Supplementary Information

Distinct Feedforward and Intrinsic Neurons in Posterior Inferotemporal Cortex

Revealed by in Vivo Connection Imaging

Noritaka Ichinohe^{1,2,*}, Elena Borra² and Kathleen Rockland²

¹Department of Ultrastructural Research, National Institute of Neuroscience, National Center of

Neurology and Psychiatry, Kodaira, Tokyo 187-8502, Japan

²Laboratory for Cortical Organization and Systematics, RIKEN Brain Science Institute, Wako

City, Saitama 351-0198, Japan

Inventory of Supplemental Information:

Supplementary information A: What we are looking at in our in vivo SCI.

Supplementary information B: Size and distribution of retrograde and anterograde patches. Supplementary Information C: Another potential application of our *in vivo* SCI. Supplementary Figure S1 : Plotted coronal sections of M2.

Supplementary Figure S2: Spatial relationship among one feedforward projection (red) and two intrinsic networks (green and silver) in M2. Color-coded flat maps of red, blue, silver neurons, and their combinations.

Supplementary Figure S3: Plotted coronal sections of M3.

Supplementary Figure S4: Spatial relationship among one feedforward projection (red) and two intrinsic networks (green and silver) in M3. Color-coded flat maps of red, blue, silver neurons, and their combinations.

Supplementary Figure S5: SCI after perfusion with experiment of Dil placement.

Supplementary Figure S6: Results of an injection of a mixture of three CTB conjugates (CTB-Alexa 488, -Alexa 555, and -gold).

Supplementary Table S1: Size of each patch for each tracer in TEO of each monkey. Supplementary Table S2: Summary of size of patches for each tracer in TEO of each monkey. Supplementary Table S3: Summary of center-to-center distance in TEO of each monkey. Supplementary Table S4: Correlation coefficient between numbers of neurons of two colours within each pixel in all whole TEO.

Supplementary Table S5: Number of CTB-Alexa 488 and/or –Alexa 555 labeled neurons around CTB-Alexa 488 injection sites on the sections through middle of injection sites Supplementary Table S6: Summary of labeled neurons in each patch and pixel of TEO in M1 Supplementary Table S7: Summary of labeled neurons in each patch and pixel of TEO in M2. Supplementary Table S8: Summary of labeled neurons in each patch and pixel of TEO in M3. Supplementary Table S9: Summary of Labeled neurons in each patch and pixel of TEO in M3.

Supplementary Information A

What we are looking at in our in vivo SCI. Because TEO is convoluted in shape, some distortion is inevitable in a 2-dimensional unfolded flat-map. To confirm that in vivo and histological patches corresponded, we used DiI (Sigma-Aldrich, St. Louis, MO) in the postmortem brain to mark what had been identified as fluorescent spots in vivo. First, to avoid washing out of DiI crystal, after perfusion, the fixed brain was removed and the surface was imaged by fluorescence microscopy, using a filter for red fluorescent protein at a magnification of $5-20\times$. Patches of red fluorescence were observed within both V4 and TEO, within a triangle bound by the STS, posterior middle temporal sulcus (PMTS), and inferior occipital sulcus (IOS) (case M4 in Supplementary Fig. S5). Second, we locally applied DiI (10% in EtOH) with an electrode tip at the brain surface overlying the fluorescent patches (six positions in TEO and three positions in V4, arrows in Supplementary Fig. S5, white and yellow asterisks in Supplementary Fig. S5). Areas without fluorescence were also marked (three positions in TEO: blue asterisks in Supplementary Fig. S5). Third, brain blocks containing the DiI-labeled areas, including TEO and V4, were cut into coronal sections of 50 µm thicknesses. DiI placed on the fluorescent patches always corresponded to histologically visualized CTB-Alexa555labeled neurons (red neurons; Supplementary Fig. S5d). We noted that the territories occupied by CTB-Alexa555-labeled neurons in the deep layers were sometimes wider than those in the upper layers. Because of this asymmetry and because the deeper CTB-Alexa555-labeled neurons appeared not to be visible from the surface (Fig. Supplementary S5), we concluded that infragranular neurons do not contribute to the patches of fluorescence at the brain surface. When DiI was placed on areas without fluorescence, as a control, there were only a few (2-3) underlying CTB-Alexa555-labeled red neurons (Supplementary Fig. S5; blue asterisks).

In another control, we compared the efficacy of the different retrograde tracers within the TE–TEO system by injecting all three tracers at the same site in M5. This resulted in a dense field of triple labeled cells (Supplementary Fig. S6). Therefore, we can conclude that all three tracers were similarly efficient in the TEO–TE system, and did not interfere with each other.

Supplementary Information B

Size and distribution of retrograde and anterograde patches. In general, in TEO the number of green and silver patches in our material was less than the number of patches revealed in other studies by anterograde tracer (anterograde patches: more than 25 patches)¹. Our retrograde patches were 2 times greater in diameter than was reported for anterograde patches (~0.5 μ m diameter), about 4 times larger in area than the anterograde patches¹, and the distance between green patches and between silver patches was about twice that for antergrade patches¹. The parameters of our retrogradely based patches in TEO are, however, similar to what has been reported in other studies with retrograde tracer².

