

Fig S1. Yap1801 and Yap1802 endocytic patch dynamics in wild-type cells. (A) GFP-YAP1801 (SL5482) and (B) GFP-YAP1802 (SL6365), paired with Abp1-RFP, were generated for endocytic patch analysis in wild-type cells. A, B top panels: Graphs show normalized fluorescence intensity profiles averaged from three patches. Profiles from individual patches were aligned relative to their peak Abp1-RFP intensity (Time 0) and the average intensity at each time point was then plotted (solid lines). The inward movement of GFP or RFP (distance in nm) is also the average of three patches plotted versus time (dotted lines). A, B middle panels are tile views of patches from movies of GFP-Yap1801 or GFP-Yap1802 paired with Abp1-RFP. A, B bottom panels show kymographs of patches from movies of GFP-Yap1801 or GFP-Yap1802 paired with Abp1-RFP. Cortical patches shown were obtained from 4 min two-color movies (1 frame/2s).

Fig S2. Ent1 and Ent2 endocytic patch dynamics in wild-type cells. Movies of (A) GFP-Ent1 (SL5480) and (B) GFP-Ent2 (SL5481), paired with Abp1-RFP, were generated for patch analysis in wild-type cells. (A, B) Graphs, patch tile views and kymographs were generated as described in Supplemental Figure 1. Cortical patches were obtained from 4 min two-color movies (1 frame/2s). (C) Quantification of percent of GFP-Ent1 or GFP-Ent2 patches disappearing with Abp1-RFP (n=30 patches for each).

Fig S3. Cortical localization and patch densities of coat factors, and Sla2-GFP expression levels. (A) Epifluorescence images at the medial focal plane of wild-type and *scd5-PP1* Δ 2 cells, respectively, expressing Ede1-GFP (SL6032, SL6029), Sla2-GFP (SL6026, SL6023), or End3-GFP (SL6039, SL6041). (B) Representative projection images of deconvolved Z stacks from unbudded wild-type and *scd5-PP1* Δ 2 cells, respectively, expressing Pan1-GFP (SL5425, SL5429) and End3-GFP (SL6039, SL6041). (C) Sla2-GFP protein levels were determined by immunoblot analysis in wild-type (SL6026) and *scd5-PP1* Δ 2 (SL6023) cells, with and without the *SLA1* overexpression plasmid, pJSC66 (YEp-*SLA1*).

Fig S4. Suppression of patch dynamics in *scd5-PP1* Δ 2 by *SLA1* overexpression. (A). Only *SLA1* overexpression suppresses Sla2-GFP dynamics in the *scd5* mutant: *SLA2-GFP ABP1-RFP scd5-PP1* Δ 2 strains (SL6023) were transformed with 2µ overexpression plasmids: pRS426, pJSC66 (YEp-*SLA1*), pJSC65 (YEp-*PAN1*), pSR1 (YEp-*END3*), *pENT1* (YEp-*ENT1*), *pENT2* (YEp-*ENT2*), *pYAP1802* (YEp-*YAP1802*) and lifetimes of Sla2-GFP were analyzed. n=15-30 patches for each transformant; (***) denotes p<0.0001 compared to empty vector in a student's t-test. (B) Overexpression of *SLA1* (YEp-*SLA1*) does not suppress the delay of Pan1-GFP (SL5429) or End3-GFP (SL6041) caused by the *scd5-PP1* Δ 2 mutation. Also *SLA1* overexpression had no effect on *SCD5* cells expressing Pan1-GFP (SL5425) or End3-GFP (SL6039). (C) Mobility of Ede1-GFP (SL6029) patches was partially restored in the *scd5* mutant cells when overexpressing *SLA1* (YEp-*SLA1*). "Percent Mobile Patches" indicates % Ede1 patches (n=100) found at the start of the movie that complete internalization in the first 12 min of the movie. *SLA1* overexpression had no effect on Ede1-GFP (SL6029) mobility in wild-type cells.

