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Materials and Methods 

 

Mice  

C57BL/6 specific pathogen-free mice were purchased from Taconic Farms and The 

Jackson Laboratory. Germ-free C57BL/6 mice were bred at Taconic Farms and 

maintained in the NIAID gnotobiotic facility. B6.129S1-Tlr3tm1Flv/J (Tlr3−/−), Il-1r1−/−, 

and B6.129S7-Rag1tm1Mom (Rag1−/−) were obtained through the NIAID Taconic exchange 

program from Taconic Farms. B6.129S2-Il6tm1Kopf/J (Il-6−/−) mice were obtained from 

The Jackson Laboratory. Il-23r−/− animals were a kind gift from Dr. M. Oukka (Seattle 

Children’s Research Institute). B6.129-Tlr2tm1Kir/J (Tlr2−/−), B6.129P2-Tlr5tm1Aki 

(Tlr5−/−), B6.129P2-Tlr9tmAki (Tlr9−/−), B6.129P2-Myd88tmAki (Myd88−/−) and Myd88-/-

/Ticam2-/- mice were generous gifts from Dr. A. Sher (NIAID/NIH). B6.129P2-Il18tmAki/J 

(Il-18−/−) and C57BL/9-Tnfrsf1atm2.1Rsie (Tnfr1−/−) mice were obtained from Dr. G. 

Trinchieri (NCI/NIH) and Dr. R. Siegel (NIAMS/NIH), respectively. All mice were 

maintained at and all experiments were performed in an American Association for the 

Accreditation of Laboratory Animal Care-accredited animal facility at the National 

Institute for Allergy and Infectious Diseases (NIAID) and housed in accordance with the 

procedures outlined in the Guide for the Care and Use of Laboratory Animals under an 

animal study proposal approved by the NIAID Animal Care and Use Committee. Gender- 

and age-matched mice between 8-12 weeks of age were used. 
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Mouse tissue processing  

Ears were excised and separated into the ventral and dorsal sheets. Flank (dorsal) skin 

was shaved with chrom mini (Wahl), adipose tissue was removed with a number 10 

scalpel, and skin was cut in 1cm by 1cm pieces.  Tissue samples were digested in RPMI 

containing 100 U/ml penicillin, 100 μg/ml streptomycin, 55 M -mercaptoethanol, 20 

M HEPES (HyClone), and 0.25 mg/ml Liberase purified enzyme blend (Roche 

Diagnostic Corp.), and incubated for 2 hours at 37°C and 5% CO2. Digested skin sheets 

were homogenized using the Medicon/Medimachine tissue homogenizer system (Becton 

Dickinson). For isolation of keratinocytes, flank (dorsal) skin was shaved, adipose tissue 

was removed and skin was placed on 0.25% Trysin EDTA (Invitrogen) for 35-60 min at 

37°C and 5% CO2. Epidermal cells were manually scraped using a number 10 scalpel. 

Cells from spleen, the lymph nodes and the small intestine lamina propria were isolated 

as previously described (19). 

 

Phenotypic analysis 

Single cell suspensions were stained with either LIVE/DEAD Fixable Blue Dead Cell 

Stain Kit (Invitrogen) or 4', 6-diamidino-2-phenylindol (DAPI, Sigma) in HBSS to 

exclude dead cells. For detection of transcription factors, cells were stained using the 

Foxp3 staining set (eBioscience) according to the manufacturer’s protocol. For detection 

of intracellular cytokines or langerin expression, cells were fixed and permeabilized with 

BD Cytofix/Cytoperm and stained in BD Perm Wash buffer (BD Biosciences). Cells 

were stained with the following antibodies purchased from either eBioscience, BD 
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Biosciences, or Dendritics corp: CD45.1 (A20), CD45.2 (104), TCR (GL3), 

TCR(H57-57), CD4 (RM4-5), IL-10 (JES5-16E3), IL-17A (ebio17B7), IFN-

(XMG1.2), TNF- (MP6-XT22), Foxp3 (FJK-16a), Siglec-F (E50-2440), MHCII 

(M5/114.15.2) CD11b (M1/70), CD11c (N418), FcRI (Mar-1), C-kit (2B8), Langerin 

(929F3.01), CD103 (2E7), 6 (eBioGoH3), CD34 (RAM34), CD44 (IM7) and/or CD25 

(PC61.5). Staining was performed in the presence of FcBlock (eBioscience), 0.2 mg/ml 

purified rat IgG and 1 mg/ml of normal mouse serum (Jackson Immunoresearch). Stain 

for skin homing markers was performed as previously described (34).  

