Determination of monolayer-protected gold nanoparticles' ligand shell morphology via NMR

Xiang Liu^{1,2}, Miao Yu^{1,2}, Hyewon Kim², Marta Mameli¹ and Francesco Stellacci*^{1,2}

¹Institute of Materials, École Polytechnique Fédérale de Lausanne, Switzerland

²Department of Materials Science and Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139 (USA)

Figure S1. Representative NMR spectrum collected after decomposing the gold core via cyanide etching showing the actual ligand composition on nanoparticles.

Figure S2. STM images of striped nanoparticles Au-DPT_{0.58}DDT_{0.42}

Figure S3. STM images of Janus nanoparticles $Au-DPT_{0.56}DDT_{0.44}$

Figure S4a. TEM image of randomly mixed Au-DPT $_{0.22}$ DMOT $_{0.78}$ (D=4.54±0.82 nm)

Figure S4b. TEM image of randomly mixed Au-DPT_{0.35}DMOT_{0.65} (D=4.42±0.70)

Figure S4c. TEM image of randomly mixed Au-DPT_{0.46}DMOT_{0.54} (4.17+/-0.89)

Figure S4d. TEM image of randomly mixed Au-DPT_{0.60}DMOT_{0.40} (D=4.41±1.01)

Figure S4e. TEM image of randomly mixed Au-DPT $_{0.71}$ DMOT $_{0.29}$ (4.24+/-0.69)

Figure S4f. TEM image of randomly mixed Au-DPT $_{0.82}$ DMOT $_{0.18}$ (D=4.14±0.99)

Figure S4g. TEM image of randomly mixed Au-DPT_{0.93}DMOT_{0.07} (D=4.20±0.96)

Figure S5a. ¹H NMR of randomly mixed Au-DPT_{0.22}DMOT_{0.78}

Figure S5b. ¹H NMR of randomly mixed Au-DPT_{0.35}DMOT_{0.65}

Figure S5c. ¹H NMR of randomly mixed Au-DPT_{0.46}DMOT_{0.54}

Figure S5d. ¹H NMR of randomly mixed Au-DPT_{0.60}DMOT_{0.40}

Figure S5e. ¹H NMR of randomly mixed Au-DPT_{0.71}DMOT_{0.29}

Figure S5f. ¹H NMR of randomly mixed Au-DPT_{0.82}DMOT_{0.18}

Figure S5g. ¹H NMR of randomly mixed Au-DPT_{0.93}DMOT_{0.07}

Figure S6a. NOESY of randomly mixed Au-DPT_{0.22}DMOT_{0.78}

Figure S6b. NOESY of randomly mixed Au-DPT_{0.32}DMOT_{0.68}

Figure S6c. NOESY of randomly mixed Au-DPT_{0.40}DMOT_{0.60}

Figure S6d. NOESY of randomly mixed Au-DPT_{0.60}DMOT_{0.40}

Figure S6e. NOESY of randomly mixed Au-DPT_{0.71}DMOT_{0.29}

Figure S6f. NOESY of randomly mixed Au-DPT_{0.82}DMOT_{0.18}

Figure S6g. NOESY of randomly mixed Au-DPT_{0.93}DMOT_{0.07}

Figure S7a. TEM image of Janus Au-DPT_{0.10}DDT_{0.90} (2.36 +/- 0.38 nm)

Figure S7b. TEM image of Janus Au-DPT_{0.19}DDT_{0.81} (2.39 +/- 0.32 nm)

Figure S7c. TEM image of Janus Au-DPT_{0.28}DDT_{0.72} (2.55 +/- 0.39)

Figure S7d. TEM image of Janus Au-DPT_{0.41}DDT_{0.59} (2.38+/- 0.35)

Figure S7e. TEM image of Janus Au-DPT_{0.56}DDT_{0.44} (2.28 +/- 0.36 nm)

Figure S7f. TEM image of Janus Au-DPT $_{0.70}$ DDT $_{0.30}$ (2.30+/-0.37)

Figure S7g. TEM image of Janus Au-DPT_{0.82}DDT_{0.18} (2.33+/-0.33 nm)

Figure S7h. TEM image of ~2 nm Au-DPT (2.20+/-0.37)

Figure S8a. ¹H NMR of Janus Au-DPT_{0.10}DDT_{0.90}

Figure S8c. ¹H NMR of Janus Au-DPT_{0.28}DDT_{0.72}

10.0 5.0

0.0

Figure S8e. ¹H NMR of Janus Au-DPT_{0.56}DDT_{0.44}

Figure S8h. ¹H NMR of \sim 2 nm Au-DPT this specific particles could contain some impurities, whose presence is irrelevant for the scope of this paper.