Fig S5. Sla1 SR domain is important for cortical patch localization/dynamics and overexpression of *LAS17* has no effect on Pan1-GFP in *scd5* mutant cells. (A) % Cortical fluorescence of Sla1-GFP in the *scd5* mutant (SL5411) or Sla1 Δ SR-GFP as the sole source of Sla1 (SL6310). n=20 patches for each strain. (**) denotes p=0.005 via student's t-test. (B) Ede1-GFP dynamics are defective in the *sla1\DeltaSR* mutant (SL6898 & SL6899 combined data) as compared to wild-type cells (SL6897). "% Mobile Patches" indicates % Ede1 patches (n=100) found at the start of the movie that completed internalization in the first 8 min of the movie. (C) Abp1-RFP lifetime is delayed in *sla1\DeltaSR* (SL6616) as compared to wild-type cells (multiple strains) and overexpression of *LAS17* (YEp-LAS17) further extends Abp1 patch lifetime. n≥27 patches for each strain. P values from student's t test: (***) p<0.0001 comparing wild-type to *sla1\DeltaSR*; (**) p<0.005 comparing *sla\DeltaSR* cells with and without *LAS17* overexpression. (D) Overexpression of *LAS17* (YEp-LAS17) had no affect on Pan1-GFP lifetimes in wild-type cells (SL5425) or in *scd5-PP1\Delta2* cells (SL5429). n≥27 patches for each strain. Error bars in A,C,D are standard deviations.

