Crosstalk and competition in signaling networks

Supporting Material

Michael Rowland¹, Walter Fontana² and Eric J. Deeds^{1,3}

 1 Center for Bioinformatics, The University of Kansas, 2030 Becker Dr., Lawrence, KS 66047, USA ²Department of Systems Biology, Harvard Medical School, 200 Longwood Avenue, Boston MA 02115, USA ³Department of Molecular Biosciences, The University of Kansas, 2030 Becker Dr., Lawrence, KS 66047, USA

Email: Michael Rowland - mrowland@ku.edu; Walter Fontana - walter@hms.harvard.edu; Eric Deeds - deeds@ku.edu;

Contents

[Supporting References](#page-25-1) 27

1 Systems of Ordinary Differential Equations

1.1 1–Kinase/1–Phosphatase Loop with 2 Substrates

The set of enzymatic reactions for the 1K1P loop with two substrates is as in equation [2] of the main text:

$$
S_1 + K \frac{k_{+,K,1}}{k_{-,K,1}} KS_1 \frac{k_{cat,K,1}}{k_{-,K,2}} S_1^* + K
$$

\n
$$
S_2 + K \frac{k_{+,K,2}}{k_{-,K,2}} KS_2 \frac{k_{cat,K,2}}{k_{-},K,2} S_2^* + K
$$

\n
$$
S_1^* + P \frac{k_{+,P,1}}{k_{-,P,1}} PS_1^* \frac{k_{cat,P,1}}{k_{-},P,2} S_1 + P
$$

\n
$$
S_2^* + P \frac{k_{+,P,2}}{k_{-,P,2}} PS_2^* \frac{k_{cat,P,2}}{k_{-},P,2} S_2 + P
$$

Each contain three rates: rate of complex formation, (k_{+}) , rate of complex dissociation (k_{-}) , and catalytic rate (k_{cat}) . The set of ODEs describing the free enzymes are:

$$
\frac{d[K]}{dt} = -([S_1] \cdot [K] \cdot k_{+,K,1} + [S_2] \cdot [K] \cdot k_{+,K,2}) + ([KS_1] \cdot (k_{-,K,1} + k_{cat,K,1}) + [KS_2] \cdot (k_{-,K,2} + k_{cat,K,2}))
$$

$$
\frac{d[P]}{dt} = -([S_1^*] \cdot [P] \cdot k_{+,P,1} + [S_2^*] \cdot [P] \cdot k_{+,P,2}) + ([PS_1^*] \cdot (k_{-,P,1} + k_{cat,P,1}) + [PS_2^*] \cdot (k_{-,P,2} + k_{cat,P,2}))
$$

The set of ODEs describing the unmodified substrates are:

$$
\frac{d[S_1]}{dt} = -([S_1] \cdot [K] \cdot k_{+,K,1}) + ([KS_1] \cdot k_{-,K,1} + [PS_1^*] \cdot k_{cat,P,1})
$$

$$
\frac{d[S_2]}{dt} = -([S_2] \cdot [K] \cdot k_{+,K,2}) + ([KS_2] \cdot k_{-,K,2} + [PS_2^*] \cdot k_{cat,P,2})
$$

The set of ODEs describing the modified substrates are:

$$
\frac{d[S_1^*]}{dt} = -([S_1^*] \cdot [P] \cdot k_{+,P,1}) + ([PS_1^*] \cdot k_{-,P,1} + [KS_1] \cdot k_{cat,K,1})
$$

$$
\frac{d[S_2^*]}{dt} = -([S_2^*] \cdot [P] \cdot k_{+,P,2}) + ([PS_2^*] \cdot k_{-,P,2} + [KS_2] \cdot k_{cat,K,2})
$$

The set of ODEs describing the enzyme-substrate complexes are:

$$
\frac{d[KS_1]}{dt} = -([KS_1] \cdot (k_{-,K,1} + k_{cat,K,1})) + ([S_1] \cdot [K] \cdot k_{+,K,1})
$$

\n
$$
\frac{d[KS_2]}{dt} = -([KS_2] \cdot (k_{-,K,2} + k_{cat,K,2})) + ([S_2] \cdot [K] \cdot k_{+,K,2})
$$

\n
$$
\frac{d[PS_1^*]}{dt} = -([PS_1^*] \cdot (k_{-,P,1} + k_{cat,P,1})) + ([S_1^*] \cdot [P] \cdot k_{+,P,1})
$$

\n
$$
\frac{d[PS_2^*]}{dt} = -([PS_2^*] \cdot (k_{-,P,2} + k_{cat,P,2})) + ([S_2^*] \cdot [P] \cdot k_{+,P,2})
$$

For purposes of display in Fig. 2A of the main text we used the following values for each of the rate constants:

Where $i = 1$ or 2.

Our simulations started with the following initial concentrations:

With the remaining molecular species having initial concentrations of 0. The range of initial concentrations of K and S_2 were used to vary r_1 and $[S_2]_0/K_m$, respectively, in Fig. 2A in the main text.

1.2 1–Kinase/1–Phosphatase Loop with Many Substrates

The set of enzymatic reactions for the 1K1P loop with many substrates is:

$$
S_{1} + K \frac{k_{+,K,1}}{k_{-,K,1}} \quad KS_{1} \quad \frac{k_{cat,K,1}}{k_{-},K,2} \quad S_{1}^{*} + K
$$

$$
S_{2} + K \frac{k_{+,K,2}}{k_{-,K,2}} \quad KS_{2} \quad \frac{k_{cat,K,2}}{k_{-},K,2} \quad S_{2}^{*} + K
$$

$$
\vdots
$$

$$
S_{N} + K \frac{k_{+,K,N}}{k_{-,K,N}} \quad KS_{N} \quad \frac{k_{cat,K,N}}{k_{-},K,N} \quad S_{N}^{*} + K
$$

$$
S_1^* + P \frac{k_{+,P,1}}{k_{-,P,1}} \quad PS_1^* \quad \frac{k_{cat,P,1}}{k_{-,P,1}} \quad S_1 + P
$$

$$
S_2^* + P \frac{k_{+,P,2}}{k_{-,P,2}} \quad PS_2^* \quad \frac{k_{cat,P,2}}{k_{-,P,2}} \quad S_2 + P
$$

$$
\vdots
$$

$$
S_N^* + P \frac{k_{+,P,N}}{k_{-,P,N}} \quad PS_N^* \quad \frac{k_{cat,P,N}}{k_{-,P,N}} \quad SN + P
$$

The set of ODEs describing the free enzymes are:

$$
\frac{d[K]}{dt} = -([S_1] \cdot [K] \cdot k_{+,K,1} + [S_2] \cdot [K] \cdot k_{+,K,2} + \dots + [S_N] \cdot [K] \cdot k_{+,K,N})
$$

+
$$
([KS_1] \cdot (k_{-,K,1} + k_{cat,K,1}) + [KS_2] \cdot (k_{-,K,2} + k_{cat,K,2}) + \dots + [KS_N] \cdot (k_{-,K,N} + k_{cat,K,N}))
$$

$$
\frac{d[P]}{dt} = -([S_1^*] \cdot [P] \cdot k_{+,P,1} + [S_2^*] \cdot [P] \cdot k_{+,P,2} + \dots + [S_N^*] \cdot [P] \cdot k_{+,P,N})
$$

+
$$
([PS_1^*] \cdot (k_{-,P,1} + k_{cat,P,1}) + [PS_2^*] \cdot (k_{-,P,2} + k_{cat,P,2}) + \dots + [PS_N^*] \cdot (k_{-,P,N} + k_{cat,P,N}))
$$

The set of ODEs describing the unmodified substrates are:

$$
\frac{d[S_1]}{dt} = -([S_1] \cdot [K] \cdot k_{+,K,1}) + ([KS_1] \cdot k_{-,K,1} + [PS_1^*] \cdot k_{cat,P,1})
$$

\n
$$
\frac{d[S_2]}{dt} = -([S_2] \cdot [K] \cdot k_{+,K,2}) + ([KS_2] \cdot k_{-,K,2} + [PS_2^*] \cdot k_{cat,P,2})
$$

\n:
\n:
\n:
\n
$$
\frac{d[S_N]}{dt} = -([S_N] \cdot [K] \cdot k_{+,K,N}) + ([KS_N] \cdot k_{-,K,N} + [PS_N^*] \cdot k_{cat,P,N})
$$

The set of ODEs describing the modified substrates are:

$$
\frac{d[S_1^*]}{dt} = -([S_1^*] \cdot [P] \cdot k_{+,P,1}) + ([PS_1^*] \cdot k_{-,P,1} + [KS_1] \cdot k_{cat,K,1})
$$
\n
$$
\frac{d[S_2^*]}{dt} = -([S_2^*] \cdot [P] \cdot k_{+,P,2}) + ([PS_2^*] \cdot k_{-,P,2} + [KS_2] \cdot k_{cat,K,2})
$$
\n
$$
\vdots
$$
\n
$$
\frac{d[S_N^*]}{dt} = -([S_N^*] \cdot [P] \cdot k_{+,P,N}) + ([PS_N^*] \cdot k_{-,P,N} + [KS_N] \cdot k_{cat,K,N})
$$