Figure S9a. NOESY of Janus Au-DPT_{0.10}DDT_{0.90}

Figure S9b. NOESY of Janus Au-DPT_{0.19}DDT_{0.81}

Figure S9c. NOESY of Janus Au-DPT_{0.28}DDT_{0.72}

Figure S9d. NOESY of Janus Au-DPT_{0.41}DDT_{0.59}

Figure S9e. NOESY of Janus Au-DPT_{0.56}DDT_{0.44}

Figure S9f. NOESY of Janus Au-DPT_{0.70}DDT_{0.30}

Figure S9g. NOESY of Janus Au-DPT_{0.82}DDT_{0.18}

Figure S10a. TEM image of striped Au-DPT_{0.13}DDT_{0.87} (D=4.93±0.91 nm)

Figure S10b. TEM image of striped Au-DPT_{0.21}DDT_{0.79} (D=4.43±0.86 nm)

Figure S10c. TEM image of striped Au-DPT_{0.27}DDT_{0.73} (D=5.30±0.89 nm)

Figure S10d. TEM image of striped Au-DPT $_{0.40}$ DDT $_{0.60}$ (D=5.19±0.91 nm)

Figure S10e. TEM image of striped Au-DPT_{0.58}DDT_{0.42} (D=5.05±0.97 nm)

Figure S10f. TEM image of striped Au-DPT_{0.68}DDT_{0.32} (D= 4.54 ± 1.00 nm)

Figure S10g. TEM image of striped Au-DPT_{0.78}DDT_{0.22} (D=4.32±1.21 nm)

Figure S10h. TEM image of ~4 nm Au-DPT (D=4.02±0.85 nm)

Figure S11a. ¹H NMR of striped Au-DPT_{0.13}DDT_{0.87} (D=4.93±0.91 nm)

Figure S11c.¹H NMR of striped Au-DPT_{0.27}DDT_{0.73}

Figure S11d. ¹H NMR of striped Au-DPT_{0.40}DDT_{0.60}

Figure S11e. ¹H NMR of striped Au-DPT_{0.58}DDT_{0.42}

Figure S11f. ¹H NMR of striped Au-DPT_{0.68}DDT_{0.32}

Figure S11g.¹H NMR of striped Au-DPT_{0.78}DDT_{0.22}

Figure S11h. ¹H NMR of ~4 nm Au-DPT

Figure S12a. NOESY of striped Au-DPT_{0.13}DDT_{0.87}

Figure S12b. NOESY of striped Au-DPT_{0.21}DDT_{0.79}

Figure S12c. NOESY of striped Au-DPT_{0.27}DDT_{0.73}

Figure S12d. NOESY of striped Au-DPT_{0.40}DDT_{0.60}

Figure S12e.NOESY of striped Au-DPT_{0.58}DDT_{0.42}

10

F2 [ppm]

ź

Figure S12g. NOESY of striped Au-DPT_{0.78}DDT_{0.22}

Figure S13. Chemical shift of the sharp peak on striped nanoparticles as a function of DPT%

Figure S14. Diffusion coefficient of nanoparticles by DOSY NMR. a: pure nanoparticles at 7.38 ppm. b: pure nanoparticles at 7.58 ppm. c: mixture of nanoparticles and free DPT at 7.38 ppm. d: mixture of nanoparticles and DPT at 7.58 ppm. The ¹H NMR spectrum of nanoparticles and DPT mixture is shown in Figure S12d.

Figure S15. ¹H NMR of aminoanthracene (5.5-9 ppm) in CD₂Cl₂

Figure S16. Representative peak deconvolution by Gaussian-Lorentzian fit

Figure S17. Representative ¹H NMR of ligand cleaved from nanoparticle surface by heating in $CDCl_2$ - $CDCl_2$ at 75 °C for a week.

Entry	Diameter (nm)	DPT%	Peak center (ppm)
1a	4.54±0.82	22.2	7.38
1b	4.27±0.88	25.8	7.34
1c	4.32±0.97	20.1	7.355
1 _{average}		22.7±2.88	7.358±0.020
2a	4.42±0.70	34.6	7.32
2b	4.56±0.89	35.9	7.3
2c	4.15±0.76	38.5	7.275
2 _{average}		36.3±1.99	7.298±0.023
3a	4.17±0.89	45.7	7.275
3b	4.38±0.94	48.6	7.255
3c	4.16±1.02	50.4	7.23
3 average		48.2±2.37	7.253±0.023
4a	4.41±1.01	60.3	7.225
4b	4.23±0.79	62.4	7.195
4c	4.20±0.87	58.6	7.25
4 _{average}		60.4±1.90	7.223±0.027
5a	4.24±0.69	70.9	7.15
5b	4.25±0.99	74.2	7.135
5c	4.31±0.84	67.2	7.18
5 _{average}		70.8±3.50	7.155±0.023
6a	4.14±0.99	82.2	7.15
6b	4.16±0.93	76.3	7.17