References

1. Fujita, I. & Fujita, T. Intrinsic Connections in the macaque inferior temporal cortex. *J. Comp. Neurol.* 368, 467-486 (1996).

2. Felleman, D.J., Xiao, Y. & McClendon, E. Modular organization of occipito-temporal pathways: cortical connections between visual area 4 and visual area 2 and posterior inferotemporal ventral area in macaque monkeys. *J. Neurosci.* 17, 3185-3200 (1997).

Supplementary Information C

Another potential application of our *in vivo* SCI. In this study, we developed an *in vivo* SCI method. There are several noninvasive methods for *in vivo* connection imaging, including enhanced magnetic resonance imaging (e.g., manganese, CTB-conjugated tracers)^{1,2}, but columnar or laminar resolution is so far not optimal with these approaches. In our method, the retrograde patches and the fine network of cortical blood vessels were used as a high-resolution grid (~ less than 100 μ m) to guide tracer injections or other needle-like apparatuses (e.g., electrophysiological electrodes, viral vector injections, or light apparatuses for optogenetics).

There have been several previous attempts to develop a way to visualize connectional assemblies *in vivo*. Malach used a different fluorescent tracer , with some problems of toxicitiy³. Jarosiewicz et al.⁴ used CTB-Alexa555 and Alexa594 combined with two photon Ca imaging to discriminate projection-target specific neuron response properties in cat visual cortex⁴. However, their cranial window was limited (250 x 250 μ m²), and not suitable for visualization of long distance projections. Wang et al. (2007) used anterograde tracers (Fluoro-Ruby and Fluoro-Emerald) to visualize and record from mouse V2⁵. Our method can similarly be used for electrophysiological studies, with simultaneous recordings from two spots connected by patchy dense connections.

Our *in vivo* SCI method can also be used for targeting projection-specific gene expression. Recently, highly efficient retrograde-transport viral vectors^{6,7} have become available, and the combination of these retrograde viral vectors and other vectors or agents (e.g., Tet-on systems and immunotoxin)^{8,9} allow, for example, induction of projection-specific gene expression (e.g., transmission-inhibiting tetanus toxin⁸ and genes such as brain-derived neurotrophic factor), or destruction of projection-specific neurons⁹. As shown here, our *in vivo* SCI method allows visualization of strongly interconnected areas, which can then be injected with different types of vectors or agents to maximize double infections in specific connections.

References

Saleem KS, Pauls JM, Augath M, Trinath T, Prause BA, Hashikawa T, Logothetis NK.
 Magnetic resonance imaging of neuronal connections in the macaque monkey. *Neuron* 34, 685-700 (2002).

Wu, C.W., Vasalatiy, O., Liu. N., Wu, H., Cheal, S., Chen, D.Y., Koretsky, A.P., Griffiths, G.L., Tootell, R.B. & Ungerleider, L.G. Development of a MR-visible compound for tracing neuroanatomical connections in vivo. *Neuron* 70, 229-243 (2011).
 Malach, R. *In vivo* visualization of callosal pathways: a novel approach to the study of cortical organization. *J. Neurosci. Methods* 25, 225-238 (1988).

4. Jarosiewicz, B., Schummers, J., Malik, W.Q., Brown, E.N. & Sur, M. Functional biases in visual cortex neurons with identified projections to higher cortical targets. *Curr. Biol.* 22, 269-277 (2012).

5. Wang, Q., Gao, E. & Burkhalter, A. In vivo transcranial imaging of connections in

mouse visual cortex. Journal of Neuroscience Methods 159, 268-276 (2007).

6. Kato, S., Kobayashi, K., Inoue, K., Kuramochi, M., Okada, T., Yaginuma, H., Morimoto, K., Shimada, T., Takada, M., & Kobayashi, K. A lentiviral strategy for highly efficient retrograde gene transfer by pseudotyping with fusion envelope glycoprotein. *Hum. Gene Ther.* 22, 197-206 (2011)..

7. Kato, S., Kuramochi, M., Takasumi, K., Kobayashi, K., Inoue, K., Takahara, D., Hitoshi, S., Ikenaka, K., Shimada, T., Takada, M. & Kobayashi, K. Neuron-specific gene transfer through retrograde transport of lentiviral vector pseudotyped with a novel type of fusion envelope glycoprotein. *Hum. Gene Ther.* 22, 1511-1523 (2011).

8. Kinoshita, M., Matsui, R., Kato, S., Hasegawa, T., Kasahara, H., Isa, K., Watakabe, A., Yamamori, T., Nishimura, Y., Alstermark, B., Watanabe, D., Kobayashi, K. & Isa T. Genetic dissection of the circuit for hand dexterity in primates. *Nature* 487, 235-238 (2012).

9. Inoue, K., Koketsu, D., Kato, S., Kobayashi, K., Nambu, A. & Takada M. Immunotoxin-mediated tract targeting in the primate brain: selective elimination of the cortico-subthalamic "hyperdirect" pathway. *PLoS One* 7, e39149 (2012).

