

Supplemental Fig. 1: CP29A- and CP31A- protein levels are not altered by the presence or absence of CP31A and CP29A, respectively.

Immunoblots were performed with equal amounts of *cp29a*- and *cp31a*- single and double mutant total protein extracts and compared to a dilution series (200%, 100%, 50%, 10%) of a Col-0 total protein extract. The same blots were stripped and reprobed with antisera against the mitochondrial protein COXII. To demonstrate equal loading of samples, Ponceau-stained RbcL is shown to further support equal loading.

Supplemental Figure 2: Immunoprecipitation of CP29A and CP31A

Immunoblot analyses of immunoprecipitation experiments with anti-CP29A- and anti-CP31Aantibodies, respectively. Stromal extracts from Col-O and the corresponding knockout mutants (input) were analyzed together with aliquots from precipitates and supernatants generated by immunoprecipitations. A twentieth of the total supernatant and a twentieth of the pellet fraction were loaded on the gel. CP29A and CP31A are indicated by asterisks. Arrowheads point to subunits of the antibody used (heavy chain HC, light chain LC).

Supplemental Figure 3: Excerpt of a representative CP31A-RIP-Chip.

Overlays of fluorescence signals from pellet (Cy5; red) and supernatant (Cy3; green) of a representative CP31A- IP are shown. In the control-IP performed with pre-immune serum (left) RNA can be detected in the supernatant fraction (green fluorescence), but is almost absent from the pellet (no red or yellow signals). In the IP using the anti- CP31A- antibody (right) strong signals are obtained within the precipitate (red fluorescence). Both Chips were scanned using the same laser intensities.

	S	Ρ	S	Р	S	Р	S	Р	S	Р	S	Р	S	Р
anti- CP29A	*	*	•	•	•	0	٠			•		-	۲	0
anti- CP31A				٠		٠	٥			•	10			•
anti- HA							•		•					
	atp	Н	psb	D	ps	аA	atp	В	rk	рсL	psk	рB	ndhF 3	3'-UTR

	S	Р	S	Р	
anti- CP29A	•	0	•	-	
anti- CP31A	0	•	•		
anti- HA	•		•		
	ycf3	3 in 1	rpl33		

	S	Р	S	Р	
anti- CP29A	•	•	٠		
anti- CP31A			۲	2	
anti- HA	-		•		
	t	rnl	rrn16		

Supplemental Figure 4: Dot blot analyses for validation of RIP-Chip data.

RNAs were isolated from the precipitate and the supernatant of a representative CP29A- and a CP31Aimmunoprecipitation, spotted onto uncharged nylon membranes and hybridized with ³²P- labeled riboprobes (see Suppl. Table1 online for primers). The upper panel displays dot blot hybridization of RNAs that were highly enriched in RIP-Chips, in the middle panel RNAs with moderate enrichment in RIP-Chips were selected and RNAs in the lower panel showed no enrichment in our RIP-Chips experiments. S = supernatant; P = precipitate.

gene	genome position	Col-0	cp29a	gene	genome position	
matK	2931	AA	A	rpl23	86055	Į
atpF	12707			ndhB	94999	
rpoC1	21806			ndhB	95225	r
rроВ	23898			ndhB	95608	4
rроВ	25779		$\bigwedge_{T \ T \ A}$	ndhB	95644	
rроВ	25992	$\bigwedge_{T}\bigwedge_{T}\bigwedge_{T}$	$\bigwedge_{T} \bigwedge_{T} \bigwedge_{T}$	ndhB	95650	
psbZ	35800		$\bigwedge_{T=T-A}$	ndhB	96419	
rps14	37092			ndhB	96579	
rps14	37161			ndhB	96698	
accD	57868			ndhB	97016	
accD	58642			ndhF	112349	
psbF	63985		$\bigwedge_{\overline{T}=\overline{T}=\overline{T}}$	ndhD	116281	:
psbE	64109	M	M	ndhD	116290	/
petL	65716	M	M	ndhD	116494	1
rps12	69553	M	M	ndhD	116785	
clpP	69942			ndhD	117166	
rpoA	78691		$\Delta \Delta \Delta$	ndhG	118858	Γ

cp29a

c

Col-O

Supplemental Figure 5: Editing in cp29A

Leaves from 3 weeks old Col-0 and *cp29a* plants were used for total RNA isolation and subsequent cDNA amplification. PCR products from RT-PCRs harboring all 34 Arabidopsis plastid editing sites were sequenced (Primers are listed in Suppl. Table1 online). Excerpts of sequencing chromatographs each showing a triplet, which harbors the editing site in the middle, are displayed. Genome positions are given according to the Arabidopsis plastid genome annotation (Genebank accession: AP000423; Sato et al., 1999).

