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1 Systems of Ordinary Differential Equations

1.1 1–Kinase/1–Phosphatase Loop with 2 Substrates

The set of enzymatic reactions for the 1K1P loop with two substrates is as in equation [2] of the
main text:

S1 +K
k+,K,1−−−−⇀↽−−−−
k−,K,1

KS1
kcat,K,1−−−−−⇀ S∗1 +K

S2 +K
k+,K,2−−−−⇀↽−−−−
k−,K,2

KS2
kcat,K,2−−−−−⇀ S∗2 +K

S∗1 + P
k+,P,1−−−−⇀↽−−−−
k−,P,1

PS∗1
kcat,P,1−−−−⇀ S1 + P

S∗2 + P
k+,P,2−−−−⇀↽−−−−
k−,P,2

PS∗2
kcat,P,2−−−−⇀ S2 + P

Each contain three rates: rate of complex formation, (k+), rate of complex dissociation (k−), and
catalytic rate (kcat). The set of ODEs describing the free enzymes are:

d[K]

dt
=− ([S1] · [K] · k+,K,1 + [S2] · [K] · k+,K,2) + ([KS1] · (k−,K,1 + kcat,K,1) + [KS2] · (k−,K,2 + kcat,K,2))

d[P ]

dt
=− ([S∗1 ] · [P ] · k+,P,1 + [S∗2 ] · [P ] · k+,P,2) + ([PS∗1 ] · (k−,P,1 + kcat,P,1) + [PS∗2 ] · (k−,P,2 + kcat,P,2))

The set of ODEs describing the unmodified substrates are:

d[S1]

dt
=− ([S1] · [K] · k+,K,1) + ([KS1] · k−,K,1 + [PS∗1 ] · kcat,P,1)

d[S2]

dt
=− ([S2] · [K] · k+,K,2) + ([KS2] · k−,K,2 + [PS∗2 ] · kcat,P,2)

The set of ODEs describing the modified substrates are:

d[S∗1 ]

dt
=− ([S∗1 ] · [P ] · k+,P,1) + ([PS∗1 ] · k−,P,1 + [KS1] · kcat,K,1)

d[S∗2 ]

dt
=− ([S∗2 ] · [P ] · k+,P,2) + ([PS∗2 ] · k−,P,2 + [KS2] · kcat,K,2)

The set of ODEs describing the enzyme-substrate complexes are:

d[KS1]

dt
=− ([KS1] · (k−,K,1 + kcat,K,1)) + ([S1] · [K] · k+,K,1)

d[KS2]

dt
=− ([KS2] · (k−,K,2 + kcat,K,2)) + ([S2] · [K] · k+,K,2)

d[PS∗1 ]

dt
=− ([PS∗1 ] · (k−,P,1 + kcat,P,1)) + ([S∗1 ] · [P ] · k+,P,1)

d[PS∗2 ]

dt
=− ([PS∗2 ] · (k−,P,2 + kcat,P,2)) + ([S∗2 ] · [P ] · k+,P,2)
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For purposes of display in Fig. 2A of the main text we used the following values for each of the
rate constants:

Parameter Value

k+,K,i 0.001 nM−1·s−1
k−,K,i 0.001 s−1

kcat,K,i 0.999 s−1

k+,P,i 0.001 nM−1·s−1
k−,P,i 0.001 s−1

kcat,P,i 0.999 s−1

Where i = 1 or 2.

Our simulations started with the following initial concentrations:

Molecular Species Initial Concentration

K 0 - 2 nM
P 1 nM
S1 100 nM
S2 0 - 20 µM

With the remaining molecular species having initial concentrations of 0. The range of initial
concentrations of K and S2 were used to vary r1 and [S2]0/Km, respectively, in Fig. 2A in the
main text.

1.2 1–Kinase/1–Phosphatase Loop with Many Substrates

The set of enzymatic reactions for the 1K1P loop with many substrates is:

S1 +K
k+,K,1−−−−⇀↽−−−−
k−,K,1

KS1
kcat,K,1−−−−−⇀ S∗1 +K

S2 +K
k+,K,2−−−−⇀↽−−−−
k−,K,2

KS2
kcat,K,2−−−−−⇀ S∗2 +K

...

SN +K
k+,K,N−−−−⇀↽−−−−
k−,K,N

KSN
kcat,K,N−−−−−⇀ S∗N +K
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S∗1 + P
k+,P,1−−−−⇀↽−−−−
k−,P,1

PS∗1
kcat,P,1−−−−⇀ S1 + P

S∗2 + P
k+,P,2−−−−⇀↽−−−−
k−,P,2

PS∗2
kcat,P,2−−−−⇀ S2 + P

...

S∗N + P
k+,P,N−−−−⇀↽−−−−
k−,P,N

PS∗N
kcat,P,N−−−−−⇀SN + P

The set of ODEs describing the free enzymes are:

d[K]

dt
=− ([S1] · [K] · k+,K,1 + [S2] · [K] · k+,K,2 + . . .+ [SN ] · [K] · k+,K,N )

+ ([KS1] · (k−,K,1 + kcat,K,1) + [KS2] · (k−,K,2 + kcat,K,2) + . . .+ [KSN ] · (k−,K,N + kcat,K,N ))

d[P ]

dt
=− ([S∗1 ] · [P ] · k+,P,1 + [S∗2 ] · [P ] · k+,P,2 + . . .+ [S∗N ] · [P ] · k+,P,N )

+ ([PS∗1 ] · (k−,P,1 + kcat,P,1) + [PS∗2 ] · (k−,P,2 + kcat,P,2) + . . .+ [PS∗N ] · (k−,P,N + kcat,P,N ))

The set of ODEs describing the unmodified substrates are:

d[S1]

dt
=− ([S1] · [K] · k+,K,1) + ([KS1] · k−,K,1 + [PS∗1 ] · kcat,P,1)

d[S2]

dt
=− ([S2] · [K] · k+,K,2) + ([KS2] · k−,K,2 + [PS∗2 ] · kcat,P,2)
...

d[SN ]

dt
=− ([SN ] · [K] · k+,K,N ) + ([KSN ] · k−,K,N + [PS∗N ] · kcat,P,N )

The set of ODEs describing the modified substrates are:

d[S∗1 ]

dt
=− ([S∗1 ] · [P ] · k+,P,1) + ([PS∗1 ] · k−,P,1 + [KS1] · kcat,K,1)

d[S∗2 ]

dt
=− ([S∗2 ] · [P ] · k+,P,2) + ([PS∗2 ] · k−,P,2 + [KS2] · kcat,K,2)
...