Supplementary Figure S1| **Plotted coronal sections of M2.** (a) Coronal section lines superimposed on *in vivo* SCI, and corresponding to the tissue sections in b. (b) Plots of labeled neurons, in coronal sections (only ventral portion is shown) from the field shown in (a). Red, green and blue circles represent red, green and silver neurons. Plotting was limited to TEO. Arrows point to injection sites of green and silver tracers. Arrowhead at upper left section points to the overlapping patch shown at higher magnification in (c). (c) Intermingled red and green neurons from the arrowhead in (b). Scale bar represents 1 mm (a), 1.5 mm (b), 250 μm (c).

Supplementary Figure S2| **Spatial relationship of one feedforward projection (red) and two intrinsic networks (green and silver) in M2, shown as flat map.** Color-coded flat maps of red (a) and green neurons (b), and their merge (c), silver neurons, colorized to blue for the sake of better contrast (d), merge of red and silver (shown as blue) neurons (e) and merge of green and blue neurons (f). CTB-Alexa488 injection sites are yellow filled circle in b, c, and f, and CTB-Gold are purple dots in d, e, and f. For abbreviations, scale bar and Heat map scale of density of a pixel, see fig. 4.

Supplementary Figure S3| **Plotted coronal sections of M3.** (a) Coronal section lines superimposed on *in vivo* SCI, and corresponding to the tissue sections in b. (b) Plots of labeled neurons, in coronal section (only ventral is shown) from the field shown in (a). Red, green and blue circles represent red, green and silver neurons. Plotting was limited to TEO. Arrows point to injection sites of green and silver (shown as blue) tracers . Scale bar represents 1 mm (a), 500 μm (b).

Supplementary Figure S4| Spatial relationship of one feedforward projection (red) and two intrinsic networks (green and silver) in M3, shown as flat map. Color-coded flat maps of red (a) and green neurons (b), and their merge (c); silver neurons (expressed as blue) (d), merge of red and silver (blue) neurons (e), and merge of green and silver (blue) neurons (f). CTB-Alexa488 injection sites are yellow filled circle in b, c, and f, and CTB-Gold are purple dots in d, e, and f. For abbreviations, scale bar and Heat map scale of density of a pixel, see fig. 4.

Supplementary Figure S5| **SCI of a perfused postmortem brain, prepared for DiI placement.** (a) An example of fluorescent SCI of the fixed brain (M4). The injection site of CTB-Alexa555 (arrow) is surrounded by a bright fluorescent halo. The rectangle indicates the area containing fluorescent spots in TEO and part of V4. (b) An enlarged image of the spots (at arrows). (c) The same image as (b). The asterisks represent the positions of DiI application (white and yellow asterisks = DiI positioned on fluorescence spots, and blue asterisks = DiI positioned off fluorescence spots). (d) Coronal section through the DiI application site (yellow asterisk) in c. Under the DiI-labeled patch, there are numerous CTB-Alexa555-labeled neurons. Note that the neurons are more widespread in the lower layers. Abbreviations: IOS, inferior occipital sulcus; L4, layer 4; LF, lateral fissure; LuS, lunate sulcus; PMTS, posterior middle-temporal sulcus; STS, superior temporal sulcus; TE, area TE; TEO, area TEO; V4, area V4; WM, white matter. Scale bar represent 1 mm (a), 200 μm (b, c), and 50 μm (d).

Supplementary Figure 6| **Results of an injection of a mixture of three CTB conjugates (CTB-Alexa488, -Alexa555, and -gold).** (a) Photograph of a field of CTB-Alexa488-labeled neurons, at 5 mm from the injection site, (b) Same, for CTB-Alexa555, (c) Same, for pseudo-coloured (blue) CTB-gold enhanced by silver, (d) Merged image of (a), (b) and (c). Scale Bar represents 100 μm.

M1										
red* (patch#=9)	r1	r2	r3	r4	r5	r6	r7	r8	r9	
X axis (mm)*	2.5	0.75	0.75	0.5	1.5	1.0	0.75	0.5	1.0	
Y axis (mm)*	2.75	1.25	0.75	1.0	1.5	0.5	1.5	1.5	1.25	
Area (mm ²)	6.75	3.75	0.75	2.25	1.0	1.0	1.25	1.0	1.0	
green*(patch#=10)	g1	g2	g3	g4	g5	g6	g7	g8	g9	g10
X axis (mm)*	2.5	0.75	0.75	0.5	1.5	1.0	0.75	0.5	1.0	0.5
Y axis (mm)*	2.75	1.25	0.75	1.0	1.5	0.5	1.5	1.5	1.25	0.5
Area (mm ²)	6.75	3.75	0.75	2.25	1.0	1.0	1.25	1.0	1.0	0.06
slver*(patch#=8)	s1	s2	s3	s4	s5	s6	s7	s8		
X axis (mm)*	1.0	0.75	0.75	0.75	0.75	0.5	0.5	0.75		
Y axis (mm)*	1.0	1.0	1.0	1.25	1.0	1.5	0.75	1.0		
Area (mm ²)	1.0	1.0	0.6	0.6	0.5	0.7	0.4	0.5		
M2										
red* (patch#=6)	r1	r2	r3	r4	r5	r6				
X axis (mm)*	1.0	0.75	1.5	0.75	0.75	0.75				
Y axis (mm)*	1.0	1.75	1.5	0.75	0.75	0.75				
Area (mm ²)	1.0	2.0	2.75	1.0	1.13	1.5				
green*(patch#=8)	g1	g2	g3	g4	g5	g6	g7	g8		
X axis (mm)*	1.0	0.75	1.5	0.75	0.75	0.75	0.5	0.5		
Y axis (mm)*	1.0	1.75	1.5	0.75	0.75	0.75	0.5	0.5		
Area (mm ²)	1.0	2.0	2.75	1.0	1.13	1.5	0.25	0.25		
silver*(patch#=6)	s1	s2	s3	s4	s5	s6				
X axis (mm)*	1.0	0.5	1.0	0.75	0.75	0.75				
Y axis (mm)*	1.0	0.5	1.0	0.5	1.25	0.75				
Area (mm ²)	1.0	0.25	1.0	0.6	0.75	1.31				
M3										
red* (patch#=8)	r1	r2	r3	r4	r5	r6	r7	r8		
X axis (mm)*	1.0	0.75	0.75	0.50	2.0	0.75	1.0	0.75		
Y axis (mm)*	1.0	0.75	0.75	2.0	1.75	1.25	1.5	1.5		
Area (mm ²)	1.0	2.0	2.75	1.0	1.13	1.5				
green*(patch#=9)	g1	g2	g3	g4	g5	g6	g7	g8	g9	
X axis (mm)*	1.0	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.5	
Y axis (mm)*	1.0	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.5	
Area (mm ²)	1.0	2.0	2.75	1.0	1.13	1.5	0.25	0.25	0.25	
silver*(patch#=6)	s1	s2	s3	s4	s5	s6				
X axis (mm)*	1.0	0.5	0.5	0.75	0.5	1.0				
Y axis (mm)*	1.0	0.75	0.75	1.0	1.0	1.5				
Area (mm ²)	1.0	0.25	1.0	0.6	0.75	1.31	1	1		1

