

Fig. S1. Antibody and shRNA specificity for MEF2A and MEF2A expression in regeneration. (A) RT-PCR (left) and western blot (right) analysis of C2C12 DIFF3, post-transduction with sh*lacZ* or sh*Mef2a*. 18S rRNA and GAPDH are loading controls. (B) Immunoblot of MEF2-FLAG expression in COS cells with the MEF2A antibody (C-21, Santa Cruz). GAPDH is the loading control. (C) Immunoblot of MEF2A expression in uninjured (ctl) and injured (ctox, day 7) skeletal muscle from WT and Mef2a KO mice. (D) RT-PCR analysis of *Mef2a* expression in differentiation using uninjured primary myoblasts. (E) Hematoxylin and Eosin staining of transverse TA muscle sections at day 21 post-injury. Data reveals substantially improved myofiber formation in regenerating *Mef2a* KO.

Fig. S2. C2C12 differentiation mimics regenerating primary myocytes. RT-PCR time course of myogenic marker expression during differentiation, myoblasts (Mb) through DIFF 5, in C2C12 cells and primary WT myocytes.

Fig. S3. miR expression patterns mimic MEF2A. (A) Expression of selected miRNAs in various tissues are displayed relative to the brain (normalized to 100%) (n=3). (B) Immunoblot of MEF2A expression in control (ctl) and regenerating muscle (days 3-14). (C) Mef2a expression in primary WT myocytes and C2C12 cells during differentiation. (D) miR expression in C2C12 cells during differentiation. (E-I) Expression of individual miRs in WT and Mef2a KO primary myocytes during differentiation. Myoblast (Mb) and DIFF 1-5 (D1-D5) time points are indicated. Changes in expression are displayed as linear trendlines. Error bars represent s.e.m.

Oligo	Direction	Sequence 5' to 3'	
18SrRNA	Forward	CATTCGAACGTCTGCCCTAT	
2-2007	Reverse	CCTCCAATGGATCCTCGTTA	
Mef2a	Forward	ACACGCATAATGGATGAGAGGAACCGAC	
	Reverse	CAACGATATCCGAGTTCGTCCTGCTTTC	
Mef2b	Forward	GAAAGAAAGCCGCTCTGCACAG	
	Reverse	ACCTCTGGCCCCTCCTCCATA	
Mef2c	Forward	CAGGGACGAGAGAGAAAC	
	Reverse	CAATCTTTGCCTGCTGATCATTAG	
Mef2d	Forward	CTTTCCTCTCTGGCACTAAGGAC	
	Reverse	CCAGTCTATAACTCTGCATCATC	
MyoD	Forward	TCGAAGGTCTGCAGGCTCTGC	
, 0.0	Reverse	TGCAGTCGATCTCTCAAAGCACC	
Myogenin	Forward	TGGAGCTGTATGAGACATCCC	
Wyogeriin	Reverse	GAGTTGCATTCACTGGGCAC	
MCK	Forward	CTGACCCCTGACCTCTACAAT	
W.E.C.	Reverse	CATGGCGGTCCTGGATGAT	
qRT-PCR	In	C	
Oligo	Direction	Sequence 5' to 3'	
GAPDH	Forward	TGGCAAAGTGGAGATTGTTGCC	
Dlk1	Reverse	AAGATGGTGATGGGCTTCCCG	
DIKT	Forward	AGTGCGAAACCTGGGTGTC	
OUD	Reverse	GCCTCCTTGTTGAAAGTGGTCA	
Gtl2	Forward	TGGAATAGGCCAACATCGTCA	
	Reverse	AGGCTCTGTGTCCATGTGTCC	
pre-miR-127	Forward	TITIGATCACTGTCTCCAGCCTGCTG	
EDD4	Reverse	GATGATGAGACTTCCGACCAGCCA	
sFRP1	Forward	CAACGTGGGCTACAAGAAGAT	
sFRP2	Reverse	GGCCAGTAGAAGCCGAAGAAC	
	Forward	CCCCTGTCTCGACGA	
	Reverse	CTTCACACACCTTGGGAGCTT	
sFRP4	Forward	AGAAGGTCCATACAGTGGGAAG	
	Reverse	GTTACTGCGACTGGTGCGA	
Axin2	Forward	TGACTCTCCAGATCCCA	
CO -DNIA - 4	Reverse	TGCCCACACTAGGCTGACA	
5S rRNA stem loop	Forward	GTTGGCTCTGGTGCAGGGTCCGAGGTATTCGCACCAGAGCCAACAAAGCC	
miR 540-3p stem loop	Forward	GTTGGCTCTGGTGCAGGGTCCGAGGTATTCGCACCAGAGCCAACACAGAG	
miR 433 stem loop	Forward	GTTGGCTCTGGTGCAGGGTCCGAGGTATTCGCACCAGAGCCAACACACCG	
miR 495 stem loop	Forward	GTTGGCTCTGGTGCAGGGTCCGAGGTATTCGCACCAGAGCCAACAAGAAG	
miR 381 stem loop	Forward	GTTGGCTCTGGTGCAGGGTCCGAGGTATTCGCACCAGAGCCAACACAGAG	
miR 410 stem loop	Forward	GTTGGCTCTGGTGCAGGGTCCGAGGTATTCGCACCAGAGCCAACACAGG	
5SrRNA	Forward	GAATACCGGGTGCTGTAGGC	
miR 540-3p	Forward	CAAGGGTCACCCTCTGACTCT	
miR 433	Forward	ATCATGATGGCCTCCTCGGT	
miR 495	Forward	GCCAAACAACATGGTGCACTT	
miR 381	Forward	GCCTATACAAGGGCAAGCTCTC	
miR 410	Forward	CCGCCAATATAACACAGATGGCC	
ChIP -39 MEF2	Forward Reverse	TCTGGGGGGCTCATTTTTCCG GAGCCGAGGCGAGCTCTATTC	
	Reverse	an occan doctando lo la lito	
EMSA		A-T2	
Oligo	Direction	Sequence 5' to 3'	
-39 MEF2	Sense	AAGGCTGCGCCTTTATATAAACCCCA	