Supplemental Figure 6: Plastid transcript levels in two *cp29a*-mutants.

Transcript quantities assayed by qRT-PCR are shown as \log_2 of the ratios of transcript amounts in mutant versus wild-type extracts. The resulting values were normalized to the median of expression ratios (mutant/WT) of all chloroplast genes analyzed. The cytosolic 18S rRNA was used as a non-plastid control. Genes are sorted by their physical location on the plastome. The full data set is given in Suppl. Table2 online.

Supplemental Figure 7: Splicing analyses in cpRNP mutants.

Quantitative RT-PCR was used to analyze spliced and unspliced introns in *cp29a* and *cp31a* mutants compared with wild-type plants. Data are normalized to control amplifications of cDNA for nuclear 18S rRNA. There is a reduction in the accumulation of several spliced, but not unspliced RNAs in *cp31a* mutants (*ycf3* first intron; *rpoC1*, *ndhB*). The other splicing events are not or only mildly affected in both mutants. The full data set is given in Suppl. Table.4 online.

Supplemental Figure 8: Light stress phenotypes

Col-0 plants and *cp29a*, *cp31a* and *cp29axcp31a* mutants were grown under standard growth conditions (long day [16 h light/ 8 h dark]; normal light [180 μ mol*m⁻²*s⁻¹]) for 12 days and then shifted to either high light (500-600 μ mol*m⁻²*s⁻¹; upper panel) or low light (20-30 μ mol*m⁻²*s⁻¹; middle panel) or kept at the primary standard conditions (lower panel) for three weeks.

Supplemental Figure 9: Phenotypes of *cp29a*- and *cp31a*- single and double mutants germinated under cold stress conditions.

Seeds from Col-0 plants and from *cp29a*, *cp31a*, and *cp29axcp31a* mutants were germinated and grown at 8 °C for three weeks.

A *cp29a* x *cp31a* double mutant was germinated and grown for 5 weeks at 8°C and then shifted to 23 °C. The phenotype was documented 0 h, 24 h, 72 h and 5 days after the low temperature stress. Arrowhead indicates same leaf in all four pictures.

Col-0

cp29a-1

ndhB	atpH	atpF	atpB
petD	petB	petA	ndhI
psbA	psaC	psaB	psaA
rbcL	psbK	psbE	psbD
rps4	rроВ	clpP	accD
rrn16	rps16	rps14	rps8
ycf1	trnL	trnK2	trnK1
	ycf10	ycf5	ycf2

В

Supplemental Figure 10: Run-on transcription assay of selected chloroplast genes in a *cp29a*-knockout mutant.

Relative transcription rates in the *cp29a-1* mutant and the wildtype (Col-0) were determined as described (Zubo et al., 2008).

(A) Hybridisation of ³²P- labeled chloroplast RNA from Col-0 and *cp29a-1* seedlings with a macroarray containing DNA-probes for 31 selected chloroplast genes. Signals were detected using the Personal Molecular Imager (PMI) System (Bio-Rad).

(B) represents the quantification of (A) Autoradiographs from wild-type and the *cp29a-1-* mutant shown in (A) were quantified using the Quantity One Software (Biorad). The relative transcription rates were obtained by calculating wild-type to mutant ratios (see also Suppl. Table.3 online).

Supplemental Figure 11: Transcript accumulation of selected NEP-dependent mRNAs under standard- (23 °C) and cold stress (8 °C) conditions.