Supplementary Table S1. Size of patch size for each tracer in TEO of M1, M2, M3

Abbreviations: red*, CTB-Alexa 555 labeled patch; green*, CTB-Alexa 448 labeled patch; silver*, CTB-gold-labeled patch. In this table, patch was defined by histologically. See Results section for definition of histological patches; r + Arabic number, red patch + Arabic number; g + Arabic number, green patch + Arabic number; s + Arabic number, silver patch + Arabic number (see Figure 2, 6, 3S, 5S); X axis is an axis along with dorsal bank of PMTS in 2 dimensional unfolded maps. Y axis is an axis perpendicular to X axis.

Supplementary Table S2. Summary of patch size for each tracer in TEO of M1, M2, and M3

M1					
	Mean	STD	Median	Maximum	Minimum
red*					
(9 paches)					
long axis (mm)	1.40	0.58	1.25	2.75	0.75
short axis (mm)	0.97	0.66	0.75	2.50	0.50
Area (mm ²)	2.10.	2.00	1.0	6.75	0.75
green*					
(10 paches)					
long axis (mm)	1.30	0.61	1.25	2.75	0.50
short axis (mm)	0.93	0.64	1.25	2.50	0.50
Area (mm ²)	1.98	1.90	1.0	6.75	0.75
silver*					
(7 paches)					
long axis (mm)	1.06	0.22	1.00	1.50	0.75
short axis (mm)	0.72	0.16	0.75	1.00	0.50
Area (mm ²)	0.61	0.20	0.56	1.00	0.38

Abbreviation: Red*, CTB-Alexa555 labeled patches; green*, CTB-Alexa448 labeled patches; silver*, CTB-gold-labeled patches.

*: Long and short axis are longer or shorter axis comparing X and Y axis. X axis is an axis along with dorsal bank of PMTS in 2 dimensional unfolded maps. Y axis is an axis perpendicular to X axis.

M2					
	Mean	STD	Median	Maximum	Minimum
red*					
(6 paches)					
long axis (mm)	1.08	0.44	0.75	1.75	0.75
short axis (mm)	0.88	0.31	0.75	1.50	0.75
Area (mm ²)	1.56	0.7	1.31	2.75	1.0
green*					
(8 paches)					
[*] long axis (mm) [*]	0.91	0.35	0.88	1.5	0.50
short axis (mm)	0.78	0.25	0.75	1.25	0.50
Area (mm ²)	1.23	0.84	1.06	2.75	0.25
silver*					
(6 paches)					
[*] long axis (mm) [*]	1.08	0.52	1.00	2.00	0.50
short axis (mm)	0.75	0.22	0.75	1.00	0.50
Area (mm ²)	0.81	0.38	0.86	1.31	0.25

M3					
	Mean	STD	Median	Maximum	Minimum
red*					
(6 paches)					
long axis (mm)		0.47	1.50	2.00	0.75
short axis (mm)	1.50	0.43	0.75	1.75	0.75
Area (mm ²)	1.08	1.45	1.44	4.63	1.0
green* (8 paches)	2.03				
⁺ long axis (mm) ⁺		0.47	0.75	1.5	0.50
short axis (mm)	1.11	0.44	0.65	1.25	0.50
Area (mm ²)	0.82	1.48	1.25	4.63	0.25
silver* (6 paches)	1.83				
[*] long axis (mm) [*]		0.31	1.00	1.50	0.50
short axis (mm)	1.13	0.25	0.63	1.00	0.50
Area (mm ²)	0.81	0.36	0.50	1.13	0.25
	0.63				