The set of ODEs describing the enzyme-substrate complexes are:

$$
\frac{d[KS_1]}{dt} = -([KS_1] \cdot (k_{-,K,1} + k_{cat,K,1})) + ([S_1] \cdot [K] \cdot k_{+,K,1})
$$
\n
$$
\frac{d[KS_2]}{dt} = -([KS_2] \cdot (k_{-,K,2} + k_{cat,K,2})) + ([S_2] \cdot [K] \cdot k_{+,K,2})
$$
\n
$$
\vdots
$$
\n
$$
\frac{d[KS_N]}{dt} = -([KS_N] \cdot (k_{-,K,N} + k_{cat,K,N})) + ([S_N] \cdot [K] \cdot k_{+,K,N})
$$
\n
$$
\frac{d[PS_1^*]}{dt} = -([PS_1^*] \cdot (k_{-,P,1} + k_{cat,P,1})) + ([S_1^*] \cdot [P] \cdot k_{+,P,1})
$$
\n
$$
\frac{d[PS_2^*]}{dt} = -([PS_2^*] \cdot (k_{-,P,2} + k_{cat,P,2})) + ([S_2^*] \cdot [P] \cdot k_{+,P,2})
$$
\n
$$
\vdots
$$
\n
$$
\frac{d[PS_N^*]}{dt} = -([PS_N^*] \cdot (k_{-,P,N} + k_{cat,P,N})) + ([S_N^*] \cdot [P] \cdot k_{+,P,N})
$$

The following values for rate constants were used in the simulations presented in Fig. 2B of the main text:

The different molecular species were initialized with concentrations:

The remaining molecular species had initial concentrations of 0. The range of initial concentrations of K was used to vary the value of r_1 , and N was varied to obtain the surface in Fig. 2B in the main text.

1.3 1–Kinase/2–Phosphatase Loop

The set of enzymatic reactions for the 1K2P loop is:

$$
S_1 + K \frac{k_{+,K,1}}{k_{-,K,1}} K S_1 \frac{k_{cat,K,1}}{S_1} S_1^* + K
$$

\n
$$
S_2 + K \frac{k_{+,K,2}}{k_{-,K,2}} K S_2 \frac{k_{cat,K,2}}{S_2^*} S_2^* + K
$$

\n
$$
S_1^* + P_1 \frac{k_{+,P,1}}{k_{-,P,1}} P_1 S_1^* \frac{k_{cat,P,1}}{S_1^*} S_1 + P_1
$$

\n
$$
S_2^* + P_2 \frac{k_{+,P,2}}{k_{-,P,2}} P_2 S_2^* \frac{k_{cat,P,2}}{S_2^*} S_2 + P_2
$$

The set of ODEs describing the free enzymes are:

$$
\frac{d[K]}{dt} = -([S_1] \cdot [K] \cdot k_{+,K,1} + [S_2] \cdot [K] \cdot k_{+,K,2}) + ([KS_1] \cdot (k_{-,K,1} + k_{cat,K,1}) + [KS_2] \cdot (k_{-,K,2} + k_{cat,K,2}))
$$
\n
$$
\frac{d[P_1]}{dt} = -([S_1^*] \cdot [P_1] \cdot k_{+,P,1}) + ([P_1S_1^*] \cdot (k_{-,P,1} + k_{cat,P,1}))
$$
\n
$$
\frac{d[P_2]}{dt} = -([S_2^*] \cdot [P_2] \cdot k_{+,P,2}) + ([P_2S_2^*] \cdot (k_{-,P,2} + k_{cat,P,2}))
$$

The set of ODEs describing the unmodified substrates are:

$$
\frac{d[S_1]}{dt} = -([S_1] \cdot [K] \cdot k_{+,K,1}) + ([KS_1] \cdot k_{-,K,1} + [P_1 S_1^*] \cdot k_{cat,P,1})
$$

$$
\frac{d[S_2]}{dt} = -([S_2] \cdot [K] \cdot k_{+,K,2}) + ([KS_2] \cdot k_{-,K,2} + [P_2 S_2^*] \cdot k_{cat,P,2})
$$

The set of ODEs describing the modified substrates are:

$$
\frac{d[S_1^*]}{dt} = -([S_1^*] \cdot [P_1] \cdot k_{+,P,1}) + ([P_1 S_1^*] \cdot k_{-,P,1} + [KS_1] \cdot k_{cat,K,1})
$$

$$
\frac{d[S_2^*]}{dt} = -([S_2^*] \cdot [P_2] \cdot k_{+,P,2}) + ([P_2 S_2^*] \cdot k_{-,P,2} + [KS_2] \cdot k_{cat,K,2})
$$

The set of ODEs describing the enzyme-substrate complexes are:

$$
\frac{d[KS_1]}{dt} = -([KS_1] \cdot (k_{-,K,1} + k_{cat,K,1})) + ([S_1] \cdot [K] \cdot k_{+,K,1})
$$

\n
$$
\frac{d[KS_2]}{dt} = -([KS_2] \cdot (k_{-,K,2} + k_{cat,K,2})) + ([S_2] \cdot [K] \cdot k_{+,K,2})
$$

\n
$$
\frac{d[P_1S_1^*]}{dt} = -([P_1S_1^*] \cdot (k_{-,P,1} + k_{cat,P,1})) + ([S_1^*] \cdot [P_1] \cdot k_{+,P,1})
$$

\n
$$
\frac{d[P_2S_2^*]}{dt} = -([P_2S_2^*] \cdot (k_{-,P,2} + k_{cat,P,2})) + ([S_2^*] \cdot [P_2] \cdot k_{+,P,2})
$$

For purposes of display in Figs. 3A and B in the main text, we used the following parameters in the model:

Parameter	Value	
$k_{+,K,i}$	$0.001 \;\mathrm{nM}^{-1}\mathrm{\cdot s}^{-1}$	
$k_{-,K,i}$	0.001 s^{-1}	
$k_{cat,K,i}$	$0.999 s^{-1}$	
$k_{+,P,i}$	0.001 $nM^{-1} \cdot s^{-1}$	
$k_{-,P,i}$	0.001 s^{-1}	
$k_{cat,P,i}$	$0.999 s^{-1}$	
$i=1$ or 2		

Each of the molecular species in the model started with the following initial concentrations:

The remaining molecular species had initial concentrations of 0. The range of initial concentrations for P_1 and P_2 were used to independently set r_1 and r_2 , respectively, in Figs. 3A and B in the main text. In Fig. 3A $[S_2]_0 = 0$ and in Fig 3B $[S_2]_0 = 20nM$.

1.4 2–Kinase/1–Phosphatase Loop

The set of enzymatic reactions for the 2K1P loop is:

$$
S_1 + K_1 \xleftarrow[k_{+,K,1}]{k_{+,K,1}} K_1 S_1 \xleftarrow{k_{cat,K,1}} S_1^* + K_1
$$

\n
$$
S_2 + K_2 \xleftarrow[k_{-,K,2}]{k_{+,K,2}} K_2 S_2 \xleftarrow{k_{cat,K,2}} S_2^* + K_2
$$

\n
$$
S_1^* + P \xleftarrow[k_{+,P,1}]{k_{+,P,1}} PS_1^* \xleftarrow{k_{cat,P,1}} S_1 + P
$$

\n
$$
S_2^* + P \xleftarrow[k_{-,P,2}]{k_{+,P,2}} PS_2^* \xleftarrow{k_{cat,P,2}} S_2 + P
$$

The set of ODEs describing the free enzymes are:

$$
\frac{d[K_1]}{dt} = -([S_1] \cdot [K_1] \cdot k_{+,K,1}) + ([K_1S_1] \cdot (k_{-,K,1} + k_{cat,K,1}))
$$
\n
$$
\frac{d[K_2]}{dt} = -([S_2] \cdot [K_2] \cdot k_{+,K,2}) + ([K_2S_2] \cdot (k_{-,K,2} + k_{cat,K,2}))
$$
\n
$$
\frac{d[P]}{dt} = -([S_1^*] \cdot [P] \cdot k_{+,P,1} + [S_2^*] \cdot [P] \cdot k_{+,P,2}) + ([PS_1^*] \cdot (k_{-,P,1} + k_{cat,P,1}) + [PS_2^*] \cdot (k_{-,P,2} + k_{cat,P,2}))
$$