d[S∗N ]

dt
=− ([S∗N ] · [P ] · k+,P,N ) + ([PS∗N ] · k−,P,N + [KSN ] · kcat,K,N )
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The set of ODEs describing the enzyme-substrate complexes are:

d[KS1]

dt
=− ([KS1] · (k−,K,1 + kcat,K,1)) + ([S1] · [K] · k+,K,1)

d[KS2]

dt
=− ([KS2] · (k−,K,2 + kcat,K,2)) + ([S2] · [K] · k+,K,2)
...

d[KSN ]

dt
=− ([KSN ] · (k−,K,N + kcat,K,N )) + ([SN ] · [K] · k+,K,N )

d[PS∗1 ]

dt
=− ([PS∗1 ] · (k−,P,1 + kcat,P,1)) + ([S∗1 ] · [P ] · k+,P,1)

d[PS∗2 ]

dt
=− ([PS∗2 ] · (k−,P,2 + kcat,P,2)) + ([S∗2 ] · [P ] · k+,P,2)
...

d[PS∗N ]

dt
=− ([PS∗N ] · (k−,P,N + kcat,P,N )) + ([S∗N ] · [P ] · k+,P,N )

The following values for rate constants were used in the simulations presented in Fig. 2B of the
main text:

Parameter Value

k+,K,i 0.001 nM−1·s−1
k−,K,i 0.001 s−1

kcat,K,i 0.999 s−1

k+,P,i 0.001 nM−1·s−1
k−,P,i 0.001 s−1

kcat,P,i 0.999 s−1

The different molecular species were initialized with concentrations:

Molecular Species Initial Concentration

K 0 - 2 nM
P 1 nM
Si 500 nM

i = 1, 2, . . . , N

The remaining molecular species had initial concentrations of 0. The range of initial
concentrations of K was used to vary the value of r1, and N was varied to obtain the surface in
Fig. 2B in the main text.
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1.3 1–Kinase/2–Phosphatase Loop

The set of enzymatic reactions for the 1K2P loop is:

S1 +K
k+,K,1−−−−⇀↽−−−−
k−,K,1

KS1
kcat,K,1−−−−−⇀ S∗1 +K

S2 +K
k+,K,2−−−−⇀↽−−−−
k−,K,2

KS2
kcat,K,2−−−−−⇀ S∗2 +K

S∗1 + P1

k+,P,1−−−−⇀↽−−−−
k−,P,1

P1S
∗
1

kcat,P,1−−−−⇀ S1 + P1

S∗2 + P2

k+,P,2−−−−⇀↽−−−−
k−,P,2

P2S
∗
2

kcat,P,2−−−−⇀ S2 + P2

The set of ODEs describing the free enzymes are:

d[K]

dt
=− ([S1] · [K] · k+,K,1 + [S2] · [K] · k+,K,2) + ([KS1] · (k−,K,1 + kcat,K,1) + [KS2] · (k−,K,2 + kcat,K,2))

d[P1]

dt
=− ([S∗1 ] · [P1] · k+,P,1) + ([P1S

∗
1 ] · (k−,P,1 + kcat,P,1))

d[P2]

dt
=− ([S∗2 ] · [P2] · k+,P,2) + ([P2S

∗
2 ] · (k−,P,2 + kcat,P,2))

The set of ODEs describing the unmodified substrates are:

d[S1]

dt
=− ([S1] · [K] · k+,K,1) + ([KS1] · k−,K,1 + [P1S

∗
1 ] · kcat,P,1)

d[S2]

dt
=− ([S2] · [K] · k+,K,2) + ([KS2] · k−,K,2 + [P2S

∗
2 ] · kcat,P,2)

The set of ODEs describing the modified substrates are:

d[S∗1 ]

dt
=− ([S∗1 ] · [P1] · k+,P,1) + ([P1S

∗
1 ] · k−,P,1 + [KS1] · kcat,K,1)

d[S∗2 ]

dt
=− ([S∗2 ] · [P2] · k+,P,2) + ([P2S

∗
2 ] · k−,P,2 + [KS2] · kcat,K,2)

The set of ODEs describing the enzyme-substrate complexes are:

d[KS1]

dt
=− ([KS1] · (k−,K,1 + kcat,K,1)) + ([S1] · [K] · k+,K,1)

d[KS2]

dt
=− ([KS2] · (k−,K,2 + kcat,K,2)) + ([S2] · [K] · k+,K,2)

d[P1S
∗
1 ]

dt
=− ([P1S

∗
1 ] · (k−,P,1 + kcat,P,1)) + ([S∗1 ] · [P1] · k+,P,1)

d[P2S
∗
2 ]

dt
=− ([P2S

∗
2 ] · (k−,P,2 + kcat,P,2)) + ([S∗2 ] · [P2] · k+,P,2)
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For purposes of display in Figs. 3A and B in the main text, we used the following parameters in
the model:

Parameter Value

k+,K,i 0.001 nM−1·s−1
k−,K,i 0.001 s−1

kcat,K,i 0.999 s−1

k+,P,i 0.001 nM−1·s−1
k−,P,i 0.001 s−1

kcat,P,i 0.999 s−1

i = 1 or 2

Each of the molecular species in the model started with the following initial concentrations:

Molecular Species Initial Concentration

K 1 nM
P1 0.5-100 nM
P2 0.5-100 nM
S1 100 nM
S2 0, 20 µM

The remaining molecular species had initial concentrations of 0. The range of initial
concentrations for P1 and P2 were used to independently set r1 and r2, respectively, in Figs. 3A
and B in the main text. In Fig. 3A [S2]0 = 0 and in Fig 3B [S2]0 = 20nM .