Supplementary Table S3. Summary of distance among the same colored patches in whole TEO area

The center-to-center distance between a patch and all of its surrounding neighbors (mm) Mean ± SD	The distance to the nearest neighbor from each patch (mm) Mean ± SD				
М	1				
red* (9 p	paches)				
2.90 ± 0.95	1.62 ± 0.50				
green [*] (10	paches)				
2.98 ± 1.05	1.70 ± 0.51				
silver [*] (7	paches)				
3.10 ± 0.75	1.81 ± 0.42				
M	2				
red* (6 p	paches)				
3.02 ± 0.98	1.67 ± 0.52				
green [*] (8	paches)				
3.15 ± 1.01	1.72 ± 0.58				
silver [*] (6	paches)				
3.20 ± 0.95	1.82 ± 0.53				
M	3				
red* (6 p	paches)				
3.30 ± 1.15	1.72 ± 0.53				
green [*] (8	paches)				
3.40 ± 1.22	1.78 ± 0.57				
silver [*] (6	paches)				
3.31 ± 1.05	1.68 ± 0.52				

red*, CTB-Alexa555 labeled patches; green*, CTB-Alexa448 labeled patches; silver*; CTB-gold-labeled patches.

Supplementary Table S4. Correlation coefficient between numbers of two different colors of neurons in a each pixel in all whole TEO area.

Correlation Coefficeeint (r)
M1 (1121 pixels examined)
Red and Green
0.97***
Red and Silver
-0.63**
Green and Silver
-0.61**
M2 (1246 pixels examined)
Red and Green
0.93***
Red and Silver
-0.60**
Green and Silver
-0.60**
M3 (1296 pixels examined)
Red and Green
0.96***
Red and Silver
-0.60**
Green and Silver
-0.56**

red*, CTB-Alexa 555 labeled patches; green*, CTB-Alexa 448 labeled patches; silver*; CTB-gold-labeled patches.

***: p < 0.01 (positive statistical significance by Spearman's rank correlation coefficient)
**: p < 0.01 (negative statistical significance by Spearman's rank correlation coefficient)

Distance from center of CTB-Alexa 488 injection site	250 µm	250 -500 μm	250 μm	250-500 μm	250 μm	250-500 μm	
monkey	Ν	11	N	12	M3		
SGL							
Red (r)	125	130	114	92	103	140	
green (g)	3110	140	2159	127	3028	152	
DL(r+g)	103	8	91	5	100	9	
total	3338	278	2365	225	3231	302	
DL(r+g)/total (%)	3	3	4	2	3	3	
DL(r+g)/g (%)	3	6	4	4	3	6	
DL(r+g)/r (%)	82	6	79	6	97	7	
IGL							
red (r)	38	43	32	27	32	45	
green (g)	843	42	675	38	934	49	
DL(r+g)	32	2	29	2	30	3	
total	914	87	736	66	996	97	
DL(r+g)/total (%)	4	3	4	2	3	3	
DL(r+g)/g (%)	4	6	4	4	3	5	
DL(r+g)/r (%)	84	6	91	6	96	6	

Supplementary Table S5: Number of CTB-Alexa 488 and/or Alexa 555 labeled neurons near CTB-Alexa 488 injection sites (from center to 250 μ m and the area between 250 μ m and 500 μ m).

Abbreviations: g, number of green neurons; DL (r+g), number of neurons double-labeled by red and green; IGL, infragranular layer, number of red neurons; SGL, supragranular layer; total, r+g.

Supplementary Table S6: Summary of labeled neurons in each red/green overlapped patch and pixel of TEO in M1.