The set of ODEs describing the unmodified substrates are:

$$
\frac{d[S_1]}{dt} = -([S_1] \cdot [K_1] \cdot k_{+,K,1}) + ([K_1S_1] \cdot k_{-,K,1} + [PS_1^*] \cdot k_{cat,P,1})
$$

$$
\frac{d[S_2]}{dt} = -([S_2] \cdot [K_2] \cdot k_{+,K,2}) + ([K_2S_2] \cdot k_{-,K,2} + [PS_2^*] \cdot k_{cat,P,2})
$$

The set of ODEs describing the modified substrates are:

$$
\frac{d[S_1^*]}{dt} = -([S_1^*] \cdot [P] \cdot k_{+,P,1}) + ([PS_1^*] \cdot k_{-,P,1} + [K_1S_1] \cdot k_{cat,K,1})
$$

$$
\frac{d[S_2^*]}{dt} = -([S_2^*] \cdot [P] \cdot k_{+,P,2}) + ([PS_2^*] \cdot k_{-,P,2} + [K_2S_2] \cdot k_{cat,K,2})
$$

The set of ODEs describing the enzyme-substrate complexes are:

$$
\frac{d[K_1S_1]}{dt} = -([K_1S_1] \cdot (k_{-,K,1} + k_{cat,K,1})) + ([S_1] \cdot [K_1] \cdot k_{+,K,1})
$$

\n
$$
\frac{d[K_2S_2]}{dt} = -([K_2S_2] \cdot (k_{-,K,2} + k_{cat,K,2})) + ([S_2] \cdot [K_2] \cdot k_{+,K,2})
$$

\n
$$
\frac{d[PS_1^*]}{dt} = -([PS_1^*] \cdot (k_{-,P,1} + k_{cat,P,1})) + ([S_1^*] \cdot [P] \cdot k_{+,P,1})
$$

\n
$$
\frac{d[PS_2^*]}{dt} = -([PS_2^*] \cdot (k_{-,P,2} + k_{cat,P,2})) + ([S_2^*] \cdot [P] \cdot k_{+,P,2})
$$

For purposes of display in Figs. $3A$ and C in the main text we used the following parameters:

Parameter	Value
$k_{+,K,i}$	$0.001~\mathrm{nM}^{-1}\mathrm{\cdot s}^{-1}$
$k_{-,K,i}$	0.001 s^{-1}
$k_{cat,K,i}$	$0.999 s^{-1}$
$k_{+,P,i}$	$0.001 \text{ nM}^{-1} \cdot \text{s}^{-1}$
$k_{-,P,i}$	0.001 s^{-1}
$k_{cat,P,i}$	$0.999 s^{-1}$

 $i=1\ \mathrm{or}\ 2$

Each molecular species were initialized at the following concentrations:

The remaining molecular species had initial concentrations of 0. The range of initial concentrations of K_1 and K_2 were used to set the values of r_1 and r_2 , respectively, in Figs. 3A and *C* in the main text. In Fig. 3A, $[S_2]_0 = 0$ and in Fig. 3C, $[S_2]_0 = 20nM$.

1.5 Cascade with Multiple Phosphatases

The set of kinase enzymatic reactions for the cascade with multiple phosphatases is:

$$
S_1 + K \xrightarrow[k_{-,K,1}]{k_{+,K,1}} KS_1 \xrightarrow[k_{-1,K,2}]{k_{cat,K,1}} S_1^* + K
$$

\n
$$
S_2 + S_1^* \xrightarrow[k_{-,K,2}]{k_{+,K,2}} S_1^* S_2 \xrightarrow[k_{cat,K,2}]{k_{cat,K,2}} S_2^* + S_1^*
$$

\n:
\n:
\n
$$
S_N + S_{N-1}^* \xrightarrow[k_{-,K,N}]{k_{+,K,N}} S_{N-1}^* S_N \xrightarrow[k_{cat,K,N}]{k_{cat,K,N}} S_N^* + S_{N-1}^*
$$

Note that K is the input kinase and S_i^* serves as the kinase for S_{i+1} . The set of phosphatase enzymatic reactions is:

$$
S_{1}^{*} + P_{1} \quad \xleftarrow[k_{+,P,1}]{k_{+,P,1}} P_{1} S_{1}^{*} \quad \xleftarrow{k_{cat,P,1}} S_{1} + P_{1}
$$

\n
$$
S_{2}^{*} + P_{2} \quad \xleftarrow[k_{+,P,2}]{k_{+,P,2}} P_{2} S_{2}^{*} \quad \xleftarrow{k_{cat,P,2}} S_{2} + P_{2}
$$

\n:
\n:
\n
$$
S_{N}^{*} + P_{N} \quad \xleftarrow[k_{+,P,N}]{k_{+,P,N}} P_{N} S_{N}^{*} \quad \xleftarrow{k_{cat,P,N}} S_{N} + P_{N}
$$

The set of ODEs describing the free enzymes are:

$$
\frac{d[K]}{dt} = -([S_1] \cdot [K] \cdot k_{+,K,1}) + ([KS_1] \cdot (k_{-,K,1} + k_{cat,K,1}))
$$
\n
$$
\frac{d[P_1]}{dt} = -([S_1^*] \cdot [P_1] \cdot k_{+,P,1}) + ([P_1S_1^*] \cdot (k_{-,P,1} + k_{cat,P,1}))
$$
\n
$$
\frac{d[P_i]}{dt} = -([S_i^*] \cdot [P_i] \cdot k_{+,P,i}) + ([P_iS_i^*] \cdot (k_{-,P,i} + k_{cat,P,i}))
$$
\n
$$
\frac{d[P_N]}{dt} = -([S_N^*] \cdot [P_N] \cdot k_{+,P,N}) + ([P_NS_N^*] \cdot (k_{-,P,N} + k_{cat,P,N}))
$$

The set of ODEs describing the unmodified substrates are:

$$
\frac{d[S_1]}{dt} = -([S_1] \cdot [K] \cdot k_{+,K,1}) + ([KS_1] \cdot k_{-,K,1} + [P_1 S_1^*] \cdot k_{cat,P,1})
$$
\n
$$
\frac{d[S_i]}{dt} = -([S_i] \cdot [S_{i-1}^*] \cdot k_{+,K,i}) + ([S_{i-1}^* S_i] \cdot k_{-,K,i} + [P_i S_i^*] \cdot k_{cat,P,i})
$$
\n
$$
\frac{d[S_N]}{dt} = -([S_N] \cdot [S_{N-1}^*] \cdot k_{+,K,N}) + ([S_{N-1}^* S_N] \cdot k_{-,K,N} + [P_N S_N^*] \cdot k_{cat,P,N})
$$

The set of ODEs describing the modified substrates are:

$$
\frac{d[S_1^*]}{dt} = -([S_1^*] \cdot [P] \cdot k_{+,K,1}) + [S_2] \cdot [S_1^*] \cdot k_{+,K,2})
$$

+ ([P_1S_1^*] \cdot k_{-,P,1} + [KS_1] \cdot k_{cat,K,1} + [S_1^*S_2] \cdot (k_{-,K,2} + k_{cat,K,2}))

$$
\frac{d[S_i^*]}{dt} = -([S_i^*] \cdot [P_i] \cdot k_{+,K,i}) + [S_{i+1}] \cdot [S_i^*] * k_{+,K,i+1})
$$

+ ([P_iS_i^*] \cdot k_{-,P,i} + [S_{i-1}^*S_i] \cdot k_{cat,K,i} + [S_i^*S_{i+1}] \cdot (k_{-,K,i+1} + k_{cat,K,i+1}))

$$
\frac{d[S_N^*]}{dt} = -([S_N^*] \cdot [P_N] \cdot k_{+,K,N}) + ([P_NS_N^*] \cdot k_{-,P,N} + [S_{N-1}^*S_N] \cdot k_{cat,K,N})
$$

The set of ODEs describing the enzyme-substrate complexes are:

$$
\frac{d[KS_1]}{dt} = -([KS_1] \cdot (k_{-,K,1} + k_{cat,K,1})) + ([S_1] \cdot [K] \cdot k_{+,K,1})
$$
\n
$$
\frac{d[S_{i-1}^* S_i]}{dt} = -([S_{i-1}^* S_i] \cdot (k_{-,K,i} + k_{cat,K,i})) + ([S_i] \cdot [S_{i-1}^*] \cdot k_{+,K,i})
$$
\n
$$
\frac{d[S_{N-1}^* S_N]}{dt} = -([S_{N-1}^* S_N] \cdot (k_{-,K,N} + k_{cat,K,N})) + ([S_N] \cdot [S_{N-1}^*] \cdot k_{+,K,N})
$$
\n
$$
\frac{d[P_1 S_1^*]}{dt} = -([P_1 S_1^*] \cdot (k_{-,P,1} + k_{cat,P,1})) + ([S_1^*] \cdot [P_1] \cdot k_{+,P,1})
$$
\n
$$
\frac{d[P_i S_i^*]}{dt} = -([P_i S_i^*] \cdot (k_{-,P,i} + k_{cat,P,i})) + ([S_i^*] \cdot [P_i] \cdot k_{+,P,i})
$$
\n
$$
\frac{d[P_N S_N^*]}{dt} = -([P_N S_N^*] \cdot (k_{-,P,N} + k_{cat,P,N})) + ([S_N^*] \cdot [P_N] \cdot k_{+,P,N})
$$

Where $i = 2, ..., N - 1$.