 

Immunofluorescense microscopy  

Mouse skin samples were fixed in 10% formalin and paraffin embedded. Paraffin 

sections were dewaxed and washed with 95% ethanol followed by methanol hydrogen 

peroxide. The sections were then treated with a heat induced epitope retrieval (HIER) 

procedure using rodent Decloaker solution (Biocare Medical, RD913) and the Biocare 

decloaking chamber. After being washed in Tris pH 7.4, sections were incubated in the 

presence of rat serum and FcBlock (24G2) followed by rabbit anti-Escherichia coli B 

(DAKO, B0357) diluted in the blocking solution.  Samples were washed in Tris and then 

incubated with goat anti-rabbit IgG-Texas Red antibody (Invitrogen, T2767).  The tissue 

was then counterstained with HOECSHT, and imaged using a Leica DM IRBE 

fluorescent microscope. 

Lymph nodes were harvested and fixed in 0.05 M PBS containing 0.1 M L-lysine (pH 

7.4), 2 mg/ml NaIO4, and 10mg/ml paraformaldehyde for 12 hrs. Samples were washed 
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in phosphate buffer and dehydrated in 30% sucrose phosphate buffer. Spleens were snap 

frozen in Tissue-Tek (Sakura Finetek). Sections were cut on cryostat. Lymphoid tissue 

samples were stained with LYVE-1 (Novus Biologicals), B220, CD4 (BD Biosciences), 

CD8 (Caltag), Collagen IV (Abcam), FDC-M2 (Immunokontact) followed by secondary 

staining with goat anti-rabbit or goat anti-rat antibodies (Invitrogen).  

 

Antibiotic treatment  

Female 3-week-old C57BL/6 mice were provided ampicillin (1 g/l), vancomycin (500 

mg/l), neomycin trisulfate (1 g/l), and metronidazole (1 g/l) in drinking water for 4 to 8 

weeks as previously described (19) Mice were infected with L. major 4 weeks post-

antibiotic treatment and maintained on antibiotics for the duration of the infection. All 

antibiotics were purchased from Sigma-Aldrich. Germ free animals were treated with 

vancomycin (500 mg/l) in drinking water starting one week prior to topical association 

with S. epidermidis maintained on antibiotic water for the duration of the experiment.   

 

DNA extraction from skin and gut flora and 454 analysis 

Ear and flank skin samples were sterilely obtained and processed using a protocol 

adapted from Grice et al (9). DNA was extracted from fecal pellets using QIAamp DNA 

stool mini kit (Qiagen). For quantitative analysis of 16S rDNA, real time PCR was 

performed using primers BacF (5’-CGGCAACGAGCGCAACCC-3’) and BacR (5’-

CCATTGTAGCACGTGTGTAGCC-3’) (35). For sequencing of 16S rDNA amplicon 

libraries were prepared from sample DNA using Accuprime High Fidelity Taq 
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polymerase (Invitrogen) and universal primers flanking variable regions V1 (primer 27F; 

5’-AGAGTTTGATCCTGGCTCAG-3’) and V3 (primer 534R; 5’-

ATTACCGCGGCTGCTGG-3’). For each sample, the universal primers were tagged 

with unique sequences ("barcodes") to allow for multiplexing/demultiplexing (36) PCR 

products were then purified using the Agencourt Ampure XP Kit (Beckman Counter 

Genomics) and quantitated using the QuantIT dsDNA High-Sensitivity Assay Kit 

(Invitrogen). Approximately equivalent amounts of each PCR product were then pooled 

and purified with a Qiagen minElute column (Qiagen) into 30 l TE buffer prior to 

sequencing at the NIH Intramural Sequencing Center. Amplicon libraries were sequenced 

on a 454 FLX instrument using Titanium chemistry. Flowgrams were processed using the 

454 Basecalling pipeline (v2.5.3). Sequence pre-processing, alignment and chimera 

removal: mothur (version 1.21.0)(37) was used for all 16S rRNA gene sequence analysis 

steps. Prior to analysis, sequences were trimmed of low quality ends and filtered to retain 

sequences with a minimum length of 200 bp. After alignment to a bacterial reference 

alignment (SILVA), chimeras were removed using the chimera slayer implementation in 

the mothur package. Biodiversity and phylogenetic analyses: From the alignment, a 

distance matrix was calculated and sequences were clustered into OTUs using the 

average neighbor algorithm at a cutoff of 0.03. Taxonomic classification of reads 

clustered in OTUs was done using the RDP Classifier included in mothur. A phylogenetic 

tree was generated from a relaxed neighbor-joining algorithm using the Clearcut program 

available via mothur. Unweighted and weighted UniFrac analyses (mothur & FastUnifrac 

http://bmf.colorado.edu/fastunifrac/) were subsequently done from the phylogenetic data 
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to evaluate community differences. Principal coordinate analysis (PCoA) was used to 

visualize distribution patters from UniFrac distances. 