	Total	r1, g1	r2,g2	r3,g3	r4,g4	r5,g5	r6,g6	r7,g7	r8,g8	r9,g9	Summary of each pixel	means	SD	Median	maximum	minimum
Number of pixels	167	59	30	6	18	8	8	10	9	6	Pinte					
Layer 2 r g DI (r+a)	1192 1873	450 700	244 367	50 72	132 235	69 94	59 104	82 122	60 103	45 77		7.14 11.21	0.62 0.97	7 11	10 16 2	0
total DL(r+g) /total (%) r/(r+g)(%)	3067 0.07 38	1151 0.09 39	612 0.16 40	122 0.00 41	367 0.00 36	163 0.00 43	163 0.00 36	204 0.00 40	163 0.00 37	122 0.00 37		18.36 0.07 39	1.65 0.00 0.07	17 0.07 0.40	26 0.14 0.56	0.00 0.00
r g DL(r+g)	2667 2491 6	892 990 2	577 468 1	122 87 1	326 301 0	151 127 1	144 135 1	192 156 0	149 130 0	112 97 0		15.97 14.92 0.04	1.22 1.45 0	15 15 0	30 32 4	5 7 0
total DL(r+g) /total (%) r/(r+g)(%) L aver 3b	5164 0.12 51	1884 0.11 47	1047 0.10 55	210 0.48 59	627 0.00 52	280 0.36 54	280 0.36 52	349 0.00 55	279 0.00 54	209 0.00 54		30.92 0.12 52	2.7 0 11.00	30 0 45.00	42 0.18 71.00	21 0 25.00
r g DL(r+g)	2526 2687 2	900 1002 3	489 568 2	117 94 0	292 342 1	152 130 1	133 149 0	203 149 1	137 145 1	102 109 1		15.13 16.09 0.06	0.10 1.22 0	15.00 16 0	42.00 35 4	10.00 8 0
DL(r+g) /total (%) r/(r+g)(%) Layer 3c	0.19 49	0.16 47	0.19 46	0.00 56	035 0.16 46	283 0.35 54	282 0.00 47	0.28 58	283 0.35 48	0.47 48		0.19 48	1.38 0 4.00	0 48	0.23 60	0 30
r g DL(r+g) total	3124 2906 11 6045	1200 1000 5 2206	684 539 2 1224	113 132 1 245	346 387 1 734	187 139 0 327	152 174 1 328	178 229 0 407	151 175 1 328	113 131 0 244		18.71 20.27 0.07 36.20	0.10 1.68 0 1.25	18.00 20 0 36	28.00 34 1 51	10.00 12 0 26
DL(r+g) /total (%) r/(r+g)(%) Layer 5a r	0.18 51	0.23 55 520	0.16 56 295	0.41 46	0.14 47	0.00 57 79	0.30 47 79	0.00 44	0.30 46 79	0.00 46		0.18 48.00 8.66	0 4.23 0.72	0 48	0.21 60	0 38
g DL(r+g) total	1569 4 3020	520 580 2 1103	316 2 613	63 0 122	189 0 367	84 0 163	84 0 163	105 0 204	84 0 163	63 0 122		9.38 0.02 18.08	0.72 0.80 0 1.72	9 0 18	11 11 38	4 0 12
DL(r+g) /total (%) r/(r+g)(%) Layer 5b	0.13 48	0.18 47	0.33 48	0.00 48	0.00 48 201	0.00 48	0.00 48	0.00 48	0.00 48	0.00 48		0.13 48.00	0 5.01	0 0.48	0.20 0.63	0.32
g DL(r+g) total	1764 3 3428	640 2 1252	359 359 1 694	72 0 139	201 215 0 417	90 96 0 185	90 96 0 185	112 120 0 231	90 96 0 185	72 0 139		9.93 10.56 0.02 20.53	0.84 0.81 0 2.00	5 0 25	6 1 31	3 0 17
DL(r+g) /total (%) r/(r+g)(%) Layer 6 r	0.09 48 1634	0.16 49 600	0.14 48 351	0.00 48 71	0.00 48 183	0.00 48 89	0.00 48 82	0.00 48 109	0 48 85	0 48 64		0.09 49 9.79	0 5.02 0.77	0 0.49 4	0.15	0.34
g DL(r+g) total DL(r+g) (total (%)	1710 4 3347 0 12	620 3 1223 0.25	327 327 678	65 0 136	224 0 407	92 0 181	98 98 181	116 0 226	95 0 181	72 0 136		10.24 0.02 20.04	0.82	4 0 20	6 1 32 0 20	3 0 12
r/(r+g)(%) Whole Layer	50 11725	4272	2487	52 482	0.00 45 1367	665	606	48 772	614	47 461		49 70 21	5.12 7.50	0.49	0.65	0.34
g DL(r+g) total	14999 40 29295	5532 18 10724	2943 10 5927	584 2 1187	1892 2 3553	761 2 1581	840 2 1581	998 1 1975	828 2 1581	621 1 1185		89.82 0.24 175.42	8.01 0.00 17.54	90 90 176	105 1 200	75 0 151
DL(r+g) /total (%) r/(r+g)(%)	0.14 47	0.17 44	0.17 46	0.17 45	0.06 42	0.13 47	0.13 42	0.05 44	0.13 43	0.08 43		0.14 44	0.00 4.21	0 44	0.20 54	0 34

Abbreviations: DL(r+g), number of neurons double-labled for red and green; g, number of green neuron; g+number, green patch number; r, number of red neurons; r+number, red patch number; total, r+g.

Supplementary Table S7: Summary of labeled neurons in each red/green overlapped patch and pixel of TEO in M2.

