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Kinetic Model:

Here we give details of the mathematical model of riboswitch-controlled transcription

with negative feedback shown schematically in Fig. 1 of the main text. The mass action

rate equations corresponding to the scheme in Fig. 1 of the main text are

d [B]

dt
= k1 [DNA] + k−f1 [B∗]− (kf1 + kt1 + µ) [B] (1)

d [B∗]

dt
= kf1 [B] + k−b [B∗M ]− (k−f1 + kb [M ] + kt1 + µ) [B∗] (2)

d [B∗M ]

dt
= kb [M ] [B∗]− (k−b + kt1 + µ) [B∗M ] (3)

d [B2]

dt
= kt1 [B] + k−f2 [B∗

2 ]− (kf2 + kt2 + µ) [B2] (4)

d [B∗
2 ]

dt
= kt1 [B∗] + kf2 [B2] + k−b [B∗

2M ]− (k−f2 + kb [M ] + kt2 + µ) [B∗
2 ] (5)

d [B∗
2M ]

dt
= kt1 [B∗M ] + kb [M ] [B∗

2 ]− (k−b + kt2 + µ) [B∗
2M ] (6)

d [Ri]

dt
= kt2 [B2]− (kt3 + kd1 + µ) [Ri] (7)

d [Rf ]

dt
= kt3 [Ri]− (kd1 + µ) [Rf [ (8)

d [P ]

dt
= k2 [Rf ]− (kd2 + µ) [P ] (9)

d [M0]

dt
= k3 [P ] + (k−E1 + kd2) [M0E]− (kE1 [E] + µ) [M0] (10)

d [M0E]

dt
= kE1 [M0] [E]− (k−E1 + kE2 + kd2 + µ) [M0E] (11)
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d [E]

dt
= kF [OF ] + (k−E1 + kE2) [M0E]− (kE1 [M0] + kd2 + µ) [E] (12)

d [B2T ]

dt
= k−f2 [B∗

2T ]− (kf2 + kd1 + µ) [B2T ] (13)

d [B∗
2T ]

dt
= kt2 [B∗

2 ] + kf2 [B2T ] + k−b [B∗
2T M ]− (k−f2 + kb [M ] + kd1 + µ) [B∗

2T ] (14)

d [B∗
2T M ]

dt
= kt2 [B∗

2M ] + kb [M ] [B∗
2T ]− (k−b + kd1 + µ) [B∗

2T M ] (15)

d [M ]

dt
= kE2 [M0E] + k−b([B

∗M ] + [B∗
2M ] + [B∗

2T M ])

−kb([B
∗] + [B∗

2 ] + [B∗
2T ]) [M ]

+kd1 [B∗
2T M ]− (µ + kd3) [M ] (16)

In the model, the conversion of M0 to M is catalyzed by E in a two-step process: (i) M0

binds to E with an association rate constant kE1 and dissociation rate constant k−E1. (ii)

E catalyzes M0 to M with a catalytic rate kE2. We choose kE1 = 1 s−1, k−E1 = 10 s−1,

and kE2 = 0.1 s−1 in our simulations.

Applying the model to FMN riboswitch, M represents FMN, which is converted from

riboflavin (M0) by flavokinase (E). We note that FMN is subsequently converted to FAD

by FAD synthetase, and riboflavin nucleotides exist in vivo mostly in the form of FMN

and FAD, with the amount about 70%-90% in FAD. To take into account the conversion

from FMN to FAD, assume the conversion rate constant is kFAD and the reverse rate

constant is k−FAD. The rate equations for FAD would be

d [FAD]

dt
= kFAD[M ]− (k−FAD + µ)[FAD]. (17)

There should be an additional term, (−kFAD[M ] + k−FAD[FAD]), added to the rate

equation for FMN (M). Assuming the conversion is fast and always in equilibrium,

d[FAD]/dt = 0, we obtain [FAD] = (kFAD/(k−FAD + µ))[M ]. The additional term

for d[M ]/dt becomes −µ kFAD

k−FAD+µ
[M ], which is equivalent to M having an effective degra-

dation rate of kd3 = µ kFAD

k−FAD+µ
. Assuming 90% of flavin nucleotides are in the form FAD,

and 10% in FMN, then kFAD/k−FAD = 9. Since k−FAD � µ, we then obtain kd3 ∼ 9µ for

FMN.
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Steady State Solutions:

The steady state solutions, obtained by setting all the time derivatives to zero yield,

[B] =

(
k−f1 + kt1 + µ

kf1

+ (
kt1 + µ

kf1

)
[M ]

KD

(
1 +

kt1 + µ

k−b

)−1
)

[B∗] (18)