4 µg of total RNA from 2 weeks old whole plants grown at 23 °C (left) and from bleached tissue after 18 days of cold stress (right) were fractionated on denaturing agarose gels and analyzed by hybridization to ³²P- labeled riboprobes for the plastid RNAs *clpP* and *accD*. Equal loading was controlled by methylene blue staining (cytosolic 25S rRNA is shown).

	gene	rpoB	rpoB	psbZ	rps14	rps14	psbF	psbE	ndhB	ndhB
	genome position	25779	25992	35800	37092	37161	. 63985	64109	96698	97016
	Col-0		AA_{T}			ĂŴ ĭ ĭ ĭ	$M_{\overline{T}}$	MA T T C		
ູ	ср29а-6		AA_{T}				$\Lambda \Lambda_{\tau}$	Щ. Т. Т.		
23	cp31a-1		$A_{T} A_{T}$				$M_{\frac{1}{\tau},\frac{1}{\tau}}$	AA T T C		$\bigwedge_{T} \bigwedge_{T} \bigwedge_{A}$
	cp29a-1xcp31a-1	rpoBrpoBpsbZrpsposition2577925992358003'pl-0 \bigwedge_{T} \bigwedge_{T} \bigwedge_{T} \bigwedge_{T} \bigwedge_{T} a-6 \bigwedge_{T} \bigwedge_{T} \bigwedge_{T} \bigwedge_{T} \bigwedge_{T} a-1 \bigwedge_{T} \bigwedge_{T} \bigwedge_{T} \bigwedge_{T} \bigwedge_{T} cp31a-1 \bigwedge_{T} \bigwedge_{T} \bigwedge_{T} \bigwedge_{T} \bigwedge_{T} pl-0 \bigwedge_{T} \bigwedge_{T} \bigwedge_{T} \bigwedge_{T} \bigwedge_{T} pl-1 \bigwedge_{T} \bigwedge_{T} \bigwedge_{T} \bigwedge_{T} \bigwedge_{T} pl-1 \bigwedge_{T} \bigwedge_{T} \bigwedge_{T} \bigwedge_{T} \bigwedge_{T} pl-1 \bigwedge_{T} \bigwedge_{T} \bigwedge_{T} \bigwedge_{T} \bigwedge_{T} mdent-+a > 31a-+		ΔM_{T}						
	Col-0		AAA	Λ_{T}						
	cp29A-6		$\Lambda \Lambda \Lambda$	Λ_{T}			\bigwedge_{T}			
8°C	cp31A-1		AAA	Δ_{T}						
	cp29a-1xcp31a-1		$\bigwedge_{T} \bigwedge_{T} \bigwedge_{T}$							
	cch-1		$\Lambda_{\tau} \Lambda_{\tau}$			$\Delta \Lambda$	Λ_{T}			
Т	emp. dependent			+					+	+
ср2	9a x cp31a > 31a			+	+				+	+

Supplemental Figure 12: Analysis of chloroplast RNA editing in cpRNP mutants.

cDNAs were prepared from total leaf RNA from wild-type, *cp31a* and *cp29a* mutants, either grown at standard growth temperatures for 18 days or additionally coldstressed for three weeks. Selected cDNAs were amplified by PCR and sequenced to identify changes in RNA-editing site processing. Excerpts of sequencing chromatograms are displayed with the editing site always being in the centre of the base triplet shown. Overall, effects on RNA editing either by genotype or by low temperatures were only mild. Most prominently, editing of the site in *psbZ* is reduced after cold treatment, in particular in double mutants. Similarly, RNA editing of the two sites in the *ndhB* transcript decreases in cpRNP mutants in a temperature-dependent manner (indicated by plus signs below the chart). Parallel analysis of *cch* mutants demonstrates that the defects observed are specific for cpRNP mutants.