Table S1. Size, ligand composition and chemical shift of the broad aryl peak of random NP

6c	4.25±1.01	86	7.10
6 _{average}		81.5±4.89	7.140±0.036
7a	4.20±0.96	93.9	7.045
7b	4.09±0.76	91.4	7.055
7c	4.11±0.88	94.9	7.025
7 _{average}		93.4±1.80	7.042±0.015
8a	4.02±0.85	100	7.025
8b	4.12±0.93	100	7.00
8c	4.03±0.94	100	6.955

Table S2. Size, ligand composition and chemical shift of the broad aryl peak of Janus NP

Entry	Diameter (nm)	DPT%	Peak center (ppm)
1a	2.36±0.38	9.8	7.41
1b	2.28±0.37	11.4	7.405
1c	2.44±0.45	13.7	7.375
1 _{average}		11.6±1.96	7.397±0.019
2a	2.39±0.32	18.7	7.31
2b	2.42±0.40	21.2	7.305
2c	2.36±0.39	23.5	7.27
2 _{average}		21.1±2.40	7.295±0.022
3a	2.55±0.39	27.5	7.21
3b	2.44±0.34	33.1	7.21
3c	2.35±0.36	30.0	7.22
3 average		30.2±2.81	7.213±0.006

4a	2.38±0.35	40.7	7.185
4b	2.42±0.41	43.3	7.165
4c	2.29±0.34	45.8	7.14
4 _{average}		43.3±2.55	7.163±0.023
5a	2.28±0.36	56.4	7.11
5b	2.52±0.40	56.2	7.135
5c	2.40±0.37	60.8	7.04
5 _{average}		57.8±2.60	7.095±0.049
6a	2.30±0.37	70.3	7.085
6b	2.26±0.33	72.9	7.06
6c	2.58±0.54	68.9	7.1
6 _{average}		70.7±2.03	7.082±0.020
7a	2.33±0.33	81.9	7.09
7b	2.31±0.35	84.4	7.075
7c	2.29±0.34	85.2	7.055
7 _{average}		83.8±1.72	7.073±0.176
8a	2.20±0.37	100	7.06
8b	2.28±0.34	100	7.035
8c	2.33±0.35	100	7.015
8 _{average}		100	7.034±0.023

Table S3. Size, ligand composition and chemical shift of the broad aryl peak of Stripe NP

Entry	Diameter (nm)	DPT%	Peak center (ppm)
1a	4.93±0.91	16.6	7.39
1b	5.24±1.02	12.6	7.365

1c	5.32±1.10	11.2	7.35
1 _{average}		13.47±2.80	7.368±0.020
2a	4.43±0.86	21.4	7.3
2b	4.87±0.95	22.9	7.31
2c	5.13±1.07	19.8	7.325
2 _{average}		21.37±1.55	7.312±0.013
3a	5.30±0.89	27.1	7.33
3b	5.21±0.94	29	7.31
3c	4.95±1.06	24.8	7.325
3 _{average}		26.97±2.10	7.323±0.010
4a	5.19±0.91	40.2	7.33
4b	5.06±0.88	43.1	7.30
4c	4.84±0.93	37.7	7.305
4 _{average}		40.33±2.70	7.311±0.016
5a	5.05±0.97	57.9	7.33
5b	4.80±0.92	59.6	7.31
5c	4.75±0.87	56.1	7.25
5 _{average}		57.87±1.75	7.293±0.047
6a	4.54±1.00	67.6	7.13
6b	4.47±0.84	71.3	7.125
6c	4.39±1.17	66.3	7.21
6 _{average}		67.40±2.59	7.155±0.048
7a	4.32±1.21	77.7	7.10
7b	4.26±0.96	80.4	7.085
7c	4.18±0.86	76.2	7.155

7 _{average}		78.10±2.12	7.113±0.037
8a	4.02±0.85	100	7.025
8b	4.12±0.93	100	7.00
8c	4.03±0.94	100	6.955
8 average		100	6.993±0.035

Table S4. Ligand composition and FWHM of broad peak (b.p) and sharp peak (s.p.) of Stripe NP

Entry	DPT%	FWHM (b.p.)	FWHM (s.p.)
1 _{average}	13.47±2.80	1.14±0.23	0.054±0.002
2 _{average}	21.37±1.55	1.21±0.12	0.052±0.005
3 average	26.97±2.10	1.13±0.19	0.047±0.009
4 _{average}	40.33±2.70	1.19±0.18	0.045±0.014
5 _{average}	57.87±1.75	1.19±0.13	No peak
6 _{average}	67.40±2.59	1.23±0.11	No peak
7 _{average}	78.10±2.12	1.22±0.07	No peak
8 _{average}	100	1.15±0.12	No peak