

Supplemental Figure 1. Subcellular localization of AE7, CIA1 and MET18.
(A-C) Tobacco leaves were infiltrated with *p35S:AE7-YFP* (A), *p35S: CIA1-mCherry*(B) or *p35S:MET18-mCherry* (C), respectively. AE7-YFP (A), CIA1-mCherry (B) or
MET18-mCherry (C) signals were detected in both nuclei and cytoplasm. Bars in
(A-C), 50 μm.

Supplemental Figure 2. Diagram of gene structures of *AE7*, *CIA1*, *NAR1* and *MET18*. Black and white boxes symbolize exons and untranslated regions, respectively, and horizontal lines indicate introns. Triangles show positions where a transposon (in *ae7-2*) or T-DNA (in *cia1-1*, *cia1-2*, *nar1-1*, *nar1-2*, *met18-1*, and *met18-2*) were located in the gene. Bars, 500 bp.

Supplemental Figure 3. *Arabidopsis AE7* failed to rescue the growth of a yeast strain with a doxycycline-repressable *CIA2/YHR122W* gene. (A) The growth of a yeast strain with a doxycycline-repressable *CIA2/YHR122W* gene could not be rescued by expression of the *Arabidopsis AE7* gene. Ten-fold serial dilutions of yeast were grown in the absence (left panel) or presence (right panel) of 10 µg/ml doxycycline that can down-regulate the *CIA2/YHR122W* gene. Cells were transformed with the pESC plasmid containing another copy of the yeast *CIA2* gene fused in-frame with a FLAG-tag (pESC-*CIA2*), and empty plasmid (pESC) or the *Arabidopsis AE7* gene with a FLAG-tag sequence (pESC-*AE7*). (B) Western blot analysis using the Anti-FLAG antibody confirmed the accumulation of Cia2-FLAG and AE7-FLAG proteins.

Supplemental Figure 4. *Arabidopsis CIA1* rescued the yeast Gal-*CIA1* mutant. (A) Alignment of the full-length amino acid sequences of AtCIA1 and ScCIA1. (B) The yeast Gal-*CIA1* cells were transformed with the yeast expression vector p416 containing the yeast *CIA1* gene (p416-*ScCIA1*), p416 only, or the coding sequence of *Arabidopsis CIA1* (p416-*AtCIA1*). Cells were grown at 30°C on rich media containing galactose (left) or glucose (right) to induce or repress, respectively, genomic *CIA1* expression. (C) Cell extracts of the transformants described in (B) were analysed for the activity of Leu1, a cytosolic Fe-S enzyme. (D) Cells as in (B) were tested for the activity of sulfite reductase. Yeast was spotted on minimal agar medium with glucose to deplete expression of the genomic copy of *CIA1*. The plate also contained 0.1% (w/v) bismuth ammonium citrate and 0.03% (w/v) sulfite. Sulfite is reduced to sulfide by SiR, a [4Fe-4S] siroheme enzyme, which forms a brown precipitate with bismuth.

Supplemental Figure 5. Aconitase activity in wild type and *ae7-1* seedlings. (A) Quanification of in-gel aconitase activities. The in-gel activity staining in Figure 6A, top panel, was quantified using ImageJ software. (B) Aconitase activity and protein levels in total extract and purified mitochondria. Total proteins were extracted as for in-gel activity assays, except that hydroponically grown seedlings were used as plant material. Mitochondria were purified from 14-day old hydroponic seedlings, using differential centrifugation and Percoll gradients, as described previously (Sweetlove et al., 2007). Aconitase activity was measured as NADPH production in a coupled assay with isocitrate dehydrogenase. The same protein fractions were subjected to immunoblotting with specific antibodies against aconitase and Cox2. Cox2 is a subunit of Complex IV and serves as a mitochondrial marker.

Supplemental Figure 6. qRT-PCR analysis of expressions of the *ACO* and *ROS1* genes. Total RNA prepared from 14-day-old seedlings was amplified by RT-PCR. All values were normalized against the expression level of the *ACTIN* genes. Triplicate repeats and three biological replicates were performed and the data are shown as the averages with s.d.