For purposes of display in Fig. $3D$ in the main text, we used the following parameters:

Parameter	Value	
$k_{+,K,i}$	$0.001~\rm nM^{-1}\cdot s^{-1}$	
$k_{-,K,i}$	10^{i-8} s ⁻¹	
$k_{cat,K,i}$	$0.999 \cdot 10^{i-5} \text{ s}^{-1}$	
$k_{+,P,i}$	$0.001 \text{ nM}^{-1} \cdot \text{s}^{-1}$	
$k_{-,P,i}$	10^{i-8} s ⁻¹	
$k_{cat, P,i}$	$0.999 \cdot 10^{i-5} \text{ s}^{-1}$	
$i = 1, 2, , N$		

The k_{cat} 's and k−'s were calculated as $0.999 \cdot 10^{i-5}$ s⁻¹ and 10^{i-8} s⁻¹, respectively; the kinetic parameters of reaction i in the cascade were thus varied so that each substrate concentration was $10 \cdot K_m$ in respect to its kinase and phosphatase.

The molecular species in the system started with the following initial concentrations:

The remaining molecular species had initial concentrations of 0. We systematically increased the initial concentration of the S_i 's $([S_i]_0 = 10 \cdot [S_{i-1}]_0)$; since S_{i-1}^* is the kinase for S_i , this ensured that all substrates were at higher concentrations than their enzymes. The range of initial concentrations of K were used to vary the value of r in Fig. 3D.

1.6 Cascade with a Single Phosphatase

The set of kinase enzymatic reactions for the cascade with a single phosphatase is:

$$
S_{1} + K \quad \xleftarrow[k_{+,K,1}]{k_{+,K,1}} K S_{1} \quad \xleftarrow{k_{cat,K,1}} S_{1} + K
$$

\n
$$
S_{2} + S_{1}^{*} \quad \xleftarrow[k_{+,K,2}]{k_{+,K,2}} S_{1}^{*} S_{2} \quad \xleftarrow{k_{cat,K,2}} S_{2}^{*} + S_{1}^{*}
$$

\n:
\n:
\n
$$
S_{N} + S_{N-1}^{*} \xleftarrow[k_{+,K,N}]{k_{+,K,N}} S_{N-1}^{*} S_{N} \quad \xleftarrow{k_{cat,K,N}} S_{N}^{*} + S_{N-1}^{*}
$$

The set of phosphatase enzymatic reactions is:

$$
S_{1}^{*} + P \quad \xrightarrow[k_{-,P,1}]{k_{+,P,1}} PS_{1}^{*} \quad \xrightarrow[k_{-P,1}]{k_{cat,P,1}} S_{1} + P
$$

$$
S_{2}^{*} + P \quad \xrightarrow[k_{-,P,2}]{k_{+,P,2}} PS_{2}^{*} \quad \xrightarrow[k_{cat,P,2}]{k_{cat,P,2}} S_{2} + P
$$

$$
\vdots
$$

$$
S_{N}^{*} + P \quad \xrightarrow[k_{-,P,N}]{k_{+,P,N}} PS_{N}^{*} \quad \xrightarrow[k_{cat,P,N}]{k_{cat,P,N}} S_{N} + P
$$

The set of ODEs describing free enzymes are:

$$
\frac{d[K]}{dt} = -([S_1] \cdot [K] \cdot k_{+,K,1}) + ([KS_1] \cdot (k_{-,K,1} + k_{cat,K,1}))
$$
\n
$$
\frac{d[P]}{dt} = -([S_1^*] \cdot [P] \cdot k_{+,P,1} + [S_2^*] \cdot k_{+,P,2} + \dots + [S_N^*] \cdot k_{+,P,N})
$$
\n
$$
+ ([PS_1^*] \cdot (k_{-,P,1} + k_{cat,P,1}) + [PS_2^*] \cdot (k_{-,P,2} + k_{cat,P,2}) + \dots + [PS_N^*] \cdot (k_{-,P,N} + k_{cat,P,N}))
$$

The set of ODEs describing unmodified substrates are:

$$
\frac{d[S_1]}{dt} = -([S_1] \cdot [K] \cdot k_{+,K,1}) + ([KS_1] \cdot k_{-,K,1} + [PS_1^*] \cdot k_{cat,P,1})
$$
\n
$$
\frac{d[S_i]}{dt} = -([S_i] \cdot [S_{i-1}^*] \cdot k_{+,K,i}) + ([S_{i-1}^* S_i] \cdot k_{-,K,i} + [PS_i^*] \cdot k_{cat,P,i})
$$
\n
$$
\frac{d[S_N]}{dt} = -([S_N] \cdot [S_{N-1}^*] \cdot k_{+,K,N}) + ([S_{N-1}^* S_N] \cdot k_{-,K,N} + [PS_N^*] \cdot k_{cat,P,N})
$$

The set of ODEs describing modified substrates are:

$$
\frac{d[S_1^*]}{dt} = -([S_1^*] \cdot [P] \cdot k_{+,K,1}) + [S_2] \cdot [S_1^*] * k_{+,K,2})
$$

+
$$
([PS_1^*] \cdot k_{-,P,1} + [KS_1] \cdot k_{cat,K,1} + [S_1^*S_2] \cdot (k_{-,K,2} + k_{cat,K,2}))
$$

$$
\frac{d[S_i^*]}{dt} = -([S_i^*] \cdot [P] \cdot k_{+,K,i}) + [S_{i+1}] \cdot [S_i^*] * k_{+,K,i+1})
$$

+
$$
([PS_i^*] \cdot k_{-,P,i} + [S_{i-1}^*S_i] \cdot k_{cat,K,i} + [S_i^*S_{i+1}] \cdot (k_{-,K,i+1} + k_{cat,K,i+1}))
$$

$$
\frac{d[S_N^*]}{dt} = -([S_N^*] \cdot [P] \cdot k_{+,K,N})) + ([PS_N^*] \cdot k_{-,P,N} + [S_{N-1}^*S_N] \cdot k_{cat,K,N}))
$$

The set of ODEs describing enzyme-substrate complexes are:

$$
\frac{d[KS_1]}{dt} = -([KS_1] \cdot (k_{-,K,1} + k_{cat,K,1})) + ([S_1] \cdot [K] \cdot k_{+,K,1})
$$
\n
$$
\frac{d[PS_1^*]}{dt} = -([PS_1^*] \cdot (k_{-,P,1} + k_{cat,P,1})) + ([S_1^*] \cdot [P] \cdot k_{+,P,1})
$$
\n
$$
\frac{d[S_{i-1}^*S_i]}{dt} = -([S_{i-1}^*S_i] \cdot (k_{-,K,i} + k_{cat,K,i})) + ([S_i] \cdot [S_{i-1}^*] \cdot k_{+,K,i})
$$
\n
$$
\frac{d[PS_i^*]}{dt} = -([PS_i^*] \cdot (k_{-,P,i} + k_{cat,P,i})) + ([S_i^*] \cdot [P] \cdot k_{+,P,i})
$$
\n
$$
\frac{d[S_{N-1}^*S_N]}{dt} = -([S_{N-1}^*S_N] \cdot (k_{-,K,N} + k_{cat,K,N})) + ([S_N] \cdot [S_{N-1}^*] \cdot k_{+,K,N})
$$
\n
$$
\frac{d[P_NS_N^*]}{dt} = -([PS_N^*] \cdot (k_{-,P,N} + k_{cat,P,N})) + ([S_N^*] \cdot [P] \cdot k_{+,P,N})
$$

Where $i = 2, ..., N - 1$.

For purposes of display in Fig. 3D, we used the following parameters:

The k_{cat} 's and k_-' 's were calculated as in section [1.5.](#page-9-0)

The molecular species were initialized at the following concentrations:

Remaining molecular species were set with initial concentrations of 0. Increasing the initial concentrations of S_i ensured that $[S_i]_0 = 10 \cdot [S_{i-1}]_0$ since S_{i-1}^* is the kinase for S_i to ensure that the concentration of substrates were larger than the concentrations of their respective kinases. The range of initial concentrations of K were used to vary the value of r in Fig. 3D.