1.4 2–Kinase/1–Phosphatase Loop

The set of enzymatic reactions for the 2K1P loop is:

S1 +K1

k+,K,1−−−−⇀↽−−−−
k−,K,1

K1S1
kcat,K,1−−−−−⇀ S∗1 +K1

S2 +K2

k+,K,2−−−−⇀↽−−−−
k−,K,2

K2S2
kcat,K,2−−−−−⇀ S∗2 +K2

S∗1 + P
k+,P,1−−−−⇀↽−−−−
k−,P,1

PS∗1
kcat,P,1−−−−⇀ S1 + P

S∗2 + P
k+,P,2−−−−⇀↽−−−−
k−,P,2

PS∗2
kcat,P,2−−−−⇀ S2 + P
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The set of ODEs describing the free enzymes are:

d[K1]

dt
=− ([S1] · [K1] · k+,K,1) + ([K1S1] · (k−,K,1 + kcat,K,1))

d[K2]

dt
=− ([S2] · [K2] · k+,K,2) + ([K2S2] · (k−,K,2 + kcat,K,2))

d[P ]

dt
=− ([S∗1 ] · [P ] · k+,P,1 + [S∗2 ] · [P ] · k+,P,2) + ([PS∗1 ] · (k−,P,1 + kcat,P,1) + [PS∗2 ] · (k−,P,2 + kcat,P,2))

The set of ODEs describing the unmodified substrates are:

d[S1]

dt
=− ([S1] · [K1] · k+,K,1) + ([K1S1] · k−,K,1 + [PS∗1 ] · kcat,P,1)

d[S2]

dt
=− ([S2] · [K2] · k+,K,2) + ([K2S2] · k−,K,2 + [PS∗2 ] · kcat,P,2)

The set of ODEs describing the modified substrates are:

d[S∗1 ]

dt
=− ([S∗1 ] · [P ] · k+,P,1) + ([PS∗1 ] · k−,P,1 + [K1S1] · kcat,K,1)

d[S∗2 ]

dt
=− ([S∗2 ] · [P ] · k+,P,2) + ([PS∗2 ] · k−,P,2 + [K2S2] · kcat,K,2)

The set of ODEs describing the enzyme-substrate complexes are:

d[K1S1]

dt
=− ([K1S1] · (k−,K,1 + kcat,K,1)) + ([S1] · [K1] · k+,K,1)

d[K2S2]

dt
=− ([K2S2] · (k−,K,2 + kcat,K,2)) + ([S2] · [K2] · k+,K,2)

d[PS∗1 ]

dt
=− ([PS∗1 ] · (k−,P,1 + kcat,P,1)) + ([S∗1 ] · [P ] · k+,P,1)

d[PS∗2 ]

dt
=− ([PS∗2 ] · (k−,P,2 + kcat,P,2)) + ([S∗2 ] · [P ] · k+,P,2)

For purposes of display in Figs. 3A and C in the main text we used the following parameters:

Parameter Value

k+,K,i 0.001 nM−1·s−1
k−,K,i 0.001 s−1

kcat,K,i 0.999 s−1

k+,P,i 0.001 nM−1·s−1
k−,P,i 0.001 s−1

kcat,P,i 0.999 s−1

i = 1 or 2
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Each molecular species were initialized at the following concentrations:

Molecular Species Initial Concentration

K1 0 - 2 nM
K2 0 - 2 nM
P 1 nM
S1 100 nM
S2 0, 20 µM

The remaining molecular species had initial concentrations of 0. The range of initial
concentrations of K1 and K2 were used to set the values of r1 and r2, respectively, in Figs. 3A
and C in the main text. In Fig. 3A, [S2]0 = 0 and in Fig. 3C, [S2]0 = 20nM .

1.5 Cascade with Multiple Phosphatases

The set of kinase enzymatic reactions for the cascade with multiple phosphatases is:

S1 +K
k+,K,1−−−−⇀↽−−−−
k−,K,1

KS1
kcat,K,1−−−−−⇀ S∗1 +K

S2 + S∗1
k+,K,2−−−−⇀↽−−−−
k−,K,2

S∗1S2
kcat,K,2−−−−−⇀ S∗2 + S∗1

...

SN + S∗N−1
k+,K,N−−−−⇀↽−−−−
k−,K,N

S∗N−1SN
kcat,K,N−−−−−⇀ S∗N + S∗N−1

Note that K is the input kinase and S∗i serves as the kinase for Si+1. The set of phosphatase
enzymatic reactions is:

S∗1 + P1

k+,P,1−−−−⇀↽−−−−
k−,P,1

P1S
∗
1

kcat,P,1−−−−⇀ S1 + P1

S∗2 + P2

k+,P,2−−−−⇀↽−−−−
k−,P,2

P2S
∗
2

kcat,P,2−−−−⇀ S2 + P2

...

S∗N + PN
k+,P,N−−−−⇀↽−−−−
k−,P,N

PNS
∗
N

kcat,P,N−−−−−⇀SN + PN
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The set of ODEs describing the free enzymes are:

d[K]

dt
=− ([S1] · [K] · k+,K,1) + ([KS1] · (k−,K,1 + kcat,K,1))

d[P1]

dt
=− ([S∗1 ] · [P1] · k+,P,1) + ([P1S

∗
1 ] · (k−,P,1 + kcat,P,1))

d[Pi]

dt
=− ([S∗i ] · [Pi] · k+,P,i) + ([PiS

∗
i ] · (k−,P,i + kcat,P,i))

d[PN ]

dt
=− ([S∗N ] · [PN ] · k+,P,N ) + ([PNS

∗
N ] · (k−,P,N + kcat,P,N ))

The set of ODEs describing the unmodified substrates are:

d[S1]

dt
=− ([S1] · [K] · k+,K,1) + ([KS1] · k−,K,1 + [P1S

∗
1 ] · kcat,P,1)

d[Si]

dt
=−

(
[Si] · [S∗i−1] · k+,K,i

)
+
(
[S∗i−1Si] · k−,K,i + [PiS

∗
i ] · kcat,P,i

)
d[SN ]

dt
=−

(
[SN ] · [S∗N−1] · k+,K,N

)
+
(
[S∗N−1SN ] · k−,K,N + [PNS

∗
N ] · kcat,P,N

)
The set of ODEs describing the modified substrates are:

d[S∗1 ]

dt
=− ([S∗1 ] · [P ] · k+,K,1) + [S2] · [S∗1 ] · k+,K,2)

+ ([P1S
∗
1 ] · k−,P,1 + [KS1] · kcat,K,1 + [S∗1S2] · (k−,K,2 + kcat,K,2))

d[S∗i ]

dt
=− ([S∗i ] · [Pi] · k+,K,i) + [Si+1] · [S∗i ] ∗ k+,K,i+1)

+
(
[PiS

∗
i ] · k−,P,i + [S∗i−1Si] · kcat,K,i + [S∗i Si+1] · (k−,K,i+1 + kcat,K,i+1)

