. If the value Nc is too large,
then cooperators will not experience frequent local extinction, and the m-hit
mutant will not have the necessary advantage to rise above the level of the
partial cheaters.

In the last figure of the main text, we showed how the dependence of Nc

given by formula (25) can serve as a predictor of the stochastic dynamics of
the agent-based system. There, we explored the dependence of the results
on parameters K and R+. Figure 8 presents additional contour-plots of the
quantity Nc as a function of parameters f , d, and K. We expect the coop-
eration/cheating dynamics to accelerate evolution to the left of the dashed
lines on the graphs representing portions of the parameter space.

We also explored parameter dependencies that are beyond the applica-
bility of formula (25). Figure 9 presents results of stochastic simulations. In
Figure 9(a), we vary the total grid size of the simulation as well as the param-
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eter R−. We can see that the cooperator/cheater pathway can accelerate the
emergence of the m-hit mutant if the total population size is sufficiently large
(indicated by green). If the population size is too low, the rise of cheaters
drives all populations extinct (indicated by red). The higher the value of
R−, the lower this threshold population size. Figure 9(b) assumes a higher
mutation rate and corresponds to the regime where u/f is not small, such
that formula (25) breaks down. In this case, the cooperator-cheater path-
ways can accelerate the emergence of the m-hit mutant if the population size
lies below a threshold (indicated by green). If the population size is larger,
the higher mutation rate prevents the extinction of individual public goods,
and thus prevents the drop in fitness that is required for the m-hit mutant
to emerge (indicated by purple). A more detailed analysis of the parameter
dependence of the division of labor dynamics is subject of future work.

4.4 Alternative assumptions

We have explored the model in the context of a certain set of assumptions,
some of which can be formulated differently. This section shows that alter-
ations in these non-essential assumptions does not change the basic behavior
of the model.

For simplicity, it was assumed that the cooperation and reproduction
radii are identical. This need not be the case, and figure 10(a) shows that re-
laxing this assumption still leads to the accelerated evolution of the complex
phenotype through the cooperator/cheater pathway. Figure 10(a) presents
the result of stochastic simulation where two parameters were varied: the
cooperation radius and the mutation rate. The replication radius was kept
constant. The mutation rate was varied because it influences the level of
cooperators within the cooperation radius, which is a crucial determinant of
extinction events and thus of the outcome as explained above. Different col-
ors in the graph indicate whether or not the cooperator/cheater pathway on
average resulted in a faster emergence of the m-hit mutant than sequential
evolution. As the cooperation radius is increased, the cooperator population
within the radius rises, and this makes cheater-induced extinction of indi-
vidual cooperator types less likely. The chances of cooperator extinction,
however, are increased as the mutation rate is lowered. Therefore, the graph
shows that for larger cooperation radii, an accelerated emergence of them-hit
mutant requires lower mutation rates. Note that for relatively small cooper-
ation radii and small mutation rates, the cooperator/cheater pathway does
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Figure 9: Parameter dependence of the cooperation dynamics vs sequential dynamics
(numerical results from stochastic simulations). (a) The dependence on parameters n
(the linear size of the simulation domain) and R−. Red indicates the regime where the
total population size is too small, and the population growth is not sustainable. Green
indicates the regime where the division of labor dynamics leads to a faster production of
an m-hit mutant compared to the sequential evolution scenario. Other parameters are
u = 3.17 · 10−3, f = 1/70. (b) The dependence on parameters n and f (the cost of
cooperation). Green is as in part (a), and blue indicates the regime where the division
of labor dynamics do not led to a faster production of an m-hit mutant compared with
the sequential evolution scenario. Other parameters are R− = 0.135, u = 7.96 · 10−3. For
both parts (a) and (b) we have m = 5, K = 10× 10, R = 0.15, R+ = 0.5, d = 0.1.
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Figure 10: Altering the cooperation and reproduction radii in the model where wild-types
do not benefit from shared goods. (a) Varied are the cooperation radius and the mutation
rate, u. The reproduction radius is kept constant. Red squares correspond to cases where
the m-hit mutant is created significantly faster in the division-of-labor scenario compared
to sequential evolution. Blue circles correspond to the cases where division of labor does
not accelerate the emergence of m-hit mutants compared to sequential evolution. For each
point, 10 simulations were run both under the division of labor and sequential evolution
scenarios and the results were averaged. (b) Same type of simulation. Instead of varying
only the cooperation radius, both the reproduction and the cooperation radius were varied,
keeping the size of the two radii equal. The same picture emerges, showing that varying
the reproduction radius does not influence the qualitative outcome of the evolutionary
dynamics. Parameters were chosen as follows: the grid size is 100× 100; m = 5; R = 0.15;
R+ = 0.5; R− = 0.135; D = 0.1; f = 1/70. In the grid size under consideration, a radius
of 50 corresponds to mass-action.

not accelerate the emergence of the m-hit mutant. The reason is that in
this parameter regime, not enough cooperating types are generated by muta-
tions within the cooperation radius, such that the division of labor dynamics
cannot emerge.