Strain	Genotype	Source ^a
SL1462	MATa leu2 ura3-52 trp1 his3- Δ 200	
SL1463	MATα leu2 ura3-52 trp1 his3- Δ 200	
SL4128	MATa/α leu2 ura3-52/ura3-53 trp1/trp1 his3-Δ200/his3-Δ200 scd5-Δ::TRP1/SCD5	
SL4609	MATa leu2 trp1 ura3-52 his3- Δ 200 GAL2 scd5-PP1 Δ 2	
SL4610	MATα leu2 trp1 ura3-52 his3- Δ 200 GAL2 scd5-PP1 Δ 2	
SL4702	MATa leu2 ura3-52 trp1 his3-Δ200 scd5-Δ::TRP1 pJSC31[CEN, LEU2, GFP-SCD5]	
SL4706	MATa leu2 ura3-52 trp1 his3-Δ200 scd5-Δ::TRP1 pCC545[CEN, LEU2, SCD5]	
SL4823	MATa leu2 ura3-52 trp1 his3-Δ200 scd5-Δ::TRP1 pJSC9[CEN, LEU2, scd5-PP1Δ2]	
SL4851	MATa leu2 ura3-52 trp1 his3-Δ200 ent2-Δ::HIS3 scd5-Δ::TRP1 pBW56[CEN, URA3,	
	GFP-ENT2] pCC545[CEN, LEU2, SCD5]	
SL4852	MATa leu2 ura3-52 trp1 his3- Δ200 ent2-Δ::HIS3 scd5-Δ::TRP1 pBW56[CEN, URA3,	
	GFP-ENT2] pJSC9[CEN, LEU2, scd5-PP1∆2]	
SL5265	MATα leu2 trp1 ura3 his3- Δ 200 BBC1-GFP::TRP1 ABP1-RFP::KanMX6 scd5-PP1 Δ 2	
SL5302	MATα leu2 trp1 ura3 his3-Δ200 scd5-Δ::TRP1 ABP1-RFP::KanMX6_pJSC31 [CEN, LEU2. GFP-SCD5]	
SL5303	MATa leu2 trp1 ura3 his3-Δ200 scd5-Δ::TRP1 ABP1-RFP::KanMX6 pJSC32 [CEN,	
	LEU2, GFP-scd5- PP1A2]	
SL5326	MATa leu2 trp1 ura3-52 his3-∆200 ABP1-RFP::KanMX6 scd5-PP1∆2	
SL5328	MATa leu2 trp1 ura3 his3 lys-2-801 LAS17-GFP::HIS3 scd5-PP1∆2	
SL5354	MATα leu2 trp1 ura3 his3- Δ 200 clc1 Δ ::HIS3 pTMN37 [CEN, URA3, GFP-CLC1]	
SL5356	MATα leu2 trp1 ura3 his3-Δ200 clc1Δ::HIS3 scd5- PP1Δ2 pTMN37 [CEN, URA3,	
SI 5/11	GFP-ULUT	
313411	PP1Δ2	
SL5412	MATa leu2 trp1 ura3-52 his3-∆200 SLA1-GFP::HIS3 ABP1-RFP::KanMX6	
SL5425	MATα leu2 trp1 ura3-52 his3-Δ200 PAN1-GFP::HIS3 ABP1-RFP::KanMX6	
SL5429	MATα leu2 trp1 ura3-52 his3-Δ200 PAN1-GFP::HIS3 ABP1-RFP::KanMX6 scd5- PP1Δ2	
SL5436	MATα leu2 ura3-52 trp1 his3- Δ200 ent2-Δ::HIS3 ABP1-RFP::KanMX6 pBW56[CEN, URA3, GFP-ENT2]	
SL5440	MATa leu2 ura3-52 trp1 his3-Δ200 ent1-Δ::LEU2 ABP1-RFP::KanMX6 scd5-PP1Δ2 pBW54ICEN. URA3. GFP-ENT1	
SL5441	MATa leu2 ura3-52 trp1 his3-Δ200 yap1801-Δ::HIS3 ABP1-RFP::KanMX6 scd5-	
	<i>PP1∆</i> 2 pGFP-YAP1801[<i>CEN, URA3, GFP-YAP1801</i>]	
SL5480	MATa leu2 ura3-52 trp1 his3-∆200 ent1-∆::LEU2_ABP1-RFP::KanMX6 pBW54[CEN, URA3, GFP-ENT1]	
SL5481	MATa leu2 ura3-52 trp1 his3- Δ200 ent2-Δ::HIS3 ABP1-RFP::KanMX6 scd5-PP1Δ2 pBW56ICEN_URA3_GEP-ENT2	
SL5482	MATa leu2 ura3-52 trp1 his3-A200 vap1801-A::HIS3 ABP1-RFP::KanMX6 pGFP-	
	YAP1801[CEN, URA3, GFP-YAP1801]	
SL5580	MATa ade2 ade3::CMD1 lys his3 leu2 trp1 ura3 met15 cmd1∆::HIS3 bar::LYS2 pMYO5-RFP[URA], pVRP1-GFP [LEU]	
SL5755	MATa leu2 trp1 ura3-52 his3-∆200 lys2-801 EDE1-GFP::HisMX6 ABP1-RFP::KanMX6	
SL5839	MATα leu2 trp1 ura3-52 his3-Δ200 GAL2 SLA2-GFP::HisMX6 SLA1-RFP::KanMX	
SL5840	MAT α leu2 trp1 ura3-52 his3- Δ 200 GAL2 SLA2-GFP::HisMX6 SLA1-RFP::KanMX6	
SL5887	MATa leu2 trp1 ura3-52 his3-∆200 GAL2 SLA2-GFP::HisMX6 SLA1-RFP::KanMX6 scd5-PP1∆2	
SL5928	MATa leu2 trp1 ura3-52 his3-∆200 GAL2 SLA2-GFP::TRP1 ABP1-RFP::KanMX6	