)
d[S∗N ]

dt
=− ([S∗N ] · [PN ] · k+,K,N ) +

(
[PNS

∗
N ] · k−,P,N + [S∗N−1SN ] · kcat,K,N

)
The set of ODEs describing the enzyme-substrate complexes are:

d[KS1]

dt
=− ([KS1] · (k−,K,1 + kcat,K,1)) + ([S1] · [K] · k+,K,1)

d[S∗i−1Si]

dt
=−

(
[S∗i−1Si] · (k−,K,i + kcat,K,i)

)
+
(
[Si] · [S∗i−1] · k+,K,i

)
d[S∗N−1SN ]

dt
=−

(
[S∗N−1SN ] · (k−,K,N + kcat,K,N )

)
+
(
[SN ] · [S∗N−1] · k+,K,N

)
d[P1S

∗
1 ]

dt
=− ([P1S

∗
1 ] · (k−,P,1 + kcat,P,1)) + ([S∗1 ] · [P1] · k+,P,1)

d[PiS
∗
i ]

dt
=− ([PiS

∗
i ] · (k−,P,i + kcat,P,i)) + ([S∗i ] · [Pi] · k+,P,i)

d[PNS
∗
N ]

dt
=− ([PNS

∗
N ] · (k−,P,N + kcat,P,N )) + ([S∗N ] · [PN ] · k+,P,N )

Where i = 2, . . . , N − 1.
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For purposes of display in Fig. 3D in the main text, we used the following parameters:

Parameter Value

k+,K,i 0.001 nM−1·s−1
k−,K,i 10i−8 s−1

kcat,K,i 0.999 ·10i−5 s−1

k+,P,i 0.001 nM−1·s−1
k−,P,i 10i−8 s−1

kcat,P,i 0.999 ·10i−5 s−1

i = 1, 2, . . . , N

The kcat’s and k−’s were calculated as 0.999 · 10i−5 s−1 and 10i−8 s−1, respectively; the kinetic
parameters of reaction i in the cascade were thus varied so that each substrate concentration was
10 ·Km in respect to its kinase and phosphatase.

The molecular species in the system started with the following initial concentrations:

Molecular Species Initial Concentration

K 10−18 - 0.1 nM
Pi 0.01 nM
S1 1 nM
S2 10 nM
...

...
Si 10 · Si−1
...

...
SN 10 ·SN-1

i = 1, 2, . . . , N

The remaining molecular species had initial concentrations of 0. We systematically increased the
initial concentration of the Si’s ([Si]0 = 10 · [Si−1]0); since S∗i−1 is the kinase for Si, this ensured
that all substrates were at higher concentrations than their enzymes. The range of initial
concentrations of K were used to vary the value of r in Fig. 3D.
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1.6 Cascade with a Single Phosphatase

The set of kinase enzymatic reactions for the cascade with a single phosphatase is:

S1 +K
k+,K,1−−−−⇀↽−−−−
k−,K,1

KS1
kcat,K,1−−−−−⇀ S∗1 +K

S2 + S∗1
k+,K,2−−−−⇀↽−−−−
k−,K,2

S∗1S2
kcat,K,2−−−−−⇀ S∗2 + S∗1

...

SN + S∗N−1
k+,K,N−−−−⇀↽−−−−
k−,K,N

S∗N−1SN
kcat,K,N−−−−−⇀ S∗N + S∗N−1

The set of phosphatase enzymatic reactions is:

S∗1 + P
k+,P,1−−−−⇀↽−−−−
k−,P,1

PS∗1
kcat,P,1−−−−⇀ S1 + P

S∗2 + P
k+,P,2−−−−⇀↽−−−−
k−,P,2

PS∗2
kcat,P,2−−−−⇀ S2 + P

...

S∗N + P
k+,P,N−−−−⇀↽−−−−
k−,P,N

PS∗N
kcat,P,N−−−−−⇀SN + P

The set of ODEs describing free enzymes are:

d[K]

dt
=− ([S1] · [K] · k+,K,1) + ([KS1] · (k−,K,1 + kcat,K,1))

d[P ]

dt
=− ([S∗1 ] · [P ] · k+,P,1 + [S∗2 ] · k+,P,2 + . . .+ [S∗N ] · k+,P,N )

+ ([PS∗1 ] · (k−,P,1 + kcat,P,1) + [PS∗2 ] · (k−,P,2 + kcat,P,2) + . . .+ [PS∗N ] · (k−,P,N + kcat,P,N ))

The set of ODEs describing unmodified substrates are:

d[S1]

dt
=− ([S1] · [K] · k+,K,1) + ([KS1] · k−,K,1 + [PS∗1 ] · kcat,P,1)

d[Si]

dt
=−

(
[Si] · [S∗i−1] · k+,K,i

)
+
(
[S∗i−1Si] · k−,K,i + [PS∗i ] · kcat,P,i

)
d[SN ]

dt
=−

(
[SN ] · [S∗N−1] · k+,K,N

)
+
(
[S∗N−1SN ] · k−,K,N + [PS∗N ] · kcat,P,N

)
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The set of ODEs describing modified substrates are:

d[S∗1 ]

dt
=− ([S∗1 ] · [P ] · k+,K,1) + [S2] · [S∗1 ] ∗ k+,K,2)

+ ([PS∗1 ] · k−,P,1 + [KS1] · kcat,K,1 + [S∗1S2] · (k−,K,2 + kcat,K,2))

d[S∗i ]

dt
=− ([S∗i ] · [P ] · k+,K,i) + [Si+1] · [S∗i ] ∗ k+,K,i+1)

+
(
[PS∗i ] · k−,P,i + [S∗i−1Si] · kcat,K,i + [S∗i Si+1] · (k−,K,i+1 + kcat,K,i+1)

)
d[S∗N ]

dt
=− ([S∗N ] · [P ] · k+,K,N )) +

(
[PS∗N ] · k−,P,N + [S∗N−1SN ] · kcat,K,N )

)

The set of ODEs describing enzyme-substrate complexes are:

d[KS1]

dt
=− ([KS1] · (k−,K,1 + kcat,K,1)) + ([S1] · [K] · k+,K,1)

d[PS∗1 ]

dt
=− ([PS∗1 ] · (k−,P,1 + kcat,P,1)) + ([S∗1 ] · [P ] · k+,P,1)

d[S∗i−1Si]

dt
=−

(
[S∗i−1Si] · (k−,K,i + kcat,K,i)

)
+
(
[Si] · [S∗i−1] · k+,K,i

)
d[PS∗i ]

dt
=− ([PS∗i ] · (k−,P,i + kcat,P,i)) + ([S∗i ] · [P ] · k+,P,i)

d[S∗N−1SN ]

dt
=−

(
[S∗N−1SN ] · (k−,K,N + kcat,K,N )

)
+
(
[SN ] · [S∗N−1] · k+,K,N

)
d[PNS

∗
N ]

dt
=− ([PS∗N ] · (k−,P,N + kcat,P,N )) + ([S∗N ] · [P ] · k+,P,N )

Where i = 2, . . . , N − 1.