Oligo	Direction	Sequence 5' to 3'	
-39 MEF2	Sense	AAGGCTGCGCCTTTATATAAACCCCA	
	Antisense	AAGGTGGGTTTATATAAAG GCGCAG	
-39 MUT	Sense	AAGGCTGCGCGGGTATATAAACCCCA	
	Antisense	AAGGTGGGTTTATATACCCGCGCAG	

Table S1. Oligonucleotide sequences. Oligonucleotides used for RT-PCR/qRT PCR and EMSA analyses. DNA binding sites in EMSA oligonucleotides are underlined.

Gene Symbol	Fold Change
miR-337	-1.7
miR-540	-1.6
miR-665	-1.3
miR-431	-1.2
miR-341	-1.4
miR 370	-1.3
Rian/MBII-343	-2.1
miR-379	-1.7
miR-411	-1.4
miR-299	-1.6
miR-380	-1.4
miR-329	-1.6
miR-494	-1.3
miR-679	-1.6
miR-666	-1.4
miR-543	-1.7
miR-667	-1.4
miR-376c	-1.2
miR-376b	-1.2
miR-376a	-1.1
miR-300	-1.4
miR-381	-1.5
miR-382	-1.4
miR-134	-1.8
miR-668	-1.3
miR-154	-1.6
miR-496	-1.4
miR-377	-1.5
miR-541	1.0
miR-412	-1.7
miR-369	-1.5

Table S2. MicroRNA expression in injured Mef2a KO muscle. Fold changes in gene expression are presented for additional non-coding RNA transcripts in the *Gtl2-Dio3* locus detected by microarray. Expression values represent fold changes in gene expression between adult *Mef2a* KO cardiotoxin-injured (ctox) and WT ctox muscle tissue samples at regeneration day 7. Non-coding transcripts include microRNAs and the Rian/MBII-343 C/D box sno RNAs and are listed from top to bottom according to their 5' to 3' order within the *Gtl2-Dio3* locus.