= K1

[
1 +

kt1 + µ

k−f1

(
1 +

[M ]

KD

(
1 +

kt1 + µ

k−b

)−1
)]

[B∗] (19)

≡ a1(M) [B∗] (20)

[B∗M ] =
kb [M ]

k−b + kt1 + µ
[B∗] (21)

=
[M ]

KD

(
1

1 + kt1+µ
k−b

)
[B∗] (22)

≡ a3(M) [B∗] (23)

[B∗] =
k1 [DNA]

(kf1 + kt1 + µ)a1(M)− k−f1

(24)

=
k1 [DNA]

(kt1 + µ)

[(
1 + [M ]

KD

(
1 + kt1+µ

k−b

)−1
)(

1 + kt1+µ
kf1

)
+ K1

] (25)

≡ β∗(M) [B′] , (26)

where K1 ≡ k−f1/kf1, KD ≡ k−b/kb,

[B′] ≡ [B] + [B∗] + [B∗M ] (27)

=
k1 [DNA]

kt1 + µ
, (28)

β∗(M) ≡

[(
1 +

[M ]

KD

(
1 +

kt1 + µ

k−b

)−1
)(

1 +
kt1 + µ

kf1

)
+ K1

]−1

(29)

= 1 + a1(M) + a3(M). (30)

From Eqs.(4),(5),(6), we obtain

[B∗
2 ] =

kf2 + kt2 + µ

k−f2

[B2]−
kt1

k−f2

a1(M) [B∗] (31)
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kt1

[
1 + a3(M)

(
1

1 + kt2+µ
k−b

)]
[B∗] + kf2 [B2]

+

[
(kt2 + µ)

[M ]

KD

(
1

1 + kt2+µ
k−b

)
− (k−f2 + kt2 + µ)

]
[B∗

2 ] = 0 (32)

Let

c1(M) = kt1

[
1 + a3(M)

(
1

1 + kt2+µ
k−b

)]
(33)

c2(M) = (kt2 + µ)
[M ]

KD

(
1

1 + k2+µ
k−b

)
− (k−f2 + kt2 + µ), (34)

substituting Eq.(31) into Eq.(32), we obtain

[B2] =

kt1

k−f2
c2(M)a1(M)− c1(M)

kf2 + c2(M)
(

kf2+kt2+µ

k−f2

) [B∗] (35)

=
c3(M)

c4(M)

(
kt1

kt2 + µ

)
[B∗] (36)

=
c3(M)

c4(M)
β∗(M)

(
kt1

kt2 + µ

)
[B′] (37)

=
c3(M)

c4(M)
β∗(M) [B′

2] , (38)

where

c3(M) ≡ −
(

kt2 + µ

k−f2

)
[M ]

KD

(
1 +

kt2 + µ

k−b

)−1

a1(M)

+

[(
1 +

kt2 + µ

k−f2

)
a1(M) + 1 +

[M ]

KD

(
1 +

kt2 + µ

k−b

)−1(
1 +

kt1 + µ

k−b

)−1
]
(39)

c4(M) ≡ 1 +
1

K2

(
1 +

[M ]

KD

(
1 +

kt2 + µ

k−b

)−1
)(

1 +
kt2 + µ

kf2

)
, (40)

and

[B′
2] ≡ [B2] + [B∗

2 ] + [B∗
2M ] (41)

=

(
kt1

kt2 + µ

)
[B′] . (42)
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The steady state concentration of the fully transcribed RNA is given by

[Rf ] =
kt3

kt3 + kd1 + µ
[RNA] , (43)

where

[RNA] = [Ri] + [Rf ]

=
kt2

kd1 + µ
[B2] , (44)

and the concentration of protein P is

[P ] =
k2

kd2 + µ
[Rf ] (45)

=

(
k2

kd2 + µ

)(
kt3

kt3 + kd1 + µ

)(
kt2

kd1 + µ

)
c3(M)

c4(M)
β∗(M)

(
kt1

kt2 + µ

)(
k1 [DNA]

kt1 + µ

)
.