For purposes of display in Fig. 3D, we used the following parameters:

Parameter Value

k+,K,i 0.001 nM−1·s−1
k−,K,i (10i−8) s−1

kcat,K,i (0.999 ·10i−5) s−1

k+,P,i 0.001 nM−1·s−1
k−,P,i (10i−8) s−1

kcat,P,i (0.999 ·10i−5) s−1

The kcat’s and k−’s were calculated as in section 1.5.

The molecular species were initialized at the following concentrations:
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Molecular Species Initial Concentration

K 10−18 - 0.1 nM
P 0.01 nM
S1 1 nM
S2 10 nM
...

...
Si 10 · Si−1
...

...
SN 10 ·SN-1

i = 1, 2, . . . , N

Remaining molecular species were set with initial concentrations of 0. Increasing the initial
concentrations of Si ensured that [Si]0 = 10 · [Si−1]0 since S∗i−1 is the kinase for Si to ensure that
the concentration of substrates were larger than the concentrations of their respective kinases.
The range of initial concentrations of K were used to vary the value of r in Fig. 3D.
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2 Analytical Results for the 1–Kinase/1–Phosphatase Loop

2.1 Mutual inhibition for competitive substrates

Here we will show that the 1K1P loop displays behavior dependent on r without regard for other
parameters. The enzymatic reactions for an enzyme with two substrates can be written as:

E + S1
k+,E,1−−−−⇀↽−−−−
k−,E,1

ES1
kcat,E,1−−−−−⇀E + S∗1

E + S2
k+,E,2−−−−⇀↽−−−−
k−,E,2

ES2
kcat,K,2−−−−−⇀E + S∗2

with E = K or P . The Michaelis-Menten constant and maximum velocity of the enzyme for
either substrate are defined as:

Km,E,x ≡
k−,E,x + kcat,E,x

k+,E,x

Vmax,E,x ≡ kcat,E,x[E]0

We can obtain the following kinetic equations:

d[ES1]

dt
= [E][S1]k+,E,1 − [ES1](k−,E,1 + kcat,E,1) (2.1.1)

d[ES2]

dt
= [E][S2]k+,E,2 − [ES2](k−,E,2 + kcat,E,2) (2.1.2)

d[S∗1 ]

dt
= kcat,E,1[ES1] (2.1.3)

We also have the conservation of mass:

[E]0 = [E] + [ES1] + [ES2] (2.1.4)

Assuming pseudo–steady state for the enzymatic reactions, from equations 2.1.1 and 2.1.2 we get:

[ES1] =
[E][S1]

Km,E,1

[ES2] =
[E][S2]

Km,E,2

both of which can be substituted into equation 2.1.4:

[E]0 = [E]

(
1 +

[S1]

Km,E,1
+

[S2]

Km,E,2

)
[E] =

[E]0

1 + [S1]
Km,E,1

+ [S2]
KmE,,2
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[ES1] =
[E]0[S1]

[S1] +Km,E,1

(
1 + [S2]

Km,E,2

)
This can be substituted into 2.1.3 to arrive at:

d[S∗1 ]

dt
=

Vmax,E,1[S1]

αE,1Km,E,1 + [S1]
(2.1.5)

αE,1 ≡ 1 +
[S2]

Km,E,2

where αE,1 is the inhibitory constant for S2 competition with S1 for E.

2.2 Steady-state solution for [S∗1 ]

As Goldbeter and Koshland originally noted, for a futile cycle at steady state we will have
d[S∗1 ]/dt = d[S1]/dt [1]. Given 2.1.5, for the 1K1P loop with two substrates this yields:

Vmax,K,1[S1]

αK,1Km,K,1 + [S1]
=

Vmax,P,1[S
∗
1 ]

αP,1Km,P,1 + [S∗1 ]
(2.2.1)

Following the standard Michaelis-Menten assumptions [1, 2], we have that [Si]0 >> [K]0, [P ]0.
This gives us [S1]0 = [S1] + [S∗1 ], which can be substituted into 2.2.1:

Vmax,K,1([S1]0 − [S∗1 ])

αK,1Km,K,1 + ([S1]0 − [S∗1 ])
=

Vmax,P,1[S
∗
1 ]

αP,1Km,P,1 + [S∗1 ]

Dividing both sides by [S1]0, we get:

Vmax,K,1(1− S∗1)

αK,1KK,1 + (1− S∗1)
=

Vmax,P,1S
∗
1

αP,1KP,1 + S∗1
(2.2.2)

KK,1 ≡
Km,K,1

[S1]0
, KP,1 ≡

Km,P,1

[S1]0

S1 ≡
[S1]

[S1]0
, S∗1 ≡

[S∗1 ]

[S1]0

We can expand 2.2.2:

αP,1Vmax,K,1KP,1 − αP,1Vmax,K,1KP,1S
∗
1 + Vmax,K,1S

∗
1 − Vmax,K,1(S∗1)2

= αK,1Vmax,P,1KK,1S
∗
1 + Vmax,P,1S

∗
1 − Vmax,P,1(S∗1)2
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Dividing both sides by Vmax,P,1, we get:

r1αP,1KP,1 − r1αP,1KP,1S
∗
1 + r1S

∗
1−r1(S∗1)2 = αK,1KK,1S

∗
1 + S∗1 − (S∗1)2

r1 ≡
Vmax,K,1
Vmax,P,1

which can be simplified to:

(1− r1)(S∗1)2 + ((r1 − 1)− (αK,1KK,1 + r1αP,1KP,1))S
∗
1 + r1αP,1KP,1 = 0 (2.2.3)

Solving for S∗1 :

S∗1 =
(r1 − 1)− (αK,1KK,1 + r1αP,1KP,1) +

√
((r1 − 1)− (αK,1KK,1 + r1αP,1KP,1))2 + 4(r1 − 1)r1αP,1KP,1

2(r1 − 1)
(2.2.4)