SL6023 MATα leu2 trp1 ura3-52 his3-Δ200 SLA2-GFP::TRP1 ABP1-RFP::KanMX6 scd5- PP1Δ2			
SL6024 MATa leu2 trp1 ura3-52 his3-Δ200 SLA2-GFP::TRP1 ABP1-RFP::KanMX6 scd5- PP1Δ2			
SL6026 MATa leu2 trp1 ura3-52 his3-∆200 SLA2-GFP::TRP1 ABP1-RFP::KanMX6			
SL6029 MATa leu2 trp1 ura3-52 his3-Δ200 EDE1-GFP::HisMX6 ABP1-RFP::KanMX6 scd5- PP1Δ2			
SL6032 MATα leu2 trp1 ura3-52 his3-Δ200 EDE1-GFP:: HisMX6 ABP1-RFP::KanMX6			
SL6039 MATa leu2 trp1 ura3-52 his3-∆200 GAL2 END3-GFP::TRP1 ABP1-RFP::KanMX6			
SL6041 MAT α leu2 trp1 ura3-52 his3- Δ 200 GAL2 END3-GFP::TRP1 scd5-PP1 Δ 2			
SL6141 MATα leu2 ura3-52 his3-Δ200 TRP1 PAN1-GFP::HIS3 SLA1-RFP::KanMX6			
SL6142 MATα leu2 ura3-52 his3-Δ200 TRP1 PAN1-GFP::HIS3 SLA1-RFP::KanMX6 scd5- PP1Δ2			
SL6175 MATa leu2 trp1 ura3-52 his3-Δ200 SLA2-GFP::TRP1 ABP1-RFP::KanMX6 scd5- PP1Δ2 pMYO5-RFP[CEN, URA3]			
SL6179 MATa leu2 trp1 ura3-52 his3-∆200 SLA2-GFP::TRP1 END3-CHERRY::HisMX6			
SL6181 MATa leu2 trp1 ura3-52 his3-Δ200 SLA2-GFP::TRP1 END3-CHERRY::HisMX6 scd5- PP1Δ2			
SL6216 MAT α leu2 trp1 ura3-52 his3- Δ 200 sla1- Δ SR::HisMX6			
SL6310 MATa leu2 trp1 ura3-52 his3-Δ200 sla1-ΔSR-GFP::HisMx6 ABP1-RFP::KanMX6			
SL6365 MATa leu2 ura3-52 trp1 his3-Δ200 yap1802-Δ::HIS3 ABP1-RFP::KanMX6 pGFP- YAP1802[CEN, URA3]			
SL6366 <i>MATα leu2 ura3-52 trp1 his3-</i> Δ200 <i>yap1802-</i> Δ:: <i>HIS3 ABP1-RFP::KanMX6 scd5-</i> <i>PP1</i> Δ2 <i>pGFP-YAP1802</i> [<i>CEN, URA3</i>]			
SL6616 MATα leu2 ura3-52 trp1 his3-Δ200 Pan1-GFP::HIS3 ABP1-RFP::KanMX6 sla1- ΔSR::NatMX6			
SL6897 MATa leu2 trp1 ura3-52 his3-∆200 EDE1-GFP::HisMX6 ABP1-RFP::KanMX6			
SL6898 MATa leu2 trp1 ura3-52 his3-∆200 EDE1-GFP::HisMX6 ABP1-RFP::KanMX6 sla1∆SR:HisMX6			
SL6899 MATa leu2 trp1 ura3-52 his3-∆200 EDE1-GFP::HisMX6 ABP1-RFP::KanMX6 sla1∆SR:HisMX6			
DDY2736 MAT a leu2-3,112 ura3-52 his3-∆200 lys-2-801 LAS17-GFP::HIS3 ((Kaksonen et al., 2005)		
SCMIG844 MAT α leu2 trp1 ura3 his3- Δ 200 BBC1-GFP::TRP1 ABP1-RFP::KanMX6	Gift from Maribel Geli		
^a Strains are from this lab and generated for this study, except where indicated. The integrated <i>scd5</i>	PP1 binding		
site allele (scd5-PP1 Δ 2) was generated as described previously for scd5- Δ 338 (Henry et al., 2002) us	sing pJSC24		
(see below) integrated with Bipl and transformed into SL4128. U-terminal XFP tagged strains were generated for			
Longtine et al., 1998). The sla1/SR and sla1/SR-GFP were made by inserting HIS3MX6 or GFP HIS3MX6 into			
the SLA1 locus truncating SLA1 after codon 850.			