Supplemental Table 1: Oligonucleotides

Oligonucleotide	Sequence (5'>3')	Target(s)	Purpose
			riboprobe for
accD_for		accD	Northern riboprobo for
accD_T7_rev	GTAATACGACTCACTATAGGGTTCGCCTACTACGGATCCC	accD	Northern
atpB_for2	GGAATGGACGTGGTTGATATGG	atpB	riboprobe for dot blot
atpB_T7_rev2	TAATACGACTCACTATAGGGCAGTCAGACCAACTCTCATACG	atpB	riboprobefordotblot
atpH5' for	GATTTAGATAGGGATTCGATTAG	atpH	riboprobe for dot blot
atpH5' T7 rev	GTAATACGACTCACTATAGGGTCCAGGTCCAATAGAAGCAAG	atoH	riboprobefordotblot
			riboprobe for
clpP_ex2_for	GAGGTTGATACCGAAATCTCG	clpP	Northern
clpP_ex2_T7_rev	GTAATACGACTCACTATAGGGCGTTTGGTAATTGCTCCTCC	clpP	riboprobefor Northern
ndhD out for	CTC ACCA ATCCCA ATA ATCC	ndhD	riboprobe for
		nunB	Northern
ndhB_ex1_17_rev	GTAATACGACTCACTATAGGGTACCGGAACTGATAACATTCG	nanB	riboprobefor Northern
petB_for	CGTCCAACCGTTACTGAAGC	petB	Northern
petB T7 rev	GTAATACGACTCACTATAGGGAATAGCGTCAGGTACACC	petB	riboprobefor Northern
			riboprobe for
psaA_for	TGGCATGTATTTCCATGGTG	psaA	Northern and dot blot
ncal TZ rov		200	riboprobe for
psaA_17_1ev		psuA	riboprobe for
psbB_for	TTTGCAGCTTTTGTTGTTGC	psbB	Northern and dot blot
		_	riboprobe for
psbB_T7_rev	GTAATACGACTCACTATAGGGCTTCTAAACGGGACGTCAGC	psbB	Northern and dot blot
psbD for	CTATTTCGCTTTAGGGGGTTGG	psbD	Northern and dot blot
			riboprobe for
psbD_T7_rev	TAATACGACTCACTATAGGGCAGCAATGGGACCAGAGAATGC	psbD	Northern and dot blot
nshE for	GTCTGGAAGCACAGGAGAACG	nshE	riboprobe for
		psb1	riberrich of or North orr
		pspr	riboprobe for
rbcL_for	GCAGCATTCCGAGTAACTCC	rbcL	Northern and dot blot
			riboprobe for
rbcL_T7_rev	GTAATACGACTCACTATAGGGCCACGTAGACATTCATAAACTGC	rbcL	Northern and dot blot
rpl33 for	ATGGCCAAGGGTAAAGATGTTCG	rpl33	Northern and dot blot
		,	riboprobe for
rpl33_T7_rev	GTAATACGACTCACTATAGGGCTCAATTCCAATCGACTAGG	rpl33	Northern and dot blot
rns4 rn	CGTCTGGGGGGCTTTACCGGG	rns4	riboprobe for
rps4_rp		rps4	riboprobofor Northorn
1034_17		1µ34	riboprobe for
rrn16_for	ATGGATACTAGGCGCTGTGC	<i>16 S</i> rRNA	Northern and dot blot
			riboprobe for
rrn16_17_rev	GTAATCGACTCACTATAGGGACCTTCCTCCGGCTTATCAC	16 SrRNA	Northern and dot blot
rrn23_3'_for	GCAAGACCCACCCGTCGAGC	<i>23S</i> rRNA	Northern
rrn23_3'_T7 rev	GTAATCGACTCACTATAGGGCGCTCCGCACTTGGCTACCC	23S rRNA	riboprobefor Northern
			riboprobe for
ycf3_exon2_for	CGGATGTCGGCTCAATCTGAAGG	ycf3	Northern
ycf3_exon2_T7_rev	TAATACGACTCACTATAGGGAGAGGGGTTTCGTTCTAATGCCCGA	ycf3	riboprobefor Northern
uction intront for		vef2	riboprobe for
	AUUUUAAUAAULALIALULLU	усјз	Northern and dot plot