	Total	r1, g1	r2,g2	R3,g3	r4,g4	r5,g5	r6,g6	Sumary of	means	SD	Median	maximum	minimum
								each pixel					
Number of pixels	167	0	16	22	8	9	12						
r Layer 2	540	0	103	159	49	70	78		3 24	0.28	3	5	1
g	906	Ő	223	290	114	113	167	7	5.43	0.42	5	8	2
DL(r+g)	1	0	0	0	1	0	0		1	0	0	1	0
total	1450	0	326	448	163	183	244	Ļ	8.68	1.65	17	26	5
DL(r+g) /total (%)	0.07	0	0.00	0.00	0.61	0.00	0.00)	0.07	0	0.07	0.14	0.00
r/(r+g)(%)	37	0	32	35	30	38	32	2	37	0.07	0.40	0.56	0.00
Layer 3a							• • •				10		
r	3039	0	300	405	125	178	204		18.20	1.22	18	30	10
g DI (r+g)	2000		237	302	155	130	214		17.28	1.43	1/	52	,
total	5936	0	561	768	281	318	419		35 54	2.7	35	42	21
DL(r+g) /total (%)	0.10	Ő	0.18	0.13	0.36	0.63	0.24	Ļ	0.10	0	0	0	0
r/(r+g)(%)	51	0	54	53	45	57	49		51	11.00	45.00	71.00	25.00
Layer 3b													
r	2923	0	243	437	127	195	247	7	17.50	1.40	18.00	25.00	9.00
g	3064	0	320	338	155	122	176		18.35	1.22	18	28	10
DL(r+g)	5000		2	775	2	217	422		0.04	1 2 9		4	25
$DI_{(r+\alpha)}$ /total (%)	5988		0.25	0.12	282	0.00	423		35.85	1.38	30	51	23
r/(r+g)/(0)	0.10		0.55	0.13	45	61	0.24		0.10 49	4 00	48	60	30
Laver 3c		Ŭ	1.5		10	01	50	, 		1.00		00	50
r	3510	0	387	534	194	217	241		21.02	1.60	21.00	31.00	11.00
g	3416	0	265	362	132	150	248	8	22.77	1.68	23	33	12
DL(r+g)	9	0	1	2	2	2	2	2	0.05	0	0	1	0
total	6926	0	652	896	326	367	489		41.47	1.25	43	72	20
DL(r+g) /total (%)	0.13	0	0.15	0.22	0.61	0.55	0.41		0.13	0	0	0	0
r/(r+g)(%)	51	0	59	60	59	59	49		48.00	4.23	48	60	38
Layer 5a	1662		182	250	01	102	136		0.05	0.72	10	15	6
σ	1801		194	250	97	102	146	,	10.78	0.72	11	16	7
DL(r+g)	4	Ő	1	0	2	1	0)	0.02	0.00	0	1	Ć
total	3463	0	376	517	188	212	282	2	20.74	1.72	21	36	12
DL(r+g) /total (%)	0.12	0	0.27	0.00	1.06	0.47	0.00)	0.12	0	0	0.18	0
r/(r+g)(%)	48	0	48	48	48	48	48		48.00	5.01	0.48	0.63	0.32
Layer 5b	1000											10	
R	1908	0	155	213	77	87	116		11.43	0.84	12	18	6
O DL (R + G)	2027		103	22/	03 2	93	124		12.14	0.81	12	1/	
Total	3935	0	320	440	160	180	240		23.56	2 00	25	31	17
DL (R + G)/total (%)	0.20	Ő	0.63	0.23	1.25	1.11	0.42		0.20	2.00	0	0	
R/(R+G)(%)	48	0	48	48	48	48	48	\$	48	5.02	49.00	64.00	34.00
Layer 6													
r	1913	0	175	272	86	108	135		11.46	0.77	12	19	4
g	1928	0	187	225	95	96	136		11.54	0.82	12	18	5
DL(r+g)	2041	0	2(1	107	101	202	2		0.02	1.05		1 22	12
$DI_{(r+\alpha)}$ /total (%)	3841		0.00	49/	181	203	2/1		23.00	1.85	23	32	12
r/(r+g)/(0)	50		48	0.20	47	53	50		50	5.12	0.49	0.65	0.34
Whole Laver	50		10		Ŧ/	55	50		50	5.12	0.47	0.05	0.51
r	12573	0	1545	2268	749	956	1157	7	75.29	7.50	70	90	58
g	12963	0	1612	2072	829	819	1210		77.62	8.01	90	105	75
DL(r+g)	32	0	5	5	8	8	6	5	0.19	0.00	0	1	0
total	25536	0	3156	4340	1578	1776	2367	[152.91	17.54	176	200	151
DL(r+g) /total (%)	0.13		0.16	0.12	0.51	0.45	0.25		0.13	0.00	0	0	0
r/(r+g)(%)	49		49	52	47	54	49		49	4.21	44	54	34
	1	1		1				1	1	1	1		

Abbreviations: see Supplementary Table S7.

Supplementary Table S8: Summary of labeled neurons in each red/green overlapped patch and pixel of TEO in M3.