 

Cohousing and microbial reconstitution  

Wild-type age matched females were tail tattooed and housed in the same cage with equal 

number of respective knockout mice for at least two weeks. For association of germ-free 

mice with SFB (a kind gift from Dr. Yoshinori Umesaki (24)), fecal pellets isolated from 

SFB mono-associated mice were reconstituted in sterile PBS and 200 μl of this 

suspension was administered to each germ-free mouse by gavage in sterile isolator. SFB 

reconstitution was confirmed by qPCR of fecal 16S rDNA relative to negative GF 

controls as previously described (38). Mono-associated mice were maintained for 1-2 

weeks prior to analysis. For mono-association of germ-free mice with Staphylococcus 

epidermidis, clinical isolate NIHLM087 (9) was cultured for 18 hrs in tryptic soy broth at 

37°C. Germ free mice were associated by placing 100 – 500 l of overnight S. 

epidermidis bacterial suspension on ear and flank skin using a sterile cotton swab every 3 

days for one to two weeks. For infectious studies, mice were topically associated either a 

week prior or at time of L. major inoculation. S. epidermidis reconstitution was 

confirmed by sterilely homogenizing ear skin and plating on tryptic soy agar for 18 hrs. 

 

ELISA 

Naïve or infected skin tissue homogenates were cultured for 18 hrs in RPMI containing 

100 U/ml penicillin, 100 μg/ml streptomycin, 55 M -mercaptoethanol, 20 M HEPES 
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(HyClone) and 10% FBS at 37°C. Supernatants were collected and levels of 

inflammatory mediators were measured either ELISA (R&D Systems) or multiplex 

(Millipore). 

 

NanoString nCounter analysis 

nCounter Gene Expression Assay was performed using two specific probes (capture and 

reporter) for each gene of interest. In brief, cell lysates from 10,000 cells per sample were 

hybridized with customized Reporter CodeSet and Capture ProbeSet according to 

manufacturer’s instructions (NanoString Technologies, Seattle, USA), for direct labeling 

of mRNAs of interest with molecular barcodes without the use of reverse transcription or 

amplification. Then, the hybridized samples were recovered with the NanoString Prep 

Station and the mRNA molecules counted with the NanoString nCounter. The resulting 

counts were corrected by subtracting the average value of the negative control (alien 

probes from the CodeSet, lacking spiked transcript) from the raw counts obtained for 

each RNA. Values less than zero were considered equal to 1. The corrected raw data 

were finally normalized using Gapdh as housekeeping gene. 

 

Leishmania major infection and parasite enumeration 

Mice were infected in the ear dermis with 104-105 L. major metacyclic promastigotes 

clone V1 (MHOM/IL/80/Friedlin) in a volume of 5 μl, using a 27 1/2 G needle as 

previously described (26) Lesion sizes were measured using an engineer caliper 

(Mitutoyo). To enumerate parasite, cytospin slides prepared from single cell suspensions 
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of dermal lesions were stained with diff-quick (Fisher Scientific). Parasites and total 

number of nucleated on each slide were counted using a light microscope. 

 

Generation of Bone Marrow Chimeras 

Bone marrow was extracted from hind legs of knockout and wildtype animals and T cell 

depleted using CD90.2 microbeads (Miltenyi). 5 week old Rag1 deficient/ CD45.1 

animals were lethally irradiated and reconstituted with either 10 million mixed WT: KO 

bone marrow cells in a 30: 70 ratio or individually into separate hosts (see figure S5H-I). 

Animals were maintained on antibiotics for up to one week after reconstitution. 

Cutaneous and intestinal lymphocytes were assessed 12-16 weeks after reconstitution.  

   

In vitro T cell restimulation 

For detection of basal cytokine potential, single cell suspensions from various tissues 

were stimulated directly ex vivo with 50 ng/ml phorbol myristate acetate (PMA)/ (Sigma) 

and 5 μg/ml ionomycin (Sigma) in the presence of brefeldin A (GolgiPlug, BD 

Biosciences) in RPMI 1640 supplemented with 10% FBS, penicillin, streptomycin, 

HEPES, glutamine, nonessential amino acids, and 50 M of β-mercaptoethanol for 4 

hours at 37°C and 5% CO2. For Leishmania specific stimulations, single cells 

suspensions were stimulated in the presence of soluble Leishmania antigen for 18 hrs. 