			riboprobe for
ycf3_intron1_T7_rev	TAATACGACTCACTATAGGGAGACGGCTCCTCCTTTAGGTGCAT	ycf3	Northern and dot blot
ndhF 3'UTR for	TCGAACGTGGAATTCATCATC	ndhF.vcf1as	Northern and dot blot
			riboprobe for
ndhF_3'UTR_T7_rev	GTAATCGACTCACTATAGGGTGAGAAATTCTATGGCTCGAATC	ndhF,ycf1as	Northern and dot blot
ycf1as_for	GATTCTTCCCCGAGAGATTCC	ycf1as	Northern
ycf1as T7 rev	GTAATCGACTCACTATAGGGAAGATGGAATCGACCAAACC	ycf1as	riboprobefor Northern
			riboprobe for
ndhF_for		ndhF	Northern
ndhF_T7_rev	TAATACGACTCACTATAGGGAGAAGAGAGATGCGACTTCCAC	ndhF	riboprobefor Northern
trnlex1	TTATCAGGGGCGCGCTCTACCACTGAGCTAATAGCCC	trnl	blot
accD.AT.for2	ATTGCATTTGCGGGTAAAAGAG	accD-2	Editing
accD.AT.rev2	GGGAAATGCAAAAAGATGGAAG		Editing
accD.AT.for	TTCATTTGTAGTGAAAGCGG	accD-1	Editing
accD.AT.rev	TTTCGCCTACTACGGATCCC		Editing
ATPHfor2	ATAAGAGGAGATTGTATGAAA	atpF-1	Editing
AT7atpF	GTAATACGACTCACTATAGGGCTAATGGTACGTAAATGTAACTC		Editing
clpP.AT.for	GTAATGATCCATCAACCCGC	clpP-1	Editing
clpP.AT.2rev	TGAACCGCTACAAGATCAAC		Editing
matK.AT.for	CGTTACCGGGTAAAAGATGC	matK-2	Editing
matK.AT.rev	AGCGGCGTATCCTTTGTTGC		Editing
matK.seq	TTTGTTGCCAGAATGCATCTTC		Editing
ndhBfor2	TCATGATCTGGCATGTACAG	ndhB-1,2	Editing
ndhBedIII	ATTTCTTGAAGCTCAATCTCTCCCCCGGAT		Editing
ndhB1seq	TGAACCATATAGCCAAGAGAAACC		Editing
ph11	TTCATCCTTCTTTCACTAATACC	ndhB-	Editing
012		5,4,5,0,7,8,9,11	Editing
P12			
nanBrevz		nanB-10,12	
AndnB			
ndhB3seq			Editing
ndhDstart5	GGTCCAAGTGTATCTTGTC	ndhD-1	Editing
ndhD.A1.3rev			Editing
ndhDstart5	GGTCCAAGTGTATCTTGTC	ndhD-2	Editing
iz	AGGAATTAATTCTAACTCCC		Editing
ndhD.AT.for4	ACGGGATTTATTACTACTTTAGC	ndhD-2,3,4,5	Editing
ndhD.AT.for			Editing
ndhF.AT.for	AAAACCTTCGCCGCATGTGG	ndhF-2	Editing
ndhF.AT.rev	GCATTCGCTGCAATAGGTCG		Editing
ndhGforM	TAGAATGGATTTGCCTGGAC	ndhG-1	Editing
ndhG.AT.rev	AGAATTATTGAAATGAGTTC		Editing
petL.AT.for	AAATTTGGTAATTAACACGG	petL-1	Editing
petL.AT.rev	ATTTCAATTGAAACTTAGGG		Editing
petLseq	GGTAATTAACACGGTAAGGAACTATCG		Editing
psbF.AT.rev	CGTTGGATGAACTGCATTGC	psbE-1, psbF-1	Editing
psbE.AT.for	ACAGGAGAACGTTCTTTTGC		Editing

pebEseq	CACCGGTTTAGCTTACGATGTG		Editing
psbZ.AT.for	GCTTTCCAATTGGCAGTTTTTG	psbZ-1	Editing
psbZ.AT.rev	CCACCAAGAAGACTAATCCAATCC		Editing
rpl23.AT.for	TTACAGACAAAAGTATTCGGTTATTGG	rpl23-1	Editing
rpl23.AT.rev	ATAACCCGGTTGAAGCGTAATG		Editing
rpoA.AT.for	GGACACTACAGTGGAAGTGTGTTG	rpoA-1	Editing
rpoA.AT.rev	CCAGGACCTTGGACACAAATAAG		Editing
rpoB.AT.for	GAAAACCAGTAGGAATATGC	rроВ-1,3	Editing
rpoB.AT.rev	GTCTCCAATTAATATTTCGGCG		Editing
rpoB1seq1	TCCTTTAATGAATTCCCTTGGAAC		Editing
rpoB1seq2	TCCCCACCTACAAGAAAATTG		Editing
rpoB.AT.3for	GAGGTGGGTTCAGAAAAAGG	rpoB-7	Editing
rpoB.AT.3rev	TATCTGTCCTACATTCATGCG		Editing
rpoC1.AT.rev	CGGCTAATTGTTCTCGGATAGC	rpoC1	Editing
rpoC1.AT.for	CCCAAAGTTTTGTGAACAATGTG		Editing
rps12.AT.for	TACAAGACAGCCAATCCGAAAC	rps12-1	Editing
rps12.AT.rev	GTTGATTGGATTTGCACCAATG		Editing
rps14.AT.for	TTATAGGGAGAAGAAGAGGC	rps14-1,2	Editing
rps14.AT.rev	TACCAGCTTGATCTTGTTGC		Editing
T7 withoverlap	TAATACGACTCACTATAGGGAGACAGG	T7 promoter	RNase protection
ndhF footprint	ТААААТGTGACCAATTAACCAACCAACAAAACTACTTGCCTGTCTC	ndhF	RNase protection
ndhF3RACE	GTCGCATCTTCTTATCTGTTC	ndhF	3'RACE
ycf1as3RACE	CGAAAACGAGAGTTACAAATGG	ycf1as	3'RACE