2 Analytical Results for the 1–Kinase/1–Phosphatase Loop

2.1 Mutual inhibition for competitive substrates

Here we will show that the 1K1P loop displays behavior dependent on r without regard for other parameters. The enzymatic reactions for an enzyme with two substrates can be written as:

$$
E + S_1 \frac{\sum_{k_-,E,1}^{k_+,E,1} ES_1}{\sum_{k_-,E,1}^{k_-,E,1} ES_2} \frac{\sum_{k_-,E,1}^{k_-,E,1} E + S_1^*}{\sum_{k_-,E,2}^{k_-,E,2} ES_2} + S_2^*
$$

with $E = K$ or P. The Michaelis-Menten constant and maximum velocity of the enzyme for either substrate are defined as:

$$
K_{m,E,x} \equiv \frac{k_{-,E,x} + k_{cat,E,x}}{k_{+,E,x}}
$$

$$
V_{max,E,x} \equiv k_{cat,E,x}[E]_0
$$

We can obtain the following kinetic equations:

$$
\frac{d[ES_1]}{dt} = [E][S_1]k_{+,E,1} - [ES_1](k_{-,E,1} + k_{cat,E,1})
$$
\n(2.1.1)

$$
\frac{d[ES_2]}{dt} = [E][S_2]k_{+,E,2} - [ES_2](k_{-,E,2} + k_{cat,E,2}) \tag{2.1.2}
$$

$$
\frac{d[S_1^*]}{dt} = k_{cat,E,1}[ES_1] \tag{2.1.3}
$$

We also have the conservation of mass:

$$
[E]_0 = [E] + [ES_1] + [ES_2] \tag{2.1.4}
$$

Assuming pseudo–steady state for the enzymatic reactions, from equations [2.1.1](#page-15-2) and [2.1.2](#page-15-2) we get:

$$
[ES_1] = \frac{[E][S_1]}{K_{m,E,1}}
$$

$$
[ES_2] = \frac{[E][S_2]}{K_{m,E,2}}
$$

both of which can be substituted into equation [2.1.4:](#page-15-3)

$$
[E]_0 = [E] \left(1 + \frac{[S_1]}{K_{m,E,1}} + \frac{[S_2]}{K_{m,E,2}} \right)
$$

$$
[E] = \frac{[E]_0}{1 + \frac{[S_1]}{K_{m,E,1}} + \frac{[S_2]}{K_{m,E,2}}}
$$

$$
[ES_1] = \frac{[E]_0[S_1]}{[S_1] + K_{m,E,1} \left(1 + \frac{[S_2]}{K_{m,E,2}}\right)}
$$

This can be substituted into [2.1.3](#page-15-2) to arrive at:

$$
\frac{d[S_1^*]}{dt} = \frac{V_{max,E,1}[S_1]}{\alpha_{E,1}K_{m,E,1}+[S_1]}
$$
\n
$$
\alpha_{E,1} \equiv 1 + \frac{[S_2]}{K_{m,E,2}}
$$
\n(2.1.5)

where $\alpha_{E,1}$ is the inhibitory constant for S_2 competition with S_1 for E.

2.2 Steady-state solution for $[S_1^*]$

As Goldbeter and Koshland originally noted, for a futile cycle at steady state we will have $d[S_1^*]/dt = d[S_1]/dt$ [\[1\]](#page-26-0). Given [2.1.5,](#page-16-1) for the 1K1P loop with two substrates this yields:

$$
\frac{V_{max,K,1}[S_1]}{\alpha_{K,1}K_{m,K,1}+[S_1]} = \frac{V_{max,P,1}[S_1^*]}{\alpha_{P,1}K_{m,P,1}+[S_1^*]} \tag{2.2.1}
$$

Following the standard Michaelis-Menten assumptions [\[1,](#page-26-0) [2\]](#page-26-1), we have that $[S_i]_0 \geq (K]_0$, $[P]_0$. This gives us $[S_1]_0 = [S_1] + [S_1^*]$, which can be substituted into [2.2.1:](#page-16-2)

$$
\frac{V_{max,K,1}([S_1]_0 - [S_1^*])}{\alpha_{K,1} K_{m,K,1} + ([S_1]_0 - [S_1^*])} = \frac{V_{max,P,1}[S_1^*]}{\alpha_{P,1} K_{m,P,1} + [S_1^*]}
$$

Dividing both sides by $[S_1]_0$, we get:

$$
\frac{V_{max,K,1}(1-S_1^*)}{\alpha_{K,1}K_{K,1}+(1-S_1^*)} = \frac{V_{max,P,1}S_1^*}{\alpha_{P,1}K_{P,1}+S_1^*}
$$
(2.2.2)

$$
K_{K,1} \equiv \frac{K_{m,K,1}}{[S_1]_0}, K_{P,1} \equiv \frac{K_{m,P,1}}{[S_1]_0}
$$

$$
S_1 \equiv \frac{[S_1]}{[S_1]_0}, S_1^* \equiv \frac{[S_1^*]}{[S_1]_0}
$$

We can expand $2.2.2$:

$$
\alpha_{P,1}V_{max,K,1}K_{P,1} - \alpha_{P,1}V_{max,K,1}K_{P,1}S_1^* + V_{max,K,1}S_1^* - V_{max,K,1}(S_1^*)^2
$$

= $\alpha_{K,1}V_{max,P,1}K_{K,1}S_1^* + V_{max,P,1}S_1^* - V_{max,P,1}(S_1^*)^2$

Dividing both sides by $V_{max,P,1}$, we get:

$$
r_1 \alpha_{P,1} K_{P,1} - r_1 \alpha_{P,1} K_{P,1} S_1^* + r_1 S_1^* - r_1 (S_1^*)^2 = \alpha_{K,1} K_{K,1} S_1^* + S_1^* - (S_1^*)^2
$$

$$
r_1 \equiv \frac{V_{max,K,1}}{V_{max,P,1}}
$$

which can be simplified to:

$$
(1 - r_1)(S_1^*)^2 + ((r_1 - 1) - (\alpha_{K,1}K_{K,1} + r_1\alpha_{P,1}K_{P,1}))S_1^* + r_1\alpha_{P,1}K_{P,1} = 0
$$
\n(2.2.3)

Solving for S_1^* :

$$
S_1^* = \frac{(r_1 - 1) - (\alpha_{K,1}K_{K,1} + r_1\alpha_{P,1}K_{P,1}) + \sqrt{((r_1 - 1) - (\alpha_{K,1}K_{K,1} + r_1\alpha_{P,1}K_{P,1}))^2 + 4(r_1 - 1)r_1\alpha_{P,1}K_{P,1}}}{2(r_1 - 1)}
$$
(2.2.4)

There are two important things to note about this solution. For one, the above equation is valid for $r_1 > 0$; at $r_1 = 0$ one needs to take the other branch of the solution (i.e. the branch in which the square root term is subtracted in the numerator). Also, at $r_1 = 1$, [2.2.4](#page-17-1) has a nonessential singularity. To obtain the behavior at $r_1 = 1$, we see [2.2.3](#page-17-2) becomes:

$$
-(\alpha_{K,1}K_{K,1} + \alpha_{P,1}K_{P,1})S_1^* + \alpha_{P,1}K_{P,1} = 0
$$
\n(2.2.5)

giving us S_1^* for $r_1 = 1$:

$$
S_1^* = \frac{\alpha_{P,1} K_{P,1}}{\alpha_{K,1} K_{K,1} + \alpha_{P,1} K_{P,1}}\tag{2.2.6}
$$

2.3 $\left| dS_{1}^{\ast }/dS_{2}^{\ast }\right|$ is always positive

We wish to show that $\frac{dS_1^*}{dS_2^*} > 0$ regardless of the values of any parameter. This would indicate that the ultrasensitivity of S_2 transfers to S_1 (*i.e.*, since S_2^* will decrease as $[S_2]_0$ increases for $r_2 < 1$, S_1^* would also decrease). To do so we notice that, by the chain rule:

$$
\frac{dS_1^*}{dS_2^*} = \frac{\partial S_1^*}{\partial \alpha_{K,1}} \cdot \frac{d\alpha_{K,1}}{dS_2^*} + \frac{\partial S_1^*}{\partial \alpha_{P,1}} \cdot \frac{d\alpha_{P,1}}{dS_2^*}
$$
(2.3.1)

This is because S_1^* is a function of $\alpha_{K,1}, \alpha_{P,1}, r_1$, and a vector of positive constants [2.2.4.](#page-17-1) Each of the α terms are, in turn, functions of S_2^* .