Table S2. Plasmids

Construct	Description	Source
pCC545	Plasmid contains SCD5 in pRS315 (CEN, LEU2)	Gift from
		Clarence Chan
pTMN37	Plasmid contains GFP-CLC1 [CEN, URA3]	(Newpher et al.,
		2005)
pBW54	Plasmid contains GFP-Ent1 [CEN, URA3]	(Watson et al.,
		2001)
pBW56	Plasmid contains GFP-ENT2 [CEN, URA3]	(Watson et al.,
		2001)
pGFP-	Plasmid contains GFP-YAP1801in pRS416 [CEN, URA3]	Gift from Beverly
YAP1801		Vvendland
PGFP-	Plasmid contains YAP1802 in pRS416 [CEN, URA3]	Gift from Beverly
	Disamid contains MVOE DED ICENIA LIDA 21	
piviyuo-RFF	Plasifilu contains wittos-RFP [CEN4, ORAS]	(GIOISCIT EL al., 2010)
nTmn59	The DNA coding region for SIa1 (856-1244 a a) was generated by PCR and	2010)
prinitoo	cloned in frame into pGEX4-T1 digested with BamH1 and Sal1	
nGEX-4T1	GST expression Vector	GE Healthcare
pLR1-HA-426	His3Mx6-HA selectable marker was introduced into the DNA coding region	
p=	for PAN1 (after the LR1 region) in pJSC65 to generate pLR1-HA-426 [2u.	
	URA3. HIS3MX, pan1-LR1-HA1	
pRS426	Plasmid contains [2u, URA3]	(Sikorski and
r		Hieter, 1989)
pYAp1802-426	Plasmid contains YAP1802 in pRS426 [2μ, URA3]	Gift from Beverly
		Wendland
pSR1 (<i>END3</i>)	Plasmid contains END3 in pRS426 [2µ,URA3]	Gift from
		Howard
		Riezman
pENT1	Plasmid contains ENT1 in pRS426 [2μ, URA3]	Gift from Beverly
		Wendland
pENT2	Plasmid contains ENT2 in pRS426 [2 μ , URA3]	Gift from Beverly
		Vvendland
PGFP-	Plasmid contains YAP1801 in pRS416 [CEN, URA3]	Gift from Beverly
TAP 1801-410	His 21/1/6 selectable marker was introduced into the DNA coding region for	wendiand
ρκισ	Rissivixo selectable marker was introduced into the DNA coding region for	
	Siar (050 a.a.) in p55000 [2 μ , 01(A5, 5EA I] to generate p1(502 [2 μ , 01(A5, 1)]	
nP IC6	A Agel cut p ISC66 was filled in by klanow fragment and religated to generate	
proco	nR.IC6.1211 LIRA3. SI A1-SR1	
n.ISC2	BamH1-Sal1 fragment was moved from nKRH20 (nGRD-scd5- Λ 645: (Henry	
p0002	et al. 2002) into (GST) expression vector, pTB338 [CEN_LEU2_GAL1-GST	
	from Michael Hall1, to generate an in frame fusion between GST and SCD5	
	codons 1-227 under control of the GAL1 promoter (pJSC1). Then the	
	remainder of SCD5 was reconstituted by inserting Xba1-Sph1 fragment	
	(contains codons 188 through the end of the ORF) into pJSC1 to generate	
	pJSC2 [CEN, LEU2 pGAL _{1,10} -GST-SCD5]	
pJSC9	Plasmid contains scd5-PP1∆2 in pRS315 [CEN, LEU])	(Chang et al.,
10.001		2002)
pJSC24	A BamH1-Clai tragment of JSC9 was subcloned into BamH1+Clai cut pAC10	This Study
10.001	(Henry et al. 2002) to generate $pJSU24$ [URA3, YIP5-scd5-PP1 $\Delta 2$]	
pJSC31	Plasmia contains GFP-SCD5 in pRS315 (CEN, LEU2)	(Chang et al., 2002)

pJSC32	pJSC32 (GFP-scd5-PP1 Δ 2) was constructed by gap-repairing a Spel-cut pJSC31 with 2.5-kb AfIII-PstI fragments of pJSC9 (CEN, LEU2, scd5-PP1 Δ 2)	
pJSC63	A SpeI + BlpI cut pJSC2 was gap-repaired with 2.5-kb AfIII-PstI fragments of pJSC9 to generate pJSC63 [CEN, LEU2 pGAL _{1,10} -GST-scd5-PP1∆2]	
pJSC65	A Pvul fragment of pRS425-PAN1 was gap repaired into SacI cut pRS426 to generate pJSC65 [2μ, URA3, PAN1]	
pJSC66	A Puvl fragment of pRS313-SLA1 was gap repaired into Sac1I cut pRS426 to generate pJSC66 [2μ , URA3, SLA1]	
YEplac181	Plasmid contains [2µ, LEU2]	(Gietz and Sugino, 1988)
pAM155	Plasmid contains LAS17 in YEplac181 [2 μ , LEU2]	(Naqvi et al., 1998)