	1									Sumary of					
	Total	r1, g1	r2,g2	r3,g3	r4,g4	r5,g5	r6,g6	r7,g7	r8,g8	each pixel	means	SD	Median	maximum	minimum
Number of pixels	122	0	8	8	14	37	10	32	13						
Layer 2	725	0	4.4	40	74	220	50	200	74		5.04	0.41	2	-	0
r	1716	0	44	49	211	220	52	208	147		5.94	0.41	5	12	0
g DI (r+a)	1/10	0	119	114	211	520	131	444	14/		14.07	0.00	0	13	0
total	2441	0	163	163	285	754	204	652	221		20.01	1.85	20	26	14
DL(r+g) /total (%)	0.12	Ő	0.00	0.00	0.35	0.13	0.00	0.15	0.00		0.12	0.00	0.14	0.18	0.00
r/(r+g)(%) Laver 3a	30	0	0.27	0.30	0.26	0.30	0.26	0.32	0.28		30	2.52	0.30	0.56	0.00
r	1748	0	139	160	247	689	163	208	142		14.33	1.13	4	6	2
g	1824	0	140	119	241	600	185	444	95		14.95	1.35	4	8	2
DL(r+g)	5	0	0	0	0	2	1	1	1		0.04	0.00	0	1	0
total	3572	0	279	279	488	1290	349	652	236		29.28	2.81	30	36	24
DL(r+g) / total (%) r/(r+g)(%)	0.14 49	0	0.35	0.13 0.57	0.00 0.51	0.15 0.53	0.00	0.00	0.00 0.54	-	0.14 49	0.00 4.23	0.14	0.26	0.07 0.25
r	1732	0	156	158	245	659	164	208	142		14 19	1 14	14	20	7
σ	1869	0	126	124	243	644	188	444	95		15 32	1.14	15	18	7
DL(r+g)	3	ŏ	0	0	0	2	100	0	0		0.02	0	0	10	Ó
total	3600	0	282	282	493	1303	352	652	236		29.51	2.72	30	37	23
DL(r+g) /total (%)	0.08	0	0.35	0.13	0.00	0.15	0.00	0.00	0.00		0.08	0.00	0.08	0.14	0.07
r/(r+g)(%) Layer 3c	48	0	0.55	0.56	0.50	0.51	0.47	0.65	0.54		48	4.10	48.00	54.00	42.00
r	2183	0	168	178	303	963	241	208	121		17.89	1.56	5	8	3
g	1838	0	158	148	267	544	166	444	110		15.06	1.16	4	6	2
DL(r+g)	6	0	220	220	570	1507	107	(52	222		0.05	0.00	0	1	0
$DI_{(r \perp \alpha)/total(0/1)}$	4021	0	320	0.12	570	1507	407	0.00	232		32.90	3.01	0.15	40	24
r/(r+g)(%) I aver 5a	54	0	0.53	0.13	0.00	0.13	0.00	0.00	0.00		54	4.80	54.00	60.00	0.07
r	1039	0	79	79	138	364	98	208	74		8.52	0.67	9	13	6
g	1402	0	84	84	147	389	105	444	147		11.49	0.74	12	17	6
DL(r+g)	4	0	0	0	1	2	0	1	0		0.03	0.00	0	1	0
total	2441	0	163	163	285	754	204	652	221		20.01	1.86	20	26	13
DL(r+g) /total (%)	0.16	0	0.35	0.13	0.00	0.15	0.00	0.00	0.00		0.16	0.00	0.16	0.20	0.08
r/(r+g)(%) Layer 5b	43	0	0.48	0.48	0.48	0.48	0.48	0.48	0.48		43	0.07	0.43	0.63	0.32
r	1143	0	90	90	157	414	112	208	74		9.37	0.78	9	15	3
g DI (n + n)	1512	0	96	96	167	442	120	444	147		12.39	0.75	12	18	4
DL(r+g) total	2655	0	195	195	224	2 856	221	652	221		0.04	0.00	22	20	19
DI(r+g)/total(%)	0.19	0	0.35	0.13	0.00	0.15	0.00	0.00	0.00		0.19	0.00	0 19	0 23	0.16
r/(r+g)(%) Laver 6	43	0	0.33	0.48	0.48	0.48	0.48	0.00	0.48		43	4.10	0.49	0.64	0.34
r	1151	0	84	87	147	426	126	208	74		9.43	0.72	9	16	5
g	1461	0	97	94	170	410	100	444	147		11.98	0.76	12	19	6
DL(r+g)	7	0	0	0	1	3	1	2	0		0.06	0.00	0	1	0
total	2612	0	181	181	316	836	226	652	221		21.41	2.05	22	27	16
DL(r+g) /total (%)	0.27	0	0.35	0.13	0.00	0.15	0.00	0.00	0.00		0.27	0.00	0.27	0.37	0.19
r/(r+g)(%) Whole Layer	44	0	0.47	0.48	0.46	0.51	0.56	0.56	0.47		44	0.07	0.43	0.65	0.34
r	7973	0	621	639	1063	3052	794	1245	557	1	65.35	11.92	65	90	36
g	9798	0	679	660	1211	2958	830	2666	793		80.31	13.25	80	110	56
DL(r+g) total	17770	0	1200	1200	2274	6010	1624	2011	1251	1	0.23	0.00	145.00	100.00	105.00
DI (r+a) /total (%)	0.16	0	1300	1300	0.22	0 20	1024	0.10	1331		143.00	27.50	145.00	2 10	0.12
r/(r+g)(%)	45	0	48	49	47	51	49	32	41	1	45	41	46	2.10	42
- B)(/*)	10		10			51		52			15		10	50	12

Abbreviations: see Supplementary Table S7.

Montroy	Injection site	Injection sites and how to determine these sites										
Monkey	CTB-Alexa 555	CTB-Alexa 488	CTB-gold	Kennarks								
M1	TE Using sulcal landmark	TEO Bright spots in <i>in</i> <i>vivo</i> SCI image	TEO Dark parts in <i>in vivo</i> SCI image	CTB-Alexa488 and -gold placement was determined with <i>in</i> <i>vivo</i> SCI								
M2	Same as above	Same as above	Same as above	Same as above								
M3	Same as above	Same as above	Same as above	Same as above								
M4	TE Using sulcal landmarks	Not used	Not used	With DiI placed on bright spots after perfusion								
M5	TE Using sulcal landmarks	TE Using sulcal landmarks	TE Using sulcal landmarks	Mixture of three tracers was injected								

Supplementary Table S9: Summary of Experiments.

Abbreviations: CTB, cholera toxin subunit B; SCI, surface connection imaging.