Supplemental data. Luo et al. Plant Cell. (2012). 10.1105/tpc.112.102608

Supplemental Figure 7. The *atm3-4* mutant showed cell proliferation defects and a genetic interaction with *ae7-1*. (A-C) Compared with the wild type (A), the size of palisade cells in the first rosette leaf from 25-day-old *atm3-4* seedlings (B) is enlarged, while the number of palisade cells in *atm3-4* leaves is reduced (C). * Significant statistical differences by t-test (P < 0.01). (D, E) Histochemical localization of GUS activity in the shoot apex of 13-day-old wild type (D) and *atm3-4* (E) seedlings harboring the CYCB1;1:GUS reporter, respectively. (F-I) Genetic interaction between *ae7-1* and *atm3-4*. Compared with the wild type (F) or *ae7-1* (G) and *atm3-4* (H) single mutants, the *ae7-1 atm3-4* double mutant (I) exhibited enhanced developmental defects, including a diminutive plant size and serrated leaves. Bars in (A, B), 50µm; in (D, E), 0.5cm; in (F-I), 1 cm.

Supplemental data. Luo et al. Plant Cell. (2012). 10.1105/tpc.112.102608

Supplemental Figure 8. The *ae7* phenotype was rescued by the moss (*Physcomitrella patens*) and rice (*Oryza sativa*) orthologues of *AE7*. (A) The *ae7* mutant. (B, C) The *ae7* mutant transformed with the *Physcomitrella patens* Pp-*AE7* (B) and rice Os-*AE7* (C). (D, E) RT-PCR to analyze the transcripts of the Pp-*AE7* and Os-*AE7* in the corresponding transgenic plants. Bars in (A-C), 1 cm.

Supplemental Figure 9. The *ae7* phenotype could not be rescued by *Arabidopsis AE7*-like genes, *AEL1* (*At3g50845*) and *AEL2* (*At3g09380*), respectively. (A) The wild-type Ler. (B) The *ae7* mutant. (C-E) The representative transgenic *ae7* plant expressing the *AEL1* coding region (C), *AEL2* coding region (D) or *AEL2* genomic fragment (E) driven by the *p35S* promoter. (F-H) qRT-PCR analysis of *AEL1* (F) and *AEL2* expression (G, H) in the corresponding transgenic plants. Bars in (A-E), 1 cm.

Name	Gene or	Sequence (5'-3')	Purpose
- (41110	mutant		- mp 000
ACTIN-F	ACTIN	TGGCATCA(T/C)ACTTTCTACAA	qPCR
ACTIN-R	ACTIN	CCACCACT(G/A/T)AGCACAATGTT	qPCR
BRCA1-realF	BRCA1	CCATGTATTTTGCAATGCGTG	qPCR
BRCA1-realR	BRCA1	TGTGGAGCACCTCGAATCTCT	qPCR
RAD51-realF	RAD51	CGAGGAAGGATCTCTTGCAG	qPCR
RAD51-realR	RAD51	GCACTAGTGAACCCCAGAGG	qPCR
PARP1-realF	PARP1	TGCTCGCGCGAACTCACTTCT	qPCR
PARP1-realR	PARP1	AGCCTCTCCACCAGAACGGCT	qPCR
PARP2-realF	PARP2	ATGGCGTTCTGCTCCTCTGC	qPCR
PARP2-realR	PARP2	GGTGCTGTTTTCCCCACACC	qPCR
WEE1-realF	WEE1	TGGTGCTGGACATTTCAGTCGG	qPCR
WEE1-realR	WEE1	CAAGAGCTTGCACTTCCATCATAG	qPCR
CYCB1;1-F	CYCB1;1	CAGACCATGCATACAGTCAC	qPCR
CYCB1;1-R	CYCB1;1	TCCTAACTCCTAAGCAGATTC	qPCR
GR1-RTF	GR1	GAAGGAGCAGACAAAGTGAG	qPCR
GR1-RTR	GR1	GGTGAGATGGAAGTGATAGG	qPCR
LIG4-RTF	LIG4	GGTGGTCTCAATGTTCACCGCCC	qPCR
LIG4-RTR	LIG4	AGGTCAGCACCAGCCCGGAT	qPCR
KU70-RTF	KU70	CGAGGACGACGTTGCAGAGAGC	qPCR
KU70-RTR	KU70	GCTGCCAGGAATAGCCGGACG	qPCR
KU80-RTF	KU80	GATGATGAAGACAATCGCATGATTA	qPCR
KU80-RTR	KU80	TTAGCTCTCGAGCATTGACTC	qPCR
RNR2A-RTF	AtRNR2A	TGGCTCAGAACCAGAGATTC	qPCR
RNR2A-RTR	AtRNR2A	AGAAACTGGCTTCAGCCTTC	qPCR
TSO2-RTF	AtTSO2	TCGCTTGTCTACTCTACACG	qPCR
TSO2-RTR	AtTSO2	CCGCGTCGCAGACGATTGA	qPCR
RNR2B-RTF	AtRNR2B	CTGGACAGCCGAAAAGTC	qPCR
RNR2B-RTR	AtRNR2B	AGTGACGTTCGTCGTTGGTT	qPCR
ACO1-F	ACO1	CATTGAGCTCCCAAACAATGTTAGT	qPCR
ACO1-R	ACO1	TTATTGTTTGATCAAGTTCCTG	qPCR
ACO2-F	ACO2	ATGCCACCTTCCTACAAAAGTTAGT	qPCR
ACO2-R	ACO2	ATCACTTGGCGCTCAAACTCC	qPCR
ACO3-F	ACO3	GATCCATCTCCCAACCGATATCTCA	qPCR
ACO3-R	ACO3	CTATTGCTTGCTCAAGTTTCTG	qPCR
ROS1-F	ROS1	GGATCATGCATCCAGCCTAAACC	qPCR
ROS1-R	ROS1	TTAGGCGAGGTTAGCTTGTTGTC	qPCR
AEL1-RT-F	AEL1	CCGGAATTCATGACTCTGGGACTGAT	qPCR
		AAACG	
AEL1-RT-R	AEL1	GACTAGTGCTATCTCATCGGAGTAGAT	qPCR
		AC	
AEL2-RT-F	AEL2	CCGGAATTCATGCGTTCAGGAGAGA	qPCR