Further, simulations indicate that keeping the cooperation radius con-
stant while varying the replication radius does not change the outcome of
the evolutionary dynamics on a qualitative level, because it does not alter
the level of cooperators in local neighborhoods. For comparison, we also
varied both radii together from relatively small values to mass action and
plotted the outcome in dependence of the mutation rate, figure 10(b). The
outcome is the same as varying only the cooperation radius. This figure also
shows that the validity of the evolutionary dynamics are not restricted to the
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Figure 11: Altering assumptions about the fitness of individuals. As in figure 2(a) of
the main text, simulations of three types were run for each of the pannels (a,b): (1) se-
quential evolution scenario, stopping at the m-hit mutant invasion (marked “sequentisl”),
(2) cooperation scenario in the absence of cheaters, stopping at the invasion of a hetero-
geneous couud of cooperators (marked “coop emergent”), and (3) cooperation scenario in
the presence of cheaters, stopping at the m-hit mutant invasion (marked “coop+cheating
m-hit mutant”). (a) This simulation assumes that cooperators are characterized by a
fitness cost f , cheaters by a smaller fitness cost f2, and wild-type by the absence of a
fitness cost. Compared to figure 2(a) of the main text, a lower mutation rate has been
chosen to make sure that the level of cooperators remains low enough such that individual
cooperators go extinct frequently. (b) This simulation, also based on figure 2(a) in the
main text, assumes that each intermediate mutant carries an independent fitness cost of
10%. Hence, the more intermediate mutations are accumulated, the higher the fitness cost
of the mutant. Parameters were chosen as follows: grid size is 100×100; m = 5; R = 0.15;
R+ = 0.5; R− = 0.135; D = 0.1; f = 1/70; f2 = 1/140; u = 3.17 × 10−3. Cooperation
and replication radii are both 10.

relatively small radii observed in the paper, but hold for all radii.

Another assumption we made was that cooperators carry a fitness cost
while other populations do not. The rational behind this assumption is that
cooperators produce larger amounts of a product, sufficient to be shared with
others. However, one can alternatively assume that cheaters also carry a fit-
ness cost, although a smaller one, because they also produce the product, but
in lesser quantities. Hence, we assumed that cheaters carry half the fitness
cost of cooperators, while wild-types do not carry a fitness cost. Because the
fitness of the cheaters is lowered under this assumption, the level of cooper-
ators becomes higher, making the extinction of individual cooperator types,
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and thus the emergence of the m-hit mutant, less likely. To increase the
chance that individual cooperator types go extinct, leading to the rise of the
m-hit mutant, the mutation rate needs to be lowered. Thus, we re-ran the
simulation shown in figure 3(a) of the main text with a lower mutation rate,
and the outcome is qualitatively the same, as shown in figure 11(a).

Finally, we explored alterations in the assumption about the fitness cost
of intermediate mutants. In our simulations, all intermediate mutants car-
ried the same fitness cost, regardless of how many mutations an agent had
accumulated. Instead, we now assume that each new mutation adds a fitness
cost, until an agent has accumulated m mutations and attains an advantage
compared to the wild-type. We re-ran the simulation of Figure 3(a) of the
main text to demonstrate that the evolutionary dynamics remain qualita-
tively identical, see figure 11(b).

5 Application to the in vivo evolution of HIV

In this section, we apply our model to the in vivo evolution of human immun-
odeficiency virus (HIV) infection. In particular, we consider the emergence
of mutants that escape cytotoxic T lymphocyte (CTL) responses.

Following infection, HIV replicates to high levels in the acute phase, and
virus load is eventually suppressed to lower levels, which marks the beginning
of the asymptomatic, or chronic, phase of the infection. The reduction in
virus load is at least in part due to anti-viral CTL responses that can act
both lytically by killing infected cells and non-lytically by secreting factors
that inhibit viral replication. Over time, the immune system loses control of
the infection, leading to the development of AIDS. Viral evolution in vivo,
and escape from CTL in particular (Ganusov et al., 2011) is thought to
contribute to the progression of the disease. In the presence of a narrow
CTL response (i.e. where just one immunodominant response largely fights
the virus), escape can readily occur, given that it can be achieved by simple
point mutations. In the presence of broader CTL responses, however, escape
is more difficult to achieve (Ganusov et al., 2011). It has been argued that a
sufficiently broad CTL response could prevent viral escape (Ganusov et al.,
2011). Yet, viral escape from multiple CTL responses has been observed in
patients that suppress virus relatively well (Crawford et al., 2009). Here, we
show that while escape from a relatively broad CTL response can indeed be
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an unlikely event if the virus accumulates mutations sequentially, it can occur
within a biologically realistic time frame in the context of the evolutionary
dynamics described in this paper.