There are two important things to note about this solution. For one, the above equation is valid
for r1 > 0; at r1 = 0 one needs to take the other branch of the solution (i.e. the branch in which
the square root term is subtracted in the numerator). Also, at r1 = 1, 2.2.4 has a nonessential
singularity. To obtain the behavior at r1 = 1, we see 2.2.3 becomes:

−(αK,1KK,1 + αP,1KP,1)S
∗
1 + αP,1KP,1 = 0 (2.2.5)

giving us S∗1 for r1 = 1:

S∗1 =
αP,1KP,1

αK,1KK,1 + αP,1KP,1
(2.2.6)

2.3 dS∗1/dS
∗
2 is always positive

We wish to show that
dS∗1
dS∗2

> 0 regardless of the values of any parameter. This would indicate that

the ultrasensitivity of S2 transfers to S1 (i.e., since S∗2 will decrease as [S2]0 increases for r2 < 1,
S∗1 would also decrease). To do so we notice that, by the chain rule:

dS∗1
dS∗2

=
∂S∗1
∂αK,1

·
dαK,1
dS∗2

+
∂S∗1
∂αP,1

·
dαP,1
dS∗2

(2.3.1)

This is because S∗1 is a function of αK,1, αP,1, r1, and a vector of positive constants 2.2.4. Each of
the α terms are, in turn, functions of S∗2 .

We will explore the signs of each component of 2.3.1 to show that
dS∗1
dS∗2

> 0. Using
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Mathematica [3], we can obtain the partial derivative of 2.2.4 with respect to αK,1 at r1 6= 1:

∂S∗1
∂αK,1

=
−KK,1 +

KK,1x√
x2+y

2(r1 − 1)
(2.3.2)

Where:

x ≡ −((r1 − 1)− (αK,1KK,1 + r1αP,1KP,1)), y ≡ 4(r1 − 1)r1αP,1KP,1 (2.3.3)

Factoring out
−KK,1√
x2+y

we obtain:

∂S∗1
∂αK,1

=
−KK,1√
x2 + y

· −x+
√
x2 + y

2(r1 − 1)
(2.3.4)

Notice that the second term in 2.3.4 is the expression for S∗1 , simplifying
dS∗1
dαK,1

to:

∂S∗1
∂αK,1

=
−KK,1√
x2 + y

S∗1 (2.3.5)

Note that KK,1, S
∗
1 and

√
x2 + y are all positive, making

∂S∗1
∂αK,1

< 0 for r1 6= 1. We can also

demonstrate this for r1 = 1 by taking the partial derivative of 2.2.6 with respect to αK,1:

∂S∗1
∂αK,1

=
−αP,1KK,1KP,1

(αK,1KK,1 + αP,1KP,1)2
(2.3.6)

Which is clearly negative, demonstrating that
∂S∗1
∂αK,1

< 0 for any set of parameters.

Next it can be shown that
∂S∗1
∂αP,1

> 0. We can obtain an expression the partial derivative of 2.2.4

with respect to αP,1 at r1 6= 1 with Mathematica [3] :

∂S∗1
∂αP,1

=
−r1KP,1 +

2(r1−1)r1KP,1+r1KP,1x√
x2+y

2(r1 − 1)
(2.3.7)

By factoring out
r1KP,1√
x2+y

we get:

∂S∗1
∂αP,1

=
r1KP,1√
x2 + y

(
2(r1 − 1) + x−

√
x2 + y

2(r1 − 1)

)
(2.3.8)

Notice that the second term in 2.3.8 is the expression for 1− S∗1 , simplifying
∂S∗1
∂αP,1

to:

∂S∗1
∂αP,1

=
r1KP,1√
x2 + y

(1− S∗1) (2.3.9)
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We can easily see that 2.3.9 is positive, confirming
∂S∗1
∂αP,1

> 0 for r1 6= 1. We can also demonstrate

this for r1 = 1 by taking the partial derivative of 2.2.6 with respect to αP,1:

∂S∗1
∂αP,1

=
αK,1KK,1KP,1

(αK,1KK,1 + αP,1KP,1)2
(2.3.10)

Which is clearly positive, demonstrating that
∂S∗1
∂αP,1

> 0 for any set of parameters.

It is easy to show that
dαK,1

dS∗2
< 0:

αK,1 = 1 +
[S2]

Km,K,2

= 1 +
[S2]0 − [S∗2 ]

Km,K,2

= 1 +
1− S∗2
KK,2

dαK,1
dS∗2

= − 1

KK,2
< 0

Similarly, we can show
dαP,1

dS∗2
> 0:

αP,1 = 1 +
[S∗2 ]

Km,P,2

= 1 +
S∗2
KP,2

dαP,1
dS∗2

=
1

KP,2
> 0

Now we have determined the behaviors of each component of the two implementations of the
chain rules presented in 2.3.1 for all values of r1 and r2. When we refer back to the chain rule
(2.3.1) we notice that both terms are positive:

dS∗1
dS∗2

=
∂S∗1
∂αK,1

·
dαK,1
dS∗2

+
∂S∗1
∂αP,1

·
dαP,1
dS∗2

dS∗1
dS∗2

= (−)(−) + (+)(+)

This means that changes in S∗1 upon increases in S∗2 will always be positive. The increase in
ultrasensitivity of S∗2 is thus transferred to S1 regardless of the values of the other parameters.

20



3 Analytical Results for the 1–Kinase/1–Phosphatase Loop with Many Substrates

The 1K1P loop can be expanded to include many substrates of the kinase and phosphatase. In
this case we would have a system of enzymes such that:

E + S1
k+,E,1−−−−⇀↽−−−−
k−,E,1

ES1
kcat,E,1−−−−−⇀ E + S∗1

E + S2
k+,E,2−−−−⇀↽−−−−
k−,E,2

ES2
kcat,E,2−−−−−⇀ E + S∗2

...