We will explore the signs of each component of [2.3.1](#page-17-3) to show that $\frac{dS_1^*}{dS_2^*} > 0$. Using

Mathematica [\[3\]](#page-26-2), we can obtain the partial derivative of [2.2.4](#page-17-1) with respect to $\alpha_{K,1}$ at $r_1 \neq 1$:

$$
\frac{\partial S_1^*}{\partial \alpha_{K,1}} = \frac{-K_{K,1} + \frac{K_{K,1}x}{\sqrt{x^2 + y}}}{2(r_1 - 1)}\tag{2.3.2}
$$

Where:

$$
x \equiv -((r_1 - 1) - (\alpha_{K,1} K_{K,1} + r_1 \alpha_{P,1} K_{P,1})), \qquad y \equiv 4(r_1 - 1)r_1 \alpha_{P,1} K_{P,1}
$$
(2.3.3)

Factoring out $\frac{-K_{K,1}}{\sqrt{2}}$ $\frac{K_{K,1}}{x^2+y}$ we obtain:

$$
\frac{\partial S_1^*}{\partial \alpha_{K,1}} = \frac{-K_{K,1}}{\sqrt{x^2 + y}} \cdot \frac{-x + \sqrt{x^2 + y}}{2(r_1 - 1)}
$$
(2.3.4)

Notice that the second term in [2.3.4](#page-18-0) is the expression for S_1^* , simplifying $\frac{dS_1^*}{d\alpha_{K,1}}$ to:

$$
\frac{\partial S_1^*}{\partial \alpha_{K,1}} = \frac{-K_{K,1}}{\sqrt{x^2 + y}} S_1^* \tag{2.3.5}
$$

Note that $K_{K,1}$, S_1^* and $\sqrt{x^2 + y}$ are all positive, making $\frac{\partial S_1^*}{\partial \alpha_{K,1}} < 0$ for $r_1 \neq 1$. We can also demonstrate this for $r_1 = 1$ by taking the partial derivative of [2.2.6](#page-17-4) with respect to $\alpha_{K,1}$:

$$
\frac{\partial S_1^*}{\partial \alpha_{K,1}} = \frac{-\alpha_{P,1} K_{K,1} K_{P,1}}{(\alpha_{K,1} K_{K,1} + \alpha_{P,1} K_{P,1})^2}
$$
(2.3.6)

Which is clearly negative, demonstrating that $\frac{\partial S_1^*}{\partial \alpha_{K,1}} < 0$ for any set of parameters.

Next it can be shown that $\frac{\partial S_1^*}{\partial \alpha_{P,1}} > 0$. We can obtain an expression the partial derivative of [2.2.4](#page-17-1) with respect to $\alpha_{P,1}$ at $r_1 \neq 1$ with Mathematica [\[3\]](#page-26-2) :

$$
\frac{\partial S_1^*}{\partial \alpha_{P,1}} = \frac{-r_1 K_{P,1} + \frac{2(r_1 - 1)r_1 K_{P,1} + r_1 K_{P,1} x}{\sqrt{x^2 + y}}}{2(r_1 - 1)}\tag{2.3.7}
$$

By factoring out $\frac{r_1 K_{P,1}}{\sqrt{r_1}}$ $\frac{\Lambda_{P,1}}{x^2+y}$ we get:

$$
\frac{\partial S_1^*}{\partial \alpha_{P,1}} = \frac{r_1 K_{P,1}}{\sqrt{x^2 + y}} \left(\frac{2(r_1 - 1) + x - \sqrt{x^2 + y}}{2(r_1 - 1)} \right)
$$
(2.3.8)

Notice that the second term in [2.3.8](#page-18-1) is the expression for $1 - S_1^*$, simplifying $\frac{\partial S_1^*}{\partial \alpha_{P,1}}$ to:

$$
\frac{\partial S_1^*}{\partial \alpha_{P,1}} = \frac{r_1 K_{P,1}}{\sqrt{x^2 + y}} (1 - S_1^*)
$$
\n(2.3.9)

We can easily see that [2.3.9](#page-18-2) is positive, confirming $\frac{\partial S_1^*}{\partial \alpha_{P,1}} > 0$ for $r_1 \neq 1$. We can also demonstrate this for $r_1 = 1$ by taking the partial derivative of [2.2.6](#page-17-4) with respect to $\alpha_{P,1}$:

$$
\frac{\partial S_1^*}{\partial \alpha_{P,1}} = \frac{\alpha_{K,1} K_{K,1} K_{P,1}}{(\alpha_{K,1} K_{K,1} + \alpha_{P,1} K_{P,1})^2}
$$
(2.3.10)

Which is clearly positive, demonstrating that $\frac{\partial S_1^*}{\partial \alpha_{P,1}} > 0$ for any set of parameters.

It is easy to show that $\frac{d\alpha_{K,1}}{dS_2^*} < 0$:

$$
\alpha_{K,1} = 1 + \frac{[S_2]}{K_{m,K,2}}
$$

$$
= 1 + \frac{[S_2]_0 - [S_2^*]}{K_{m,K,2}}
$$

$$
= 1 + \frac{1 - S_2^*}{K_{K,2}}
$$

$$
\frac{d\alpha_{K,1}}{dS_2^*} = -\frac{1}{K_{K,2}} < 0
$$

Similarly, we can show $\frac{d\alpha_{P,1}}{dS_2^*} > 0$:

$$
\alpha_{P,1} = 1 + \frac{[S_2^*]}{K_{m,P,2}}
$$

$$
= 1 + \frac{S_2^*}{K_{P,2}}
$$

$$
\frac{d\alpha_{P,1}}{dS_2^*} = \frac{1}{K_{P,2}} > 0
$$

Now we have determined the behaviors of each component of the two implementations of the chain rules presented in $2.3.1$ for all values of r_1 and r_2 . When we refer back to the chain rule [\(2.3.1\)](#page-17-3) we notice that both terms are positive:

$$
\frac{dS_1^*}{dS_2^*} = \frac{\partial S_1^*}{\partial \alpha_{K,1}} \cdot \frac{d\alpha_{K,1}}{dS_2^*} + \frac{\partial S_1^*}{\partial \alpha_{P,1}} \cdot \frac{d\alpha_{P,1}}{dS_2^*}
$$

$$
\frac{dS_1^*}{dS_2^*} = (-)(-) + (+)(+)
$$

This means that changes in S_1^* upon increases in S_2^* will always be positive. The increase in ultrasensitivity of S_2^* is thus transferred to S_1 regardless of the values of the other parameters.

3 Analytical Results for the 1–Kinase/1–Phosphatase Loop with Many Substrates

The 1K1P loop can be expanded to include many substrates of the kinase and phosphatase. In this case we would have a system of enzymes such that:

$$
E + S_1 \xleftarrow[k_{+,E,1}]{k_{+,E,1}} ES_1 \xleftarrow[k_{cat,E,1}]{k_{cat,E,1}} E + S_1^*
$$

\n
$$
E + S_2 \xleftarrow[k_{-,E,2}]{k_{+,E,2}} ES_2 \xleftarrow[k_{cat,E,2}]{k_{cat,E,2}} E + S_2^*
$$

\n:
\n:
\n
$$
E + S_N \xleftarrow[k_{+,E,N}]{k_{+,E,N}} ES_N \xleftarrow[k_{cat,E,N}]{k_{cat,E,N}} E + S_N^*
$$

where $E = K$ or P. From these equations we have:

$$
[ES_1] = \frac{[E][S_1]}{K_{m,E,1}}, [ES_2] = \frac{[E][S_2]}{K_{m,E,2}}, \dots, [ES_N] = \frac{[E][S_N]}{K_{m,E,N}}
$$
(3.1)

We also know from the conservation of mass of the enzyme:

$$
[E]_0 = [E] + [ES_1] + [ES_2] + \ldots + [ES_N]
$$
\n(3.2)

Substituting the system of equations from [3.1](#page-20-1) into [3.2,](#page-20-2) we get:

$$
[E]_0 = [E] \left(1 + \frac{[S_1]}{K_{m,E,1}} + \frac{[S_2]}{K_{m,E,2}} + \dots + \frac{[S_N]}{K_{m,E,N}} \right)
$$

$$
[E] = \frac{[E]_0}{1 + \frac{[S_1]}{K_{m,E,1}} + \frac{[S_2]}{K_{m,E,2}} + \dots + \frac{[S_N]}{K_{m,E,N}}}
$$

$$
[ES_1] = \frac{[E]_0[S_1]}{[S_1] + K_{m,E,1} \left(1 + \frac{[S_2]}{K_{m,E,2}} + \dots + \frac{[S_N]}{K_{m,E,N}} \right)}
$$
(3.3)

Substituting [3.3](#page-20-3) into the previously defined [2.1.3,](#page-15-2) we arrive at:

$$
\frac{d[S_1^*]}{dt} = \frac{V_{max,1}[S_1]}{\alpha K_{m,E,1} + [S_1]}
$$

$$
\alpha \equiv 1 + \sum_{i=2}^{N} \frac{[S_i]}{K_{m,E,i}}
$$

From the above equation, we can proceed to solve for S_1^* as in section [2.2;](#page-16-0) as expected, one obtains equation [2.2.4,](#page-17-1) but with $\alpha_{K,1} \equiv 1 + \sum_{i=2}^{N} [S_i] / K_{m,K,i}$ and $\alpha_{P,1} \equiv 1 + \sum_{i=2}^{N} [S_i^*] / K_{m,P,i}$. The increase in ultrasensitivity observed in Fig. 2B of the main text arises from the fact that, for the parameters we considered, at any $r_1 < 1$, the phosphatase has a higher maximum velocity

than the kinase. As such, the majority of any substrates present will exist in the unphosphorylated form (i.e. $S_i^* < 0.5 \,\forall i$). As more substrates are added, the accumulation of these unphosphorylated substrates begins to occupy the kinase, reducing free kinase concentration and thus reducing the "effective r " of the system. In the limit where N is large, the occupation increases until the kinase is completely saturated, ultimately leading to very low phosphorylation at $r_1 < 1$. For $r_1 > 1$, a similar situation holds, but with the phosphatase occupied by the S_i^* 's.