Brefeldin A (GolgiPlug, BD Biosciences) was added to cultures for the last 8 hrs. For ex 

vivo cytokine production analysis post L. major infection, skin tissue was digested in the 

presence of Brefeldin A and isolated cells were then incubated in the presence of 
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Brefeldin A and RPMI 1640 supplemented with 10% FBS, penicillin, streptomycin, 

HEPES, glutamine, nonessential amino acids, and 50 M of β-mercaptoethanol for 4 hrs 

at 37°C and 5% CO2.  CD4+ T cells, based on the expression of TCR and CD4 and 

dermal T cells, based on intermediate expression levels of the pan  TCR, were sorted 

from the skin of SPF mice. Purified cells T cells were cultured in CD3 (1g/ml) coated 

plates in the presence or absence of IL-1, IL-1 (10ng/ml) or IL-6 (15 ng/ml) and 

supplemented with 10% FBS, penicillin, streptomycin, HEPES, glutamine, nonessential 

amino acids, and 50 M of β-mercaptoethanol for 48hrs at 37°C and 5% CO2. Cytokine 

expression in the cell culture supernatants was assayed using FlowCytomix Multiplex 

Technology (ebioscience) and was adjusted to the plated density of 5x103 cells in 50l 

total culture volume.  

 

In vivo cytokine administration 

Naïve or L. major infected animals were treated intraperitoneally with either 250 mg/kg 

of recombinant human IL-1ra / Kineret (Biovitrum) or PBS control daily for 7 days 

starting at the time of infection and/or bacterial mono-association.  

 

Statistics 

Unpaired Student t test was used to compare the corresponding populations. Error bars 

represent standard error of the mean. 
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Supplementary Figure Legends   

 

Fig. S1. (A) Gating strategy for T cells from skin tissue. (B) Representative plots of 

Foxp3 expression in live CD45+ TCR+ cells, IFN- and IL-17A expression in live 

CD45+ TCR+ cells, and IL-17A in live CD45+ TCR+ cells and negative isotope control 

from skin tissue of SPF animals. (C) Representative plots of IL-17A expression by CD4+ 

and CD4 CD8 double negative TCR+ cells. (D) Numbers of Foxp3+ Tregs, IFN-+ and 

IL-17A+ TCR+ cells, and IL-17A+ TCR+ from skin tissue of SPF () and GF () 

mice. Results are a compilation of 3-5 experiments (*p< 0.05) 

 

Fig. S2. (A) Representative plots of IFN-, and Foxp3 expression in live CD45+ TCR+ 

CD4+ cells and IL-17A expression in live CD45+ cells extracted from cutaneous lymph 

nodes of SPF () and GF () mice post PMA/ Ionomycin stimulation. Results are 

representative of 3 experiments. (B) Summary of skin homing markers expressed by T 

cells in from blood, cutaneous lymph node, and spleen of SPF and GF mice. Skin homing 

subsets were defined as follows: CD44hi CD4+ T regs and T effectors were evaluated for 

CD103 and high P-selectin ligand surface expression and CD44hi CD8+ T effectors were 

analyzed for high P-selectin ligand surface expression. Results are representative of 2 

experiments. (D) Quantification of total CD45+ hematopoietic cells from the skin and 

associated lymph node of SPF () and GF () mice. Error bar is a mean of 4 mice ± 

SEM. Results are representative of 3 experiments. (D) Frequency of TCR+ and TCR+ 
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subsets from the skin tissue of SPF () and GF () mice Error bar is a mean of 4 mice ± 

SEM. Results are representative of 3 experiments.  (E-F) Summarized proportions of 

eosinophils, mast cells, and various dendritic cell subsets from skin tissue of SPF () and 

GF () mice. Gating strategy for various dendritic cell subsets in skin. Cells are gated on 

live CD45+ CD11c+ and MHCII+. Subsets are defined as follows: Langerin cell (16) are 

gated on CD11b+ CD207+ (Langerin) cells, Langerin+ Skin DC (CD103 DC) are gated on 

CD11b- CD103+ cells, Skin Dendritic cell (DDC) gated on Langerin− CD11b− cells and 

double negative skin dendritic cells (DNDC) are gated on CD11b- Langerin-. Error bar is 

a mean of 4 mice ± SEM. Results are representative of 2-3 experiments. (G) 

Representative images of retroauricular lymph node sections from naïve SPF and GF 

mice immunolabeled with anti-B220 (White; labels B cells), CD8 (Red) CD4 (Blue) and 

Collagen IV (Green). Results are representative of 2 experiments. 