A central component in these evolutionary dynamics is the presence of
cooperators and cheaters. Escape typically occurs if a mutation leads to loss
of binding to MHC class I molecules, or if a mutation destroys the ability of
the T cell receptor to bind its epitope (McMichael & Phillips, 1997). However,
mutations can also alter the binding properties between the peptide and the T
cell receptor such that besides failed lysis of the mutant-infected cell, activity
against the wild-type is also abolished. This is called T cell antagonism and
has been demonstrated to occur in HIV infection (Klenerman et al., 1994;
Meier et al., 1995). Antagonistic mutants are cooperative in nature because
they alleviate the wild-type virus from CTL-mediated activity (Davenport,
1995). In contrast, escape mutants that merely prevent killing of mutant-
infected cells, but do not benefit other types can be considered cheaters in
this context. We will refer to the cooperators as antagonistic mutants, and
the cheaters as escape mutants.

We have adapted our model to describe the escape of HIV from multiple
CTL responses directed against different epitopes of the virus, concentrating
on scenarios in which virus load is relatively low and the susceptible target
cells are abundant. This corresponds to relatively strong immunological con-
trol of the virus, a situation in which escape from a broad CTL response
is likely to be most challenging. Because the number of uninfected, suscep-
tible target cells is assumed to be not limiting, this population of cells is
not explicitly taken into account in our simulations. The model tracks the
number of infected cells. Consider wild-type viruses first. With a proba-
bility R, the infected cell gives rise to a newly infected cell, a process that
includes viral replication in the source cell as well as the transmission of
offspring virus to a target cell. With probability D, an infected cell dies.
This probability includes both virus-induced cell death, and CTL-induced
cell death. The CTL population is not modeled explicitly, but expressed as a
constant which adds to the death rate of infected cells. Next, consider escape
mutants. They are known to carry a fitness cost relative to the wild-type
virus (Crawford et al., 2009; Ganusov & De Boer, 2006). Although com-
pensatory mutations may occur that lessen this cost, the escape mutant is
still thought to be less fit than the wild-type. Hence, we assume that escape
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mutants are characterized by a replication probability R−, where R− < R. If
a virus has escaped all CTL responses under consideration, the infected cell
has a reduced death probability, D−. In addition, it is also assumed to have
a raised replication probability because of reduced non-lytic CTL-mediated
activity, which is denoted by R−∗. Finally, consider antagonistic mutants.
They are assumed to carry the same replicative cost as escape mutants, and
their replication probability is thus given by R−. If a virus antagonizes all
CTL responses under consideration, the appropriate infected cell is charac-
terized by the lower death probability D− and by the replication probability
R−∗. The same probabilities also apply to any infected cell if an antagonist
of each CTL response is present within its cooperation radius. In contrast to
escape mutants, antagonists are assumed to carry an additional cost, f , for
cooperating, which is subtracted from their replication probability. As with
the model presented in the main text, we also assume a replication radius,
defining the area in which a target cell has to be located to be infected by
a source cell. Mutations occur with a probability u, and follow the scheme
outlined in Figure 1 in the main text.

Many parameters are known for HIV infection, and these parameter val-
ues were used in simulations. We take the time between updates in the
simulation to be 0.2 days. The mutation rate is assumed to be 3× 10−5 per
base pair per generation (Mansky & Temin, 1995). It is unclear how many
nucleotide substitutions can lead to viable escape within an epitope. It is
likely to be a small number that varies from epitope to epitope, and we have
assumed it to be ten in the model, although results do not depend on this as-
sumption. Back mutations occur through one specific mutation. The death
rate of (productively) infected cells is around 0.5day−1, which translates into
D = 0.1 (Perelson et al., 1996). The basic reproductive ratio of HIV has
been estimated to be around R0 = 8 (Little et al., 1999; Ribeiro et al., 2010).
For this to be true in our model, the replication probability must be R = 0.8.
These parameters are assumed to apply to the wild-type. For mutants, the
following additional considerations apply. While the exact cost of escape has
not been quantified (Ganusov & De Boer, 2006), compensatory mutations
have been documented which, however, still leave the mutant with a disad-
vantage compared to the wild-type. We assume a 10% fitness cost of the
escape mutant such that R−=0.72. The contribution of CTL killing to the
infected cell death rate has been examined (Asquith et al., 2006; Wick et al.,
2005). While exact estimates vary, it was consistently found to be relatively