4 Analytical Results for the 1–Kinase/2–Phosphatase Loop

In this section we will show that S_1 phosphorylation always increases in $[S_2]_0$ in the limit in which $[S_1]_0 \ll K_m$. In this system S_1^* can be derived in a similar fashion to that for the 1K1P loop, resulting in:

$$
S_1^* = \frac{(r_1 - 1) - (\alpha_{K,1}K_{K,1} + r_1K_{P,1}) + \sqrt{((r_1 - 1) - (\alpha_{K,1}K_{K,1} + r_1K_{P,1}))^2 + 4(r_1 - 1)r_1K_{P,1}}}{2(r_1 - 1)}
$$
\n(4.0.1)

Note this is similar to [2.2.4,](#page-17-1) the difference being the absence of $\alpha_{P,1}$. This is because in this loop the substrates only share a kinase, making $\alpha_{P,1} = 1$. As such, $\frac{\partial S_1^{*}}{\partial \alpha_{P,1}} = 0$, by the chain rule we see:

$$
\frac{dS_1^*}{d[S_2]_0} = \frac{dS_1^*}{d\alpha_{K,1}} \cdot \frac{d\alpha_{K,1}}{d[S_2]} \cdot \frac{d[S_2]}{d[S_2]_0}
$$
(4.0.2)

Note that $\frac{dS_1^*}{d\alpha_{K,1}}$ is similar to $\frac{\partial S_1^*}{\partial \alpha_{K,1}}$ [\(2.3.4\)](#page-18-0), the only difference being $\alpha_{P,1} = 1$ in this case. Since the value of $\alpha_{P,1}$ does not have an affect on the sign of $\frac{\partial S_1^*}{\partial \alpha_{K,1}}$, we can conclude that $\frac{dS_1^*}{d\alpha_{K,1}} < 0$ for any value of r_1 (see subsection [2.3\)](#page-17-0). Additionally, we can easily show $\frac{d\alpha_{K,1}}{d[S_2]} > 0$:

$$
\alpha_{K,1} = 1 + \frac{[S_2]}{K_{m,K,2}}\n\n\frac{d\alpha_{K,1}}{d[S_2]} = \frac{1}{K_{m,K,2}} > 0
$$
\n(4.0.3)

4.1 $d[S_2]/d[S_2]_0$ is always positive

Using Mathematica [\[3\]](#page-26-2), we can obtain an expression for $\frac{d[S_2]}{d[S_2]_0}$ at $r_2 \neq 1$. To simplify the derivation, we assume $[S_1]_0 \ll K_m$ so that $\alpha_{K,2} = 1$.

$$
[S_2] = (1 - S_2^*)[S_2]_0
$$

\n
$$
\frac{d[S_2]}{d[S_2]_0} = 1 - S_2^* - \frac{dS_2^*}{d[S_2]_0}[S_2]_0
$$

\n
$$
= 1 - \frac{-x' + \sqrt{(x')^2 + y'}}{2(r_2 - 1)} - \frac{z' + \frac{z'(-z') - \frac{y'}{2}}{\sqrt{(x')^2 + y'}}}{2(r_1 - 1)}
$$

\n
$$
= \frac{2(r_2 - 1) + x' - \sqrt{(x')^2 + y'} - z' + \frac{x'z' + \frac{y'}{2}}{\sqrt{(x')^2 + y'}}}{2(r_2 - 1)}
$$
(4.1.1)

In which:

 $x' \equiv -((r_2 - 1) - (K_{K,2} + r_2 K_{P,2})), \qquad y' \equiv 4(r_2 - 1)r_2 K_{P,2}, \qquad z' \equiv K_{K,2} + r_2 K_{P,2}$ (4.1.2)

By the definitions of x' and z' we notice that $x' = -(r_2 - 1) + z'$, which can be substituted into [4.1.1:](#page-22-1)

$$
\frac{d[S_2]}{d[S_2]_0} = \frac{2(r_2 - 1) - (r_2 - 1) + z' - \sqrt{(x')^2 + y'} - z' + \frac{x'z' + \frac{y'}{2}}{\sqrt{(x')^2 + y'}}}{2(r_2 - 1)} \n= \frac{(r_2 - 1) - \sqrt{(x')^2 + y'} + \frac{x'z' + \frac{y'}{2}}{\sqrt{(x')^2 + y'}}}{2(r_2 - 1)} \n= \frac{(r_2 - 1)\sqrt{(x')^2 + y'} - (x')^2 - y' + x'z' + \frac{y'}{2}}{2(r_2 - 1)\sqrt{(x')^2 + y'}} \n\tag{4.1.3}
$$

Additionally, by the definitions of x' and z', we see $(x')^2 = (r_2 - 1)^2 - 2(r_2 - 1)z' + (z')^2$ and $x'z' = -(r_2 - 1)z' + (z')^2$, which can be substituted into [4.1.3:](#page-22-2)

$$
\frac{d[S_2]}{d[S_2]_0} = \frac{(r_2 - 1)\sqrt{(x')^2 + y'} - (r_2 - 1)^2 + 2(r_2 - 1)z' - (z')^2 - (r_2 - 1)z' + (z')^2 - \frac{y'}{2}}{2(r_2 - 1)\sqrt{(x')^2 + y'}} \n= \frac{(r_2 - 1)\sqrt{(x')^2 + y'} - (r_2 - 1)^2 + (r_2 - 1)z' - \frac{y'}{2}}{2(r_2 - 1)\sqrt{(x')^2 + y'}} \n= \frac{\sqrt{(x')^2 + y'} - (r_2 - 1) + z' - 2r_2 K_{P,2}}{2\sqrt{(x')^2 + y'}} \n= \frac{\sqrt{(x')^2 + y'} + x' - 2r_2 K_{P,2}}{2\sqrt{(x')^2 + y'}} \n(4.1.4)
$$

We can show that $\frac{d[S_2]}{d[S_2]} > 0$ for all values of r_2 by assuming the opposite:

$$
\frac{d[S_2]}{d[S_2]_0} = \frac{\sqrt{(x')^2 + y'} + x' - 2r_2 K_{P,2}}{2\sqrt{(x')^2 + y'}} < 0
$$

$$
\sqrt{(x')^2 + y'} + x' - 2r_2 K_{P,2} < 0
$$

$$
\sqrt{(x')^2 + y'} < -x' + 2r_2 K_{P,2}
$$
(4.1.5)

If the right hand side of [4.1.5](#page-23-1) is negative then we have already arrived at a contradiction. Otherwise we can square both sides without loss of information:

$$
(x')^{2} + y' < (x')^{2} - 4r_{2}K_{P,2}x' + 4(r_{2}K_{P,2})^{2}
$$

\n
$$
y' < -4r_{2}K_{P,2}x' + 4(r_{2}K_{P,2})^{2}
$$

\n
$$
4(r_{2} - 1)r_{2}K_{P,2} < 4(r_{2} - 1)r_{2}K_{P,2} - 4r_{2}K_{K,2}K_{P,2} - 4(r_{2}K_{P,2})^{2} + 4(r_{2}K_{P,2})^{2}
$$

\n
$$
0 < -4r_{2}K_{K,2}K_{P,2}
$$

\n(4.1.7)

Which is clearly impossible, indicating $\frac{d[S_2]}{d[S_2]_0} > 0$ for $r_2 \neq 1$. Next we can obtain an expression for $d[S_2]$ $\frac{d[S_2]}{d[S_2]_0}$ at $r_2 = 1$. At this point, S_2^* becomes:

$$
S_2^* = \frac{K_{m,P,2}}{K_{m,K,2} + K_{m,P,2}}\tag{4.1.8}
$$

As such, we can easily see that the derivative of [4.1.8](#page-23-2) with respect to $[S_2]_0$ is equal to zero. Applying this to the previous expression for $\frac{d[S_2]}{d[S_2]_0}$ [\(4.1.1\)](#page-22-1) we notice that at $r_2 = 1$:

$$
\frac{d[S_2]}{d[S_2]_0} = 1 - S_2^*
$$
\n(4.1.9)

Since S_2^* must be a value between 0 and 1, it is easy to see that $\frac{d[S_2]}{d[S_2]_0} > 0$ at $r_2 = 1$, thus showing that $\frac{d[S_2]}{d[S_2]_0} > 0$ for all values of r_2 .