Supplemental Table 2: Full data set of quantitative RT-PCRs to determine the transcript accumulation levels in cp29a- mutant lines

		cp29a-1		ср29а-6			
gene	log2(mutant/WT)	SD-	SD+	log2(mutant/WT)	SD-	SD+	
psbA	-0,308405573	0,01478404	0,01487582	0,093562711	0,04255459	0,04212409	
matK	0,213410958	0,01938086	0,01954235	0,12021388	0,03083574	0,0306896	
rpS12A	0,531690239	0,0663808	0,06387123	0,644154161	0,04833883	0,04936726	
psbK	0,017222846	0,04606198	0,04609677	-0,022767693	0,02563558	0,02571511	
psbl	-0,005469711	0,06821807	0,06977166	-0,222581654	0,0515945	0,05115693	
atpA	-0,367084946	0,06682182	0,0673772	-0,292692633	0,01948995	0,01943572	
atpF	-0,267715948	0,03300013	0,0332586	-0,341388625	0,07061334	0,06803832	
atpH	-0,107714657	0,02676288	0,02706794	-0,147510091	0,06161574	0,06030011	
atpl	-0,217426905	0,01605861	0,01598818	-0,233648421	0,02642356	0,02687418	
rpS2	0,018046473	0,06757473	0,07062984	-0,0654047	0,01727369	0,01745945	
rpoC2	-0,150293411	0,20153942	0,19159103	-0,224824483	0,15744568	0,14287651	
rpoC1	0,047295833	0,1512611	0,14522745	-0,054993896	0,04126455	0,04085919	
rpoB	-0,100316417	0,31848033	0,3396508	0,065831149	0,04363173	0,04255747	
petN	0,149103371	0,05392125	0,05444864	0,07743167	0,05738696	0,05568124	
psbM	0,15158363	0,05693476	0,05809682	0,035228799	0,03904684	0,03877639	
psbD	-0,321883531	0,04254471	0,0425286	-0,030790238	0,12136672	0,12436366	
psbC	-0,210630757	0,10351006	0,10540503	0,037523469	0,04073921	0,04073742	
psbZ	0,079453336	0,00835804	0,00833688	-0,09684972	0,12449021	0,11831917	
rps14	-0,033125219	0,02245161	0,02241754	0,290774926	0,02563488	0,02571099	
psaB	-0,241193537	0,04150941	0,04110315	-0,195215167	0,04407312	0,04429442	
psaA	-0,416966427	0,03649244	0,03635349	-0,171740847	0,12313123	0,11608167	
ycf3	0,300859295	0,05607927	0,05668101	-0,201269046	0,10149144	0,096555	
rps4	0,307280784	0,06610499	0,06916151	0,115917602	0,02201703	0,02214886	
ndhJ	-0,03887838	0,06587592	0,067027	0,007613683	0,24467753	0,22979342	
ndhK	0,050943594	0,01656246	0,01674604	0,132131288	0,1191684	0,11239532	
ndhC	-0,130360945	0,01778333	0,0178125	-0,089006104	0,15387285	0,14079193	
atpE	0,230048813	0,15197693	0,16779084	0	0,13903597	0,13696237	
atpB	0,032077171	0,01539415	0,01537261	-0,032960949	0,13181929	0,12379318	
rbcL	-0,017594895	0,0366103	0,03619888	0,206023104	0,07638347	0,07948386	
accD	0,046162	0,21616346	0,19112171	0,72262421	0,24479733	0,21632904	
psal	0,023364043	0,10929604	0,10182696	-0,054362759	0,00355328	0,00354573	
ycf4	-0,129247068	0,06968094	0,06716335	0,06074097	0,02881204	0,02935022	
cemA	-0,064759941	0,047116	0,04749303	0,186728866	0,01650058	0,01659818	
petA	0,001581193	0,05650531	0,05459648	-0,029828969	0,00886032	0,00883598	
psbJ	-0,018906986	0,02012177	0,02033593	-0,09632326	0,0272173	0,02742314	
psbL	0,054032108	0,03476806	0,03405198	-0,044824096	0,00837072	0,00841431	
psbF	0,206952357	0,2158894	0,24993588	0,115192426	0,04524851	0,04565104	
psbE	-0,071311688	0,03859082	0,03860894	-0,065139323	0,00986995	0,00991599	
petl	-0,028010491	0,03883234	0,03828736	-0,185182292	0,0160937	0,01604089	
petG	-0,211498102	0,02541062	0,02522903	-0,238503994	0,03510587	0,03580378	
psaJ	0,763779691	0,02574896	0,02595166	0,17137016	0,00236332	0,00235979	
rpL33	-0,025535863	0,0333036	0,03370574	0,056011589	0,0112724	0,01129044	
rpS18	0,07638034	0,18907958	0,17948231	0,207970294	0,02501149	0,02463304	