E + SN
k+,E,N−−−−⇀↽−−−−
k−,E,N

ESN
kcat,E,N−−−−−⇀E + S∗N

where E = K or P . From these equations we have:

[ES1] =
[E][S1]

Km,E,1
, [ES2] =

[E][S2]

Km,E,2
, . . . , [ESN ] =

[E][SN ]

Km,E,N
(3.1)

We also know from the conservation of mass of the enzyme:

[E]0 = [E] + [ES1] + [ES2] + . . .+ [ESN ] (3.2)

Substituting the system of equations from 3.1 into 3.2, we get:

[E]0 = [E]

(
1 +

[S1]

Km,E,1
+

[S2]

Km,E,2
+ . . .+

[SN ]

Km,E,N

)
[E] =

[E]0

1 + [S1]
Km,E,1

+ [S2]
Km,E,2

+ . . .+ [SN ]
Km,E,N

[ES1] =
[E]0[S1]

[S1] +Km,E,1

(
1 + [S2]

Km,E,2
+ . . .+ [SN ]

Km,E,N

) (3.3)

Substituting 3.3 into the previously defined 2.1.3, we arrive at:

d[S∗1 ]

dt
=

Vmax,1[S1]

αKm,E,1 + [S1]

α ≡ 1 +
N∑
i=2

[Si]

Km,E,i

From the above equation, we can proceed to solve for S∗1 as in section 2.2; as expected, one
obtains equation 2.2.4, but with αK,1 ≡ 1 +

∑N
i=2[Si]/Km,K,i and αP,1 ≡ 1 +

∑N
i=2[S

∗
i ]/Km,P,i.

The increase in ultrasensitivity observed in Fig. 2B of the main text arises from the fact that, for
the parameters we considered, at any r1 < 1, the phosphatase has a higher maximum velocity
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than the kinase. As such, the majority of any substrates present will exist in the
unphosphorylated form (i.e. S∗i < 0.5 ∀i). As more substrates are added, the accumulation of
these unphosphorylated substrates begins to occupy the kinase, reducing free kinase concentration
and thus reducing the “effective r” of the system. In the limit where N is large, the occupation
increases until the kinase is completely saturated, ultimately leading to very low phosphorylation
at r1 < 1. For r1 > 1, a similar situation holds, but with the phosphatase occupied by the S∗i ’s.

4 Analytical Results for the 1–Kinase/2–Phosphatase Loop

In this section we will show that S1 phosphorylation always increases in [S2]0 in the limit in which
[S1]0 � Km. In this system S∗1 can be derived in a similar fashion to that for the 1K1P loop,
resulting in:

S∗1 =
(r1 − 1)− (αK,1KK,1 + r1KP,1) +

√
((r1 − 1)− (αK,1KK,1 + r1KP,1))2 + 4(r1 − 1)r1KP,1

2(r1 − 1)
(4.0.1)

Note this is similar to 2.2.4, the difference being the absence of αP,1. This is because in this loop

the substrates only share a kinase, making αP,1 = 1. As such,
∂S∗1
∂αP,1

= 0, by the chain rule we see:

dS∗1
d[S2]0

=
dS∗1
dαK,1

·
dαK,1
d[S2]

· d[S2]

d[S2]0
(4.0.2)

Note that
dS∗1
dαK,1

is similar to
∂S∗1
∂αK,1

(2.3.4), the only difference being αP,1 = 1 in this case. Since

the value of αP,1 does not have an affect on the sign of
∂S∗1
∂αK,1

, we can conclude that
dS∗1
dαK,1

< 0 for

any value of r1 (see subsection 2.3). Additionally, we can easily show
dαK,1

d[S2]
> 0:

αK,1 = 1 +
[S2]

Km,K,2

dαK,1
d[S2]

=
1

Km,K,2
> 0 (4.0.3)
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4.1 d[S2]/d[S2]0 is always positive

Using Mathematica [3], we can obtain an expression for d[S2]
d[S2]0

at r2 6= 1. To simplify the

derivation, we assume [S1]0 � Km so that αK,2 = 1.

[S2] = (1− S∗2)[S2]0

d[S2]

d[S2]0
= 1− S∗2 −

dS∗2
d[S2]0

[S2]0

= 1−
−x′ +

√
(x′)2 + y′

2(r2 − 1)
−
z′ +

z′(−z′)− y′
2√

(x′)2+y′

2(r1 − 1)

=
2(r2 − 1) + x′ −

√
(x′)2 + y′ − z′ + x′z′+ y′

2√
(x′)2+y′

2(r2 − 1)
(4.1.1)

In which:

x′ ≡ −((r2 − 1)− (KK,2 + r2KP,2)), y′ ≡ 4(r2 − 1)r2KP,2, z′ ≡ KK,2 + r2KP,2 (4.1.2)

By the definitions of x′ and z′ we notice that x′ = −(r2 − 1) + z′, which can be substituted into
4.1.1:

d[S2]

d[S2]0
=

2(r2 − 1)− (r2 − 1) + z′ −
√

(x′)2 + y′ − z′ + x′z′+ y′
2√

(x′)2+y′

2(r2 − 1)

=
(r2 − 1)−

√
(x′)2 + y′ +

x′z′+ y′
2√

(x′)2+y′

2(r2 − 1)

=
(r2 − 1)

√
(x′)2 + y′ − (x′)2 − y′ + x′z′ + y′

2

2(r2 − 1)
√

(x′)2 + y′
(4.1.3)

Additionally, by the definitions of x′ and z′, we see (x′)2 = (r2 − 1)2 − 2(r2 − 1)z′ + (z′)2 and
x′z′ = −(r2 − 1)z′ + (z′)2, which can be substituted into 4.1.3:

d[S2]

d[S2]0
=

(r2 − 1)
√

(x′)2 + y′ − (r2 − 1)2 + 2(r2 − 1)z′ − (z′)2 − (r2 − 1)z′ + (z′)2 − y′

2

2(r2 − 1)
√

(x′)2 + y′

=
(r2 − 1)

√
(x′)2 + y′ − (r2 − 1)2 + (r2 − 1)z′ − y′

2

2(r2 − 1)
√

(x′)2 + y′

=

√
(x′)2 + y′ − (r2 − 1) + z′ − 2r2KP,2

2
√

(x′)2 + y′

=

√
(x′)2 + y′ + x′ − 2r2KP,2

2
√

(x′)2 + y′
(4.1.4)
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We can show that d[S2]
d[S2]0

> 0 for all values of r2 by assuming the opposite:

d[S2]

d[S2]0
=

√
(x′)2 + y′ + x′ − 2r2KP,2

2
√

(x′)2 + y′
< 0√

(x′)2 + y′ + x′ − 2r2KP,2 < 0√
(x′)2 + y′ < −x′ + 2r2KP,2 (4.1.5)

If the right hand side of 4.1.5 is negative then we have already arrived at a contradiction.
Otherwise we can square both sides without loss of information:

(x′)2 + y′ < (x′)2 − 4r2KP,2x
′ + 4(r2KP,2)

2 (4.1.6)

y′ < −4r2KP,2x
′ + 4(r2KP,2)

2

4(r2 − 1)r2KP,2 < 4(r2 − 1)r2KP,2 − 4r2KK,2KP,2 − 4(r2KP,2)
2 + 4(r2KP,2)

2

0 < −4r2KK,2KP,2 (4.1.7)

Which is clearly impossible, indicating d[S2]
d[S2]0

> 0 for r2 6= 1. Next we can obtain an expression for
d[S2]
d[S2]0

at r2 = 1. At this point, S∗2 becomes:

S∗2 =
Km,P,2

Km,K,2 +Km,P,2
(4.1.8)

As such, we can easily see that the derivative of 4.1.8 with respect to [S2]0 is equal to zero.

