Uncoupling Intramolecular Processing and Substrate Hydrolysis in the N-terminal Hydrolase hASRGL-1 by Circular Permutation

Wenzong Li,⁺ Jason R. Cantor,[‡] S. D. Yogesha⁺, Shirley Yang[‡], Lynne Chantranupong[‡], June Qingxia Liu⁺, Giulia Agnello^{Π}, George Georgiou,^{‡& Π} Everett M. Stone^{*,‡} and Yan Zhang^{*,†, Π}

⁺Department of Chemistry and Biochemistry, [‡]Department of Biomedical and Chemical Engineering, [§]Section of Molecular Genetics and Microbiology and ^ΠInstitute of Cellular and Molecular Biology, University of Texas, Austin, Texas 78712.

RUNNING TITLE: Structure of Human Isoaspartyl Dipeptidase.

*Address correspondence to: Yan Zhang: 1 University Station A5300, Austin, TX 78712. Phone: (512)-471-8645. Fax: 512-471-9469. E-mail: jeszhang@mail.utexas.edu or Everett Stone: 1 University Station C0800, Austin, TX 78712. Phone: (512) 512-232-4105. E-mail: stonesci@mail.utexas.edu

SUPPORTING INFORMATION

SUPPORTING FIGURES

Figure S1. A) The pH dependence of k_{cat} for cp-hASRGL1 hydrolysis of AHA with an apparent p K_a of 6.0 ± 0.1. B) The pH dependence of cp-hASRGL1 hydrolysis of AHA upon k_{cat}/K_M with corrected values of p K_{a1} = 7.3 ± 0.2 (ascending) and p K_{a2} = 8.0 ± 0.2 (descending) limb.

Figure S2. Density (Fo-Fc) map of sulfate ion bound in active site. The sulfate ion (shown in stick with sulfur in yellow and oxygen atom in red) is stabilized by hydrogen bonds formed by β -hydroxyl group of Ser200, amide group of Ser 200, γ -carboxyl group of Asp199 and a water molecule (red sphere), and by salt bridges formed by Arg196. The C atoms of hASRGL1 are shown in light blue and the dashed green lines indicate polar interactions. All distances are in the units of Å.

Figure S3. Sequence alignment of plant-type asparaginases from diverse phylogenies reveals a conserved HGG motif (rectangle).

Figure S4. Hydrogen bonding around Thr168. cp-hASRGL1 active site nucleophile Thr168 forms hydrogen bonds with β -hydroxyl group Thr219, γ -amide and α -carbonyl of Asn62, and an intramolecular hydrogen bond between its own α -amino and β -hydroxyl groups. Dashed green lines indicate the hydrogen bond distances in Å.

Figure S5. Derivative thermal melting curves for hASRGL1 and variants Thr168Ala, and Thr168Ser with T_m values of $61.0 \pm 0.1 \text{ C}^\circ$, $71.0 \pm 0.1^\circ\text{C}$, and $71.0 \pm 0.1^\circ\text{C}$ respectively. For comparison cp-hASRGL1 was also included with a T_m value of $70 \pm 0.1 \text{ C}^\circ$. The hASRGL1 and hASRGL1 variants color codes are marked on the right side of the plot.

SUPPORTING TABLES

Table S1.

Table S1			
ESI-MS analysis of cp-hASRGL1 and variants			
Variant	Mass (calc)	Mass (exp)	
	(-Met1) Da.	Da.	
cp-hASRGL1-Thr168Cys	33535	33525 ± 11	
cp-hASRGL1	33533	33523 ± 11	
cp-hASRGL1-Thr16Ser	33519	33513 ± 11	

Table S2.

Table S2.				
Experimental and calculated pK_a v	alues of cp-hAS	SRGL1 and substra	ite AHA	
	$pK_{a1}(exp)$	$pK_{a2}(exp)$	$pK_{a}(calc)^{*}$	
^a cp-hASRGL1(k_{cat})	6.0 ± 0.1			
^b cp-hASRGL1 (k_{cat}/K_{M})	7.3 ± 0.2	8.0 ± 0.2		
^c AHA-NH ₃ ⁺ ⇔AHA-NH ₂			8.05	
d R-T168-NH ₃ $^{+}$ \Leftrightarrow R-T168-NH ₂			7.62	
* pK_a values were calculated using software from ChemAxon				
^a pK _a of k_{cat} dependence on pH, ^b pK _a , values of k_{cat}/K_M dependence on pH, ^c pK _a of substrate AHA				
amine, ^a p K_a of the amine from an N-terminal Thr residue				

Table S3.