^aPlasmids are from this lab and generated for this study, except where indicated. pJSC24 (YIp5-*scd5-PP1Δ2*) was generated by subcloning a BamH1-Clal fragment from pJSC9 (described in (Chang et al., 2002)) into YIp5. For construction of pJSC63 (*CEN*, *LEU2*, p*GAL1:GST-scd5-PP1Δ2*), Spel-Blpl cut pJSC2 (Chang et al., 2002) was gap-repaired with a 2.5-kb AfIII-Pstl *scd5-PP1Δ2* fragment from pJSC9. pJSC32 (*CEN*, *LEU2*, *GFP-scd5-PP1Δ2*) was constructed by gap-repairing a Spel-cut pJSC31 (Chang et al., 2006) with a 2.5-kb AfIII-Pstl *scd5-PP1Δ2* fragment from pJSC9. pTMN69 (GST-*sla1-SR*) for bacteria expression of the SR domain was made by PCR amplifying *SLA1* codons 856-1244 and subcloning into BamH1-Sal1 digested pGEX4-T1. pJSC66 (*2u*, *URA3*, *SLA1*) was generated by gap repair of a Pvu1 fragment from pRS313-*SLA1* (from D. Drubin) into SacI cut pRS426. To generate pRJC2 (*2u*, *URA3*, *HIS3MX6*, *sla1ΔSR*) a *HIS3MX6* cassette with flanking *SLA1* sequence was integrated into pJSC66 truncating *SLA1* after codon 850. To generate pRJC6 (*2u*, *URA3*, *sla1-SR*), pJSC66 was cut with AgeI, sticky-ends were filled in with Klenow fragment and the plasmid was religated, deleting *SLA1* codons 56 to 856. A Pvul fragment of pRS425-*PAN1* (B. Wendland) was gap repaired into SacI cut pRS426 to generate pJSC65 (*2u*, *URA3*, *PAN1*). In order to generate pLR1-HA-426 (*2u*, *URA3*, *pan1-LR1-HA:HIS3MX6*) a HA₃-*HIS3MX6* cassette with flanking *PAN1* after codon 383 with an in frame HA₃ tag.

type and set	15 mutant		
PROTEIN		SCD5	scd5-PP1∆2
Ede1	Lt	78.2	>240
	SD	29.6	N/A
	P value		N/A
	N value	46	N/A
Sla2	Lt	43.8	171.9
	SD	13.0	68.0
	P value		P<0.0001
	N value	50	46
Ent2	Lt	44.8	126.8
	SD	15.1	14.3
	P value		P<0.0001
	N value	26	30
Ent1	Lt	31.3	33.9
	SD	6.9	9.2
	P value		N.S.
	N value	30	28
Yap1802	Lt	37.8	100.9
	SD	10.6	32.7
	P value		P<0.0001
	N value	30	29
Yap1801	Lt	30.9	95.9
	SD	8.1	35.4
	P value		P<0.0001
	N value	30	28
Sla1	Lt	33.8	52.3
	SD	6.5	14.3
	P value		P<0.0001
	N value	31	31
Pan1	Lt	36.9	69.8
	SD	7.3	20.3
	P value		P<0.0001
	N value	30	31
End3	Lt	34.3	68.3
	SD	6.8	22.1
	P value		P<0.0001
	N value	47	30.0

Table S3. Endocytic factor dynamics in wildtype and *scd5* mutant

Scd5	Lt	27.7	40.9
	SD	5.2	10.9
	P value		P<0.0001
	N value	30	30
Las17	Lt	34.1	48.2
	SD	10.3	12.1
	P value		P<0.0001
	N value	30	30
Bbc1	Lt	13.5	13.5
	SD	2.9	2.2
	P value		N.S
	N value	30	34
Abp1	Lt	15.7	20.9
	SD	3.9	6.1
	P value		P<0.0001
	N value	181	118
Myo5	Lt	12.5	12.6
	SD	3.5	3.3
	P value		N.S
	N value	30	30

Table S4.