From Eqs.(10),(11),(12), we can obtain

k3 [P ]− (kE2 + µ) [M0E]− µ [M0] = 0 (46)

[M0E] + [E] =
kF [OF ]

µ + kd2

. (47)

The two equations above and Eq.(11) can be further reduced to,

[M0E]2 −
[(

k3

kE2 + µ

)
[P ] +

(
kF [OF ]

kd2 + µ

)
+

µ

kE1(kE2 + µ)
(k−E1 + kE2 + kd2 + µ)

]
[M0E]

+

(
k3

kE2 + µ

)
[P ]

(
kF [OF ]

kd2 + µ

)
= 0. (48)

The above equation is of the form

[M0E]2 − b [M0E] + c = 0, (49)

where b = b(M) and c = c(M) are functions of [M ]. Therefore,

[M0E] =
b±

√
b2 − 4c

2
. (50)

Let

x =
kF [OF ]

kd2 + µ
(51)

y =
k3 [P ]

kE2 + µ
, (52)
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then we have b > x + y, and c = xy. It follows that

√
b2 − 4c >

√
(x− y)2 = |x− y|. (53)

Therefore,

b +
√

b2 − 4c

2
>

(x + y) + |x− y|
2

(54)

≥ x, (55)

for any x, y > 0. However, from Eq.(47) and Eq.(51), we note that x = [M0E] + [E],

which means that (b +
√

b2 − 4c)/2 cannot be the solution for [M0E]. Hence, the only

steady state solution for [M0E] is

[M0E] =
b−

√
b2 − 4c

2
, (56)

which ensures 0 < [M0E] < x.

From Eqs.(13),(14),(15), we obtain

[B∗
2T ] = c5(M)

(
kt2

kd1 + µ

)[
[B∗

2 ] + [B∗
2M ]

(
1 +

kd1 + µ

k−b

)−1
]

, (57)

[B∗
2T M ] =

(
1 +

kd1 + µ

k−b

)−1(
kt2

k−b

[B∗
2M ] +

[M ]

KD

[B∗
2T ]

)
, (58)

where

c5(M) ≡

[
1 + K2

(
1 +

kd2 + µ

kf2

)−1

+
1

KD

(
1 +

kd2 + µ

k−b

)−1
]−1

(59)

[B∗
2 ] =

1

K2

(
1 +

kt2 + µ

kf2

)
[B2]−

kt1

k−f2

a1(M) [B∗] (60)

[B∗
2M ] =

[M ]

KD

(
1 +

kt2 + µ

k−b

)[(
kt1

k−b + kt1 + µ

)
[B∗] + [B∗

2 ]

]
(61)

Steady state [M ] production:

By inserting Eqs.(56),(57),(58) into Eq.(15), we can get the rate of change in ligand

concentration at steady state as a function of ligand concentration,

d [M ]

dt
= f(M). (62)
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FIG. S1: Function f(M) in Eq. (60). With different parameters, y = f(M) has exactly one

intersect with y = 0, suggesting that the metaoblite concentration that makes f(M) = 0 is the

only steady state concentration for M.

The steady state ligand concentration satisfies f(M) = 0. For each parameter set (Fig.

S1), there is only one positive solution for the equation, and it is the only steady state.

Note that in the case of kt2/k−f2 = 0.4, which corresponds to the paramters from Table

1 of the main text, the steady state concentration of M is ∼ 25 µM. This is much larger

than the total concentration of RNA transcripts produced, k1[DNA]/(kd1 + µ) ∼ 14 nM.

The metabolite is in large excess over RNA transcripts, and the effective binding rate

is kb[M ] ∼ 2.5 s−1, much faster than the RNA folding rates and transcription rates.

Because of the slow dissociate rate k−b = 10−3 s−1, all RNA transcripts with aptamer

folded structures are in metabolite bound state. The riboswitch is kinetically controlled

under this condition.

In the limit of [M ] = 0, Eq.(38) becomes

[B2] =

(
1 +

1

K2

(
1 +

kt2 + µ

k−f2

))−1
1 +

kt2+µ
k−f2

(
K1 + kt1+µ

kf1

)
+ 1

1 + K1 + kt1+µ
kf1

 [B′
2] . (63)

In this limit, if kt2 � k−f2 and µ � k−f2,

[B2] '
K2

K2 + 1
[B′

2] , (64)
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implying the species B2 and B∗
2 are in equilibrium. If kt2 >> k−f2,

[B2] '
K1

(
1 + kt1+µ

k−f1

)
1 + K1

(
1 + kt1+µ

k−f1

) [B′
2] . (65)

The fraction of RNA that is not terminated early, ftra = [RNA] / [RNA]0 = [B2] / [B′
2],

can be expressed in terms of K2 and K1 in the limit of low kt2 and high kt2 relative to

k−f2, respectively.

As shown in Fig. 6 of the main text, the steady state concentration of protein P

is about 3 µM, or ∼ 1200 copies per cell, when using parameters from Tables 1 and 2

of the main text. If the total concentration of enzyme E produced from operon OF ,

[E]0 = kF [OF ]/(µ + kd2), is at the same level, kF ∼ 1 s−1 with one copy of OF per cell.

Thus, we set kF0 = 1 s−1 as the reference rate for kF for the studies with feedback.
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