Table S3(Relate	ed to Figure	3)		
Summary of Thr168 sidechain interactions modeled into hASRGL1-Thr168Ala structure				
Thr168	% obs.	χ angle	Thr168 β-hydroxyl	Thr168 γ-methyl
rotamers			(H-bonds with)	(clashes with)
p form	49	59°	T218 C=O	S200 SC
m form	43	-6 1°	S200 SC, T186 SC	S185 C=O, V169
				C=O
t form	8	-171°	S185 C=O, S200 SC	T218 C=O
C=O = carbonyl, SC = side chain, γ -methyl clashes range from 2.67-2.18 Å				

Table S4.

.

T-1-1- C4			
Table S4			
Oligonucleotides us	Oligonucleotides used in the construction of cp-hASRGL1 and point mutant variants		
New N-term-Thr-F	5'-CCCTCTAGAAATAATTTTGTTTAACTTTAAGAAGGAGATATACCATGACAGTCGGCGCTGTCGCCCTG		
α-β linker-R	5'-CCCAGCACCGCTACCGGCACCACTGCCAGCGCCCGGCAGATCGGTTATGGTCGTG		
α - β linker-F	5'-GGCGCTGGCAGTGGTGCCGGTAGCGGTGCTGGGgggaatcccatcgttgtggttcatg		
New C-Term-R	5 ' - TATGAATTCTCAATGGTGATGGTGATGGTGCCCAAGGTTCTTCTGGCAATCGG		
New N-term-Cys-F	5'-CCCTCTAGAAATAATTTTGTTTAACTTTAAGAAGGAGATATACCATGtgcGTCGGCGCTGTCGCCCTG		
New N-term-Ser-F	5'-CCCTCTAGAAATAATTTTGTTTAACTTTAAGAAGGAGATATACCATGtccGTCGGCGCTGTCGCCCTG		
Gly9Ala-F	5'-ATCGTTGTGGTTCATGCAGGCGGAGC-3'		
Gly9Ala-R	5'-GCTCCGCCTGCATGAACCACAACGAT-3'		
Gly10Ala-F	5'-CGTTGTGGTTCATGGTGCCGGAGCCGGACCG-3'		
Gly10Ala-R	5'-CGGTCCGGCTCCGGCACCATGAACCACAACG-3'		
Gly11Ala-F	5'-GTGGTTCATGGTGGCGCAGCCGGACCGATTAGCAAAGATCGTAAAGAACGTGTG-3'		
Gly11Ala-R	5'-CACACGTTCTTTACGATCTTTGCTAATCGGTCCGGCTGCGCCACCATGAACCAC-3'		
Gly167Ala-F	5'-GATTGCCAGAAGAACCTTGCCACAGTCGGCGCTGTCGC-3'		
Gly167Ala-R	5'-GCGACAGCGCCGACTGTGGCAAGGTTCTTCTGGCAATC-3'		
Gly167Asp-F	5'-GATTGCCAGAAGAACCTTGACACAGTCGGCGCTGTCGC-3'		
Gly167Asp-R	5'-GCGACAGCGCCGACTGTGTCAAGGTTCTTCTGGCAATC-3'		

SUPPORTING METHODS

Phylogenetic analysis- Using a Linnaeus Blast algorithm (Geneious) [1] we analyzed 1000 plant-type asparaginase sequences from across all available phylogenies. Sequences from individual organisms and consensus sequences from major classes of organisms were selected for constructing Figure S2 for easy visual comparison of the conserved HGG motif within the plant-type asparaginase family.

SUPPLEMENTARY REFERENCES

1. Drummond, A.J., Ashton, B., Cheung, M., Heled, J., and Kearse, M. (2009). Geneious v4. 8, 2009. Biomatters Ltd., Auckland, New Zealand.