Supplemental data. Luo et al. Plant Cell. (2012). 10.1105/tpc.112.102608 Supplemental Table 1. Sequences of oligonucleotide primers used in this study.

Supplemental data. Luo et al. Plant Cell. (2012). 10.1105/tpc.112.102608					
AEL2-RT-R	AEL2	GACTAGTGCAGATGCAAAGACCAATA	qPCR		
		TG			
Salk_060584-F	atcia1-1	GACAAGATGGTCACTTGTAG	T-DNA		
Salk_060584-R	atcia1-1	GATTATATGAAGGTCCATCAAC	T-DNA		
CS16106-F	atcia1-2	CTGAAGAAGAATAAAGCACATG	T-DNA		
CS16106-R	atcia1-2	GCACCATCTAGCTTTCAACTCC	T-DNA		
Salk_121963-F	atmet18-1	CTTTGGAGAATGATTCTTTATC	T-DNA		
Salk_121963-R	atmet18-1	CATAGCATAAACAAGTAGATCAC	T-DNA		
Salk_147068-F	atmet18-2	GAATTCCCAGACTTCACTATCGAG	T-DNA		
Salk_147068-R	atmet18-2	CATTAGATGCGGATATGATGTAAG	T-DNA		
GK_674D01-F	atnar1-1	TGGTACCGAATTCATGTCAGAGA AGT	T-DNA		
		TTTCACC GAC			
GK_674D01-R	atnar1-1	GATCGCAGCTCCAATAGCTTGCTG	T-DNA		
GK_462G04-F	atnar1-2	GAGATCTTTATGGTGTAGCTGGGAG	T-DNA		
GK_462G04-R	atnar1-2	GTCGACGGATCCCCAGTTGTTGAGCT	T-DNA		
		GCGACGTA			
GT6615-F	ae7-2	GAGGTTACACAGACCTACTCCTC	DS-Transposon		
GT6615-R	ae7-2	CCGCTCGAGCGGTCACTCTTCTGATG	DS-Transposon		
		GCAGGCATTC			
XBAT34-F	XBAT34	GTTTGAAGCATATCTCCTCTATG	McrBC-PCR		
XBAT34-R	XBAT34	AGGTCGTTATTTGTTCATCGGTG	McrBC-PCR		
MRD1-F	MRD1	GTCCGTTTTAGGCTTAGGACCG	McrBC-PCR		
MRD1-R	MRD1	GAAAACATTTCTAGCACAAAGAAA	McrBC-PCR		

Supplemental References

Sweetlove, L.J., Taylor, N.L., and Leaver, C.J. (2007). Isolation of intact, functional mitochondria from the model plant *Arabidopsis thaliana*. Methods Mol. Biol. 372: 125-136.