Applying this to the previous expression for d[S2]
d[S2]0

(4.1.1) we notice that at r2 = 1:

d[S2]

d[S2]0
= 1− S∗2 (4.1.9)

Since S∗2 must be a value between 0 and 1, it is easy to see that d[S2]
d[S2]0

> 0 at r2 = 1, thus showing

that d[S2]
d[S2]0

> 0 for all values of r2.

4.2 dS∗1/d[S2]0 is always negative

As previously shown, we can use the chain rule to define
dS∗1
d[S2]0

within this motif as:

dS∗1
d[S2]0

=
dS∗1
dαK,1

·
dαK,1
d[S2]

· d[S2]

d[S2]0
(4.2.1)

In which
dS∗1
dαK,1

< 0,
dαK,1

d[S2]
> 0 and d[S2]

d[S2]0
> 0. Now we can see that

dS∗1
d[S2]0

< 0 for all values of r1
and r2. At r2 < 1, αK,1 > 1 as most S2 will be in the unphosphorylated form. Once r2 > 1, S2
switches to its phosphorylated form, relieving the pressure on S1 through αK,1, establishing the
“gatekeeper” effect. We can see αK,1 approaches 1 as r2 →∞, allowing S∗1 to behave as an
isolated futile cycle in this limit. Since S∗1 is increasing in r2, we can conclude that S2 decreases
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S∗1 for all values of r2 except in the limit r2 →∞.

5 Analytical Results for the 2–Kinase/1–Phosphatase Loop

In this section we will show that S1 phosphorylation also always increases in [S2]0 regardless of
any other parameters. In this system S∗1 can be derived in a similar fashion to that for the 1K1P
loop, resulting in:

S∗1 =
(r1 − 1)− (KK,1 + r1αP,1KP,1) +

√
((r1 − 1)− (KK,1 + r1αP,1KP,1))2 + 4(r1 − 1)r1αP,1KP,1

2(r1 − 1)
(5.0.1)

Which is equivalent to 2.2.4, the only difference being the lack of αK,1. As such
∂S∗1
∂αK,1

= 0, and we

notice that by the chain rule:

dS∗1
d[S2]0

=
dS∗1
dαP,1

·
dαP,1
d[S∗2 ]

· d[S∗2 ]

d[S2]0
(5.0.2)

Note that
dS∗1
dαP,1

is similar to
∂S∗1
∂αP,1

(2.3.7), the only difference being αK,1 = 1 in this case. Since

the value of αK,1 does not have an affect on the sign of
∂S∗1
∂αP,1

, we can conclude that
dS∗1
dαP,1

> 0 for

any value of r1 (see subsection 2.3). Additionally, we can easily show
dαP,1

d[S2]
> 0:

αP,1 = 1 +
[S∗2 ]

Km,P,2

dαP,1
d[S2]0

=
1

Km,P,2
(5.0.3)

5.1 d[S∗2 ]/d[S2]0 is always positive

We can define [S∗2 ] as:

[S∗2 ] = S∗2 [S2]0 (5.1.1)

And as such
d[S∗2 ]
d[S2]0

is:

d[S∗2 ]

d[S2]0
= S∗2 +

dS∗2
d[S2]0

[S2]0 (5.1.2)
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Notice that
d[S∗2 ]
d[S2]0

= 1− d[S2]
d[S2]0

(see 4.1.1). We can then substitute 4.1.4 in for d[S2]
d[S2]0

:

d[S∗2 ]

d[S2]0
= 1−

√
(x′)2 + y′ + x′ − 2r2KP,2

2
√

(x′)2 + y′

=

√
(x′)2 + y′ − x′ + 2r2KP,2

2
√

(x′)2 + y′
(5.1.3)

We can show
d[S∗2 ]
d[S2]0

> 0 for any value of r2 by assuming the opposite:

d[S∗2 ]

d[S2]0
=

√
(x′)2 + y′ − x′ + 2r2KP,2

2
√

(x′)2 + y′
< 0√

(x′)2 + y′ − x′ + 2r2KP,2 < 0√
(x′)2 + y′ < x′ − 2r2KP,2 (5.1.4)

If the right hand side of 5.1.4 is negative then we have already arrived at a contradiction.
Otherwise we can square both sides without loss of information:

(x′)2 + y′ < (x′)2 − 4r2KP,2x
′ + 4(r2KP,2)

2 (5.1.5)

Note that this expression is the same as 4.1.6, which we have already shown to be impossible,

supporting the conclusion
d[S∗2 ]
d[S2]0

> 0 for r2 6= 0. Next we can obtain an expression for d[S2]
d[S2]0

at

r2 = 1. At this point, S∗2 becomes:

S∗2 =
Km,P,2

Km,K,2 +Km,P,2
(5.1.6)

As such, we can easily see that the derivative of 5.1.6 with respect to [S2]0 is equal to zero.

Applying this to the previous expression for
d[S∗2 ]
d[S2]0

(5.1.2) we notice that at r2 = 1:

d[S∗2 ]

d[S2]0
= S∗2 (5.1.7)

Since S∗2 must be a value between 0 and 1, it is easy to see that
d[S∗2 ]
d[S2]0

> 0 at r2 = 1, thus showing

that
d[S∗2 ]
d[S2]0

> 0 for all values of r2.

5.2 dS∗1/d[S2]0 is always positive

As previously shown, we can use the chain rule to define
dS∗1
d[S2]0

within this motif as:

dS∗1
d[S2]0

=
dS∗1
dαP,1

·
dαP,1
d[S∗2 ]

· d[S∗2 ]

d[S2]0
(5.2.1)
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In which
dS∗1
dαP,1

> 0,
dαP,1

d[S∗2 ]
> 0 and

d[S∗2 ]
d[S2]0

> 0. Now we can see that
dS∗1
d[S2]0

> 0 for all values of r1
and r2.
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