 

Fig. S3. (A-B) Comparative analysis of IL-17A and IFN-γ expression in intestine and 

skin of SPF, GF, and GF mice mono-associated with Segmented Filamentous Bacteria 

(SFB). Flow cytometry plots are gated on live CD45+ TCRβ+ cells. (***p<0.0005). 

Results are representative of 2 experiments. (C) Representative plots of IFN- and Foxp3 

expression in the skin of SPF, and GF mice mono-associated with Segmented 

Filamentous Bacteria (SFB). Plots gated on live CD45+ TCR+ cells. Results are 

representative of 2 experiments. (D) Quantification of 16S rDNA copies in the skin tissue 

and fecal pellet of mice treated with oral antibiotic (ATB) or water control (Ctrl). Results 

are representative of 2 experiments. (E) Taxonomic affiliations at the phyla levels of 16s 
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rRNA gene sequence data clustered at 97% identity from skin tissue and fecal pellet of 

control and antibiotic treated mice. Principal coordinate analysis (PCoA) of unweighted 

pairwise UniFrac distances from a phylogenetic tree of unique reads. (F) Representative 

plots from GF mice associated with S. epidermidis and treated with oral vancomycin 

(ATB) or unsupplemented water (Ctrl). Results are representative of 1 experiment with 4 

mice per group. 

 

Fig. S4. (A) Representative plots of Leishmania antigen specific IFN-and TNF-

production by live CD45+TCR+ CD4+ dermal cells from naïve and L. major infected 

skin tissue of SPF animals. (B) Analysis of Leishmania specific IL-10 production by live 

CD45+ TCR+ CD4+ cells from SPF () and GF () mice. Each bar is a mean of 10 

mice ± SEM. Results are representative of 3 experiments. (C) Frequency of regulatory T 

cells (live CD45+ TCR+ CD4+ Foxp3+) in L. major infected skin lesions of SPF () and 

GF () mice. Each bar is a mean of 4 mice ± SEM. Results are representative of 3 

experiments. (D) Number of L. major parasites per 1000 nucleated cells from dermal 

lesions of infected SPF (), GF (), and GF mice mono-associated with Staphylococcus 

epidermidis (GF +S.epi ()). Results are representative of 2 experiments. Each data point 

represents an individual mouse (*p< 0.05, **p< 0.005). (E-F) Assessment of Leishmania 

specific IFN-γspecific production by TCRβ+ CD4+ in GF + S. epi mice treated with either 

oral vancomycin (ATB ()) or water (Ctrl ()). Each data point represents an individual 

mouse.  Results are representative of 1 experiment. 
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Fig. S5. (A) Expression of IL-17A by live CD45+ skin cells from various knockout mice 

relative to wild type control mice. Each bar is representative of 2-3 experiments with 2 to 

4 mice per groups. (B) IL-17A production by live CD45+ TCR+ cells from the skin of 

age matched Myd88−/− and Il1r1−/− mice. Error bar is a mean of 3-4 mice ± SEM (**p< 

0.005). Results are representative of 2-3 experiments.  (C) Expression of IFN- by live 

CD45+ TCR+ skin cells from various knockout mice relative to wild type controls. Each 

bar is representative of 2-5 experiments. (D) Expression of IL-17A by live CD45+ skin 

cells from Tlr2, Tlr3, Tlr5 and Tlr9−/− mice relative to wild type control mice. Each bar is 

representative of 2-3 experiments with 2 to 4 mice per groups. (E) Assessment of IL-17A 

production from purified dermal TCRlow cultured in vitro in the presence of anti-CD3 

and either IL-1, IL-1 or IL-6. Error bar is a mean of 3 experimental groups ± SEM 

(*p< 0.05). Results are representative of 3 experiments. (F) Gene expression analysis of 

IL-1, IL-1 and IL-1ra in interfollicular 6+ keratinocytes from SPF () and GF () 

using NanoString nCounter analysis (**p< 0.005). (G) Spontaneous release of IL-1ra 

from skin derived cells of naïve SPF (), GF (�), and GF + S.epi () mice as measured 

by ELISA (*p< 0.05). (H-I) Schematic for generation of bone marrow chimeras to 

evaluate immune cells in the skin. Gating strategy for identifying wild type (WT) and 

Myd88-/-/Ticam2-/- cells in skin of bone marrow chimeric mice. (J) Number of L. major 

parasites per 1000 nucleated cells from dermal lesions of infected WT () and 

Myd88−/−/Ticam2−/− () mice. Each data point represents an individual mouse (*p< 

0.05). 
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