rpL20	0,131925944	0,07457473	0,07264815	-0,308143452	0,06589417	0,068445
clpP1	0,486495225	0,12236073	0,13139575	0,076352739	0,07841435	0,08105609
psbB	-0,251227696	0,04442311	0,04481071	-0,128347889	0,05507769	0,05606247
psbT	-0,165467543	0,02982736	0,030238	0,138611296	0,05593157	0,05496006
psbN	-0,012050104	0,02513407	0,02510576	0,016616281	0,01685183	0,01695135
psbH	-0,131929841	0,02644396	0,02692147	-0,22849194	0,04317011	0,0431875
petB	-0,303287636	0,00675474	0,00674493	-0,081101099	0,04289848	0,04302192
petD	-0,230789068	0,01943513	0,01947918	-0,070224263	0,02625929	0,02666277
rpoA	0,046038435	0,01595019	0,01597726	0,069561265	0,04070504	0,04083132
rpS11	0,08761172	0,03641386	0,03672384	0,144784122	0,06378685	0,06431317
rpL36	0,052028393	0,02203107	0,02184349	0,117113787	0,00932581	0,00934367
rpS8	0,394251839	0,04795939	0,04693499	0,087033672	0,02559715	0,02565035
rpL14	0,250166105	0,06450276	0,06612289	0,054081206	0,07115067	0,0703307
rpL16	0,324651661	0,0317053	0,03143824	0,208342387	0,05250051	0,05122393
rpS3	0,182348368	0,08945457	0,09233599	0,109338423	0,05878661	0,05765654
rpL22	0,235194513	0,05578907	0,05418887	0,315000977	0,04126901	0,04124601
rpS19	-0,015357612	0,09606281	0,09772183	-0,077928612	0,07066856	0,06820275
rpL2	0,308818476	0,01318726	0,01326008	-0,084075631	0,03915935	0,03826957
rpL23	0,305669229	0,14165393	0,14080905	-0,063983936	0,01262681	0,01259567
ycf2.1	0	0,03397167	0,0334639	-0,038455791	0,00996405	0,00991006
ycf15	-0,198651724	0,03696535	0,0371376	0,029073812	0,02515729	0,02493643
ndhB	-0,018755938	0,05377252	0,05442461	-0,067606257	0,06681117	0,06866137
rpS7	-0,145221257	0,03107372	0,03152018	-0,248746672	0,03989009	0,04049651
ycf1	-0,402592043	0,0318257	0,03219067	-0,289965968	0,06624097	0,06417544
ndhF	-0,551391306	0,01664637	0,01658441	-0,327438091	0,09316085	0,09289452
rpL32	0,255940045	0,02217327	0,02224298	0,02908994	0,02216244	0,02229649
ccsA	0,20440134	0,10404229	0,11136342	0,117909613	0,08503234	0,08188703
ndhD	0,098248166	0,04540946	0,04677473	0,500812594	0,1651471	0,16539321
psaC	-0,011338638	0,02063322	0,02086726	-0,0813676	0,00882306	0,00887404
ndhE	-0,383651637	0,06250327	0,06031794	-0,2176313	0,08082534	0,07774404
ndhG	-0,169945487	0,10033964	0,09585357	0,035260195	0,04717738	0,04806869
ndhl	-0,248699429	0,13977635	0,14349788	0,285342712	0,1318692	0,14141658
ndhA	-0,409827066	0,01862744	0,01854095	-0,077049555	0,0142767	0,01434018
ndhH	-0,267277721	0,1124837	0,10888585	0,031236453	0,05105751	0,05038942
rpS15	0,036619797	0,0712452	0,07087126	-0,15108761	0,02534018	0,02537962
18S	0,077374429	0,01242462	0,01241586	-0,037773557	0,01875914	0,01864399
18S	0,032492365	0,01639459	0,01650402	0,134186498	0,01838876	0,01846863
18S	0,001295177	0,024078	0,02399951	0,006918298	0,0147918	0,01491309
QC16S	0,053195244	0,10235864	0,09999512	0,038775818	0,02169949	0,02184592
QC16S	-0,079472866	0,04647324	0,04725979	0,048830631	0,04918109	0,05047213
QC16S	-0,063326767	0,05761224	0,05726447	-0,012080439	0,0337441	0,03423117
QC23S	0,001783324	0,03809949	0,03735972	-0,230727281	0,11245258	0,12161601
QC23S	0,116756883	0,02441273	0,02419174	0,051973391	0,0350072	0,03463573
QC23S	0,203585052	0,02168644	0,02192682	0,250963885	0,04628146	0,04777931