Endocytic factor patch to cytosol (P/C) ratios			
PROTEIN		SCD5	scd5-PP1∆2
Ede1	P/C	4.9	3.8
	SD	1.2	1.7
	P value		N.S.
	N value	30	30
Sla2	P/C	3.5	2.9
	SD	1.0	1.1
	P value		N.S.
	N value	30	30
Pan1	P/C	3.5	2.8
	SD	1.5	1.2
	P value		N.S.
	N value	30	30
End3	P/C	3.9	2.7
	SD	1.5	1.1
	P value		P=0.0007

	N value	30	30
Sla1	P/C	4.6	1.6
	SD	0.9	0.3
	P value		P<0.0001
	N value	26	26

Table S5. Endocytic factor patch density (PD)

PROTEIN		SCD5	scd5-PP1D2
Sla2	חפ	0.497	0.677
5182	SD	0.097	0.137
	P value		P< 0.0001
	N value	30	27
Pan1	PD	0.392	0.42
	SD	0.11	0.089
	P value	30	N.S.
	N value	30	30
End3	PD	0.399	0.323
	SD	0.121	0.094
	P value		N.S.
	N value	30	30
Sla1	PD	0.416	0.175
	SD	0.113	0.078
	P value		P< 0.0001
	N value	30	30

Supplemental References

Chang, J. S., Henry, K., Wolf, B. L., Geli, M. and Lemmon, S. K. (2002). Protein phosphatase-1 binding to Scd5p is important for regulation of actin organization and endocytosis in yeast. *J Biol Chem* **277**, 48002-48008.

Gietz, R. D. and Sugino, A. (1988). New yeast-*Escherichia coli* shuttle vectors constructed with in vitro mutagenized yeast genes lacking six-base pair restriction sites. *Gene* **74**, 527-534.

Grotsch, H., Giblin, J. P., Idrissi, F. Z., Fernandez-Golbano, I. M., Collette, J. R., Newpher, T. M., Robles, V., Lemmon, S. K. and Geli, M. I. (2010). Calmodulin dissociation regulates Myo5 recruitment and function at endocytic sites. *EMBO J* **29**, 2899-2914.

Henry, K. R., D'Hondt, K., Chang, J., Newpher, T., Huang, K., Hudson, R. T., Riezman, H. and Lemmon, S. K. (2002). Scd5p and clathrin function are important for cortical actin organization, endocytosis, and localization of Sla2p in yeast. *Mol Biol Cell* **13**, 2607-2625.

Kaksonen, M., Toret, C. P. and Drubin, D. G. (2005). A modular design for the clathrin- and actinmediated endocytosis machinery. *Cell* **123**, 305-320.

Longtine, M. S., McKenzie, A., 3rd, Demarini, D. J., Shah, N. G., Wach, A., Brachat, A., Philippsen, P. and Pringle, J. R. (1998). Additional modules for versatile and economical PCR-based gene deletion and modification in *Saccharomyces cerevisiae*. *Yeast* **14**, 953-961.

Naqvi, S. N., Zahn, R., Mitchell, D. A., Stevenson, B. J. and Munn, A. L. (1998). The WASp homologue Las17p functions with the WIP homologue End5p/verprolin and is essential for endocytosis in yeast. *Current Biology* **8**, 959-962.

Newpher, T. M., Smith, R. P., Lemmon, V. and Lemmon, S. K. (2005). In vivo dynamics of clathrin and its adaptor-dependent recruitment to the actin-based endocytic machinery in yeast. *Dev Cell* **9**, 87-98.

Sikorski, R. S. and Hieter, P. (1989). A system of shuttle vectors and yeast host strains designed for efficient manipulation of DNA in *Saccharomyces cerevisiae*. *Genetics* **122**, 19-27.

Wach, A., Brachat, A., Alberti-Segui, C., Rebischung, C. and Philippsen, P. (1997). Heterologous *HIS3* marker and GFP reporter modules for PCR-targeting in *Saccharomyces cerevisiae*. *Yeast* **13**, 1065-1075.

Watson, H. A., Cope, M. J., Groen, A. C., Drubin, D. G. and Wendland, B. (2001). In vivo role for actinregulating kinases in endocytosis and yeast epsin phosphorylation. *Mol Biol Cell* **12**, 3668-3679.