27



low. We assumed that 20% of infected cell death is attributable to CTL (in-
cluding all clones). Hence, D− = 0.08. This death rate applies to all infected
cells that are either infected with a full escape mutant, or escape all CTL
clones through cooperation. Such infected cells are also characterized by an
increased replication rate due to a reduction in CTL-mediated non-lytic ac-
tivity. The extent of CTL-mediated non-lytic reduction of viral replication is
unclear, so a modest 10% is assumed, such that R−∗ = 0.8. It is currently not
known whether cooperation through antagonism carries a cooperation cost.
Since cooperative interactions often do involve costs, we assumed a relatively
small cost of f = 0.02. The total number of infected cells varies greatly
among patients. In some patients, the total count of infected cells has been
estimated to be around 107-108 (Chun et al., 1997). Because we are interested
in escape in the context of relatively efficient virus control, we assume a total
infected cell count of the order of about 105. Regarding the cooperation and
replication radii in the model, the following was assumed. Perfect mixing or
mass action was implemented for viral replication. Although lymph nodes
have some spatial structure, cells do mix relatively well and there is so far
no evidence for spatial effects in HIV dynamics. The cooperation radius was
taken to be 10. That is, a cooperator can only benefit a subset, and not all
infected cells in the body, which is a reasonable assumption.

Figure 12 shows the results of the simulations, assuming that a virus
needs to escape 4 different CTL clones. While a mutant that escapes all CTL
responses comes up in about 100 years in the sequential evolution scenario, it
arises within about 5 years through the cooperator/cheater pathway. The use
of measured parameters therefore demonstrates that the cooperator/cheater
pathway can significantly speed up the emergence of escape from broad CTL
responses in HIV infection. While some parameters are known precisely,
others could only be estimated roughly. Our model allows us to specify
ranges of these parameters for which the cooperator-cheater dynamics are
expected to speed up the emergence of a full escape mutant.

An interesting observation is that while escape mutants are quite readily
observed in acute HIV infection, they are much less likely to emerge during
the chronic phase (Ganusov et al., 2011). In acute infection, virus load can
rise to very high levels, enhancing mutant generation, and initial immune
responses can be more narrow. Lower virus loads during chronic infection
and possibly the presence of broader responses makes it more difficult for
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Figure 12: Application to CTL escape in HIV infection, based on an adapted version
of the model that has been parameterized using estimates available in the literature.
Cooperator mutants are T cell antagonists, while cheater mutants are escape strains that
only benefit themselves. We consider the evolution of mutants that simultaneously escape
4 CTL clones. (a) In the sequential evolution scenario, it takes approximately 100 years
for the complete escape mutant to emerge. Wild-type-infected cells are shown in red, cells
infected with partial mutants in blue, and cells infected with complete escape mutants
in green. (b) With the cooperator/cheater pathway, the complete escape mutant arises
within 5 years. Wild-type infected cells are shown in red, cells infected with partial mutant
viruses that cooperate at least in one site are shown in blue, cells infected with partial
mutant viruses that cheat in all sites are shown in pink, and cells infected with complete
escape mutant viruses are shown in green. The plots are based on individual realizations
of the simulation, and are representative examples of the behavior of the stochastic model
under the two assumptions.
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escape mutants to arise. It is intriguing to hypothesize that the rise of escape
mutants during chronic infection requires special evolutionary pathways, as
described in this paper.

While it is interesting to adapt the model to HIV infection and to show
that the evolutionary dynamics described in this paper could be applicable
in the context of measured parameters, it is important to note that this is a
simplified model that ignores several aspects of HIV infection. In the evolu-
tionary context, the process of recombination is not included in the model.
HIV has a diploid genome, and if a cell is simultaneously infected with differ-
ent strains, two different genomes can be packaged in the same viral particle.
Upon infection of a new target cell, recombination can occur during the pro-
cess of reverse transcription (Jung et al., 2002; Levy et al., 2004), allowing
different mutations to be brought together in a single viral genome. Mathe-
matical models have shown that recombination can slow down or accelerate
multi-resistant mutants in HIV infection, or have no effect, depending on the
particular scenarios and assumptions considered (REF). In the context of the
dynamics examined here, simulations have shown that recombination does
not accelerate the emergence of the m-hit mutant in the sequential evolution
scenario. This would require that different partial mutants infect the same
cell. The partial escape mutants, however, are characterized by reduced fit-
ness relative to the wild-type and are therefore only maintained at low levels
at a selection-mutation balance. This makes it extremely unlikely that a cell
is infected with different partial escape mutants, and recombination is not
likely to influence the evolutionary dynamics in this context.

Also note that the literature suggests different mechanisms of CTL antag-
onism. One study (Sewell et al., 1997) has argued that antagonism requires
the wild-type and the mutant epitopes to be presented on the same infected
cell, a scenario that is different from the one assumed in our model. Another
study (Meier et al., 1995), however, clearly shows that wild-type virus can
benefit from the antagonistic mutant even if it is presented on a different
target cell, confirming the assumption made in our model.
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