4.2 $\;\; dS_1^*/d[S_2]_0$ is always negative

As previously shown, we can use the chain rule to define $\frac{dS_1^*}{d[S_2]_0}$ within this motif as:

$$
\frac{dS_1^*}{d[S_2]_0} = \frac{dS_1^*}{d\alpha_{K,1}} \cdot \frac{d\alpha_{K,1}}{d[S_2]} \cdot \frac{d[S_2]}{d[S_2]_0}
$$
(4.2.1)

In which $\frac{dS_1^*}{d\alpha_{K,1}} < 0$, $\frac{d\alpha_{K,1}}{d[S_2]} > 0$ and $\frac{d[S_2]}{d[S_2]_0} > 0$. Now we can see that $\frac{dS_1^*}{d[S_2]_0} < 0$ for all values of r_1 and r_2 . At $r_2 < 1$, $\alpha_{K,1} > 1$ as most S_2 will be in the unphosphorylated form. Once $r_2 > 1$, S_2 switches to its phosphorylated form, relieving the pressure on S_1 through $\alpha_{K,1}$, establishing the "gatekeeper" effect. We can see $\alpha_{K,1}$ approaches 1 as $r_2 \to \infty$, allowing S_1^* to behave as an isolated futile cycle in this limit. Since S_1^* is increasing in r_2 , we can conclude that S_2 decreases S_1^* for all values of r_2 except in the limit $r_2 \to \infty$.

5 Analytical Results for the 2–Kinase/1–Phosphatase Loop

In this section we will show that S_1 phosphorylation also always increases in $[S_2]_0$ regardless of any other parameters. In this system S_1^* can be derived in a similar fashion to that for the 1K1P loop, resulting in:

$$
S_1^* = \frac{(r_1 - 1) - (K_{K,1} + r_1 \alpha_{P,1} K_{P,1}) + \sqrt{((r_1 - 1) - (K_{K,1} + r_1 \alpha_{P,1} K_{P,1}))^2 + 4(r_1 - 1)r_1 \alpha_{P,1} K_{P,1}}}{2(r_1 - 1)}
$$
(5.0.1)

Which is equivalent to [2.2.4,](#page-17-1) the only difference being the lack of $\alpha_{K,1}$. As such $\frac{\partial S_1^*}{\partial \alpha_{K,1}} = 0$, and we notice that by the chain rule:

$$
\frac{dS_1^*}{d[S_2]_0} = \frac{dS_1^*}{d\alpha_{P,1}} \cdot \frac{d\alpha_{P,1}}{d[S_2^*]} \cdot \frac{d[S_2^*]}{d[S_2]_0}
$$
(5.0.2)

Note that $\frac{dS_1^*}{d\alpha_{P,1}}$ is similar to $\frac{\partial S_1^*}{\partial \alpha_{P,1}}$ [\(2.3.7\)](#page-18-3), the only difference being $\alpha_{K,1} = 1$ in this case. Since the value of $\alpha_{K,1}$ does not have an affect on the sign of $\frac{\partial S_1^*}{\partial \alpha_{P,1}}$, we can conclude that $\frac{dS_1^*}{d \alpha_{P,1}} > 0$ for any value of r_1 (see subsection [2.3\)](#page-17-0). Additionally, we can easily show $\frac{d\alpha_{P,1}}{d[S_2]} > 0$:

$$
\alpha_{P,1} = 1 + \frac{[S_2^*]}{K_{m,P,2}}
$$

$$
\frac{d\alpha_{P,1}}{d[S_2]_0} = \frac{1}{K_{m,P,2}}
$$
(5.0.3)

 $\textbf{5.1} \quad d[S^*_2]/d[S_2]_0$ is always positive

We can define $[S_2^*]$ as:

$$
[S_2^*] = S_2^*[S_2]_0 \tag{5.1.1}
$$

And as such $\frac{d[S_2^*]}{d[S_2]}$ $rac{a_{1}b_{2}1}{d_{1}S_{2}0}$ is:

$$
\frac{d[S_2^*]}{d[S_2]_0} = S_2^* + \frac{dS_2^*}{d[S_2]_0}[S_2]_0
$$
\n(5.1.2)

Notice that $\frac{d[S_2^*]}{d[S_2]}$ $\frac{d[S_2^*]}{d[S_2]_0} = 1 - \frac{d[S_2]}{d[S_2]_0}$ $\frac{d[S_2]}{d[S_2]_0}$ (see [4.1.1\)](#page-22-1). We can then substitute [4.1.4](#page-22-3) in for $\frac{d[S_2]}{d[S_2]_0}$:

$$
\frac{d[S_2^*]}{d[S_2]_0} = 1 - \frac{\sqrt{(x')^2 + y'} + x' - 2r_2 K_{P,2}}{2\sqrt{(x')^2 + y'}} \n= \frac{\sqrt{(x')^2 + y'} - x' + 2r_2 K_{P,2}}{2\sqrt{(x')^2 + y'}}
$$
\n(5.1.3)

We can show $\frac{d[S_2^*]}{d[S_2]}$ $\frac{d[S_2]}{d[S_2]_0} > 0$ for any value of r_2 by assuming the opposite:

$$
\frac{d[S_2^*]}{d[S_2]_0} = \frac{\sqrt{(x')^2 + y'} - x' + 2r_2K_{P,2}}{2\sqrt{(x')^2 + y'}} < 0
$$

$$
\sqrt{(x')^2 + y'} - x' + 2r_2K_{P,2} < 0
$$

$$
\sqrt{(x')^2 + y'} < x' - 2r_2K_{P,2}
$$
(5.1.4)

If the right hand side of [5.1.4](#page-25-2) is negative then we have already arrived at a contradiction. Otherwise we can square both sides without loss of information:

$$
(x')^{2} + y' < (x')^{2} - 4r_{2}K_{P,2}x' + 4(r_{2}K_{P,2})^{2} \tag{5.1.5}
$$

Note that this expression is the same as [4.1.6,](#page-23-3) which we have already shown to be impossible, supporting the conclusion $\frac{d[S_2^*]}{d[S_2]}$ $\frac{d[S_2^*]}{d[S_2]_0} > 0$ for $r_2 \neq 0$. Next we can obtain an expression for $\frac{d[S_2]}{d[S_2]_0}$ at $r_2 = 1$. At this point, S_2^* becomes:

$$
S_2^* = \frac{K_{m,P,2}}{K_{m,K,2} + K_{m,P,2}}\tag{5.1.6}
$$

As such, we can easily see that the derivative of $5.1.6$ with respect to $[S_2]_0$ is equal to zero. Applying this to the previous expression for $\frac{d[S_2^*]}{d[S_1]}$ $rac{a_{1}S_{2}1}{a_{1}S_{2}0}$ [\(5.1.2\)](#page-24-2) we notice that at $r_{2} = 1$:

$$
\frac{d[S_2^*]}{d[S_2]_0} = S_2^* \tag{5.1.7}
$$

Since S_2^* must be a value between 0 and 1, it is easy to see that $\frac{d[S_2^*]}{d[S_2]}$ $\frac{d[S_2]}{d[S_2]_0} > 0$ at $r_2 = 1$, thus showing that $\frac{d[S_2^*]}{d[S_2]}$ $rac{a_{1}a_{21}}{a_{1}a_{21}} > 0$ for all values of r_2 .

5.2 $\;\; dS_1^*/d[S_2]_0$ is always positive

As previously shown, we can use the chain rule to define $\frac{dS_1^*}{d[S_2]_0}$ within this motif as:

$$
\frac{dS_1^*}{d[S_2]_0} = \frac{dS_1^*}{d\alpha_{P,1}} \cdot \frac{d\alpha_{P,1}}{d[S_2^*]} \cdot \frac{d[S_2^*]}{d[S_2]_0}
$$
(5.2.1)

In which $\frac{dS_1^*}{d\alpha_{P,1}} > 0$, $\frac{d\alpha_{P,1}}{d[S_2^*]} > 0$ and $\frac{d[S_2^*]}{d[S_2]}$ $\frac{d[S_2^*]}{d[S_2]_0} > 0$. Now we can see that $\frac{dS_1^*}{d[S_2]_0} > 0$ for all values of r_1 and r_2 .

References

- 1. Goldbeter A, K. D., 1981. An amplified sensitivity arising from covalent modification in biological systems. Proc Natl Acad Sci U S A 78:6840–44.
- 2. Nelson, D. L., and M. M. Cox, 2008. Lehninger Principles of Biochemistry $5^{\rm th}$ Edition.
- 3. Wolfram Research, I., 2010. Mathematica, Version 8.0. Champaign, Illinois.