Supplemental Table 3: Run on transcription experiments in *cp29a* **mutants.** Quantification of five independent experiments with wild-type (Col-0) and two with the *cp29a-1* mutant

				Col-0				cp29a			
	Col-0	Col-0	Col-0	Col-0	Col-0	mean	+-SD	cp29a	cp29a	mean <i>c</i>	+-SD
	exp 1	exp 25	exp 26	exp 27	exp 29	(Col-0)	(Col-0)	exp1	exp2	p29a	(cp29)
accD	1,44	0,66	1,22	1,79	2,64	1,55	0,73	1,03	1,61	1,32	0,41
atpB	1,20	1,04	1,45	1,89	2,10	1,54	0,45	1,67	2,17	1,92	0,35
atpF	1,48	1,32	2,30	2,63	2,45	2,04	0,60	1,44	1,85	1,64	0,29
atpH	2,55	1,51	2,01	1,86	1,51	1,89	0,43	1,27	1,03	1,15	0,17
clpP	0,88	0,29	0,29	0,40	0,46	0,46	0,24	0,62	0,56	0,59	0,04
ndhB	1,17	1,78	3,34	2,04	1,84	2,03	0,80	1,64	2,06	1,85	0,30
ndhI	1,77	0,75	1,39	1,37	1,73	1,40	0,41	0,95	1,20	1,08	0,17
petA	1,12	0,94	1,47	1,66	1,66	1,37	0,33	1,44	1,55	1,49	0,07
petB	2,75	1,90	2,83	2,30	1,71	2,30	0,49	1,61	1,94	1,78	0,23
petD	4,13	1,44	1,84	1,16	1,08	1,93	1,27	1,10	0,96	1,03	0,09
psaA	0,70	2,06	3,69	3,09	3,46	2,60	1,23	3,71	4,94	4,33	0,87
psaB	25,54	3,49	3,07	3,61	3,47	7,84	9,90	3,65	4,94	4,30	0,91
psaC	7,31	0,55	0,81	0,76	0,99	2,08	2,92	0,62	0,57	0,60	0,03
psbA	0,90	37,13	26,03	22,09	18,15	20,86	13,21	24,04	24,38	24,21	0,24
psbD	1,52	4,50	6,24	6,35	4,17	4,56	1,96	7,32	9,77	8,54	1,73
psbE	1,96	0,77	0,70	0,76	0,75	0,99	0,54	0,91	1,13	1,02	0,15
psbK	0,58	1,31	2,30	1,70	2,35	1,65	0,74	1,37	1,50	1,44	0,09
rbcL	2,18	3,53	3,84	2,19	1,69	2,69	0,94	1,55	2,22	1,89	0,47
rpoB	1,11	0,47	0,52	0,61	0,81	0,70	0,26	0,87	0,78	0,82	0,06
rps14	1,75	2,92	2,44	3,56	3,82	2,90	0,84	2,88	2,85	2,86	0,02
rps16	0,47	1,05	1,49	2,03	3,03	1,62	0,98	1,53	0,93	1,23	0,43
rps4	2,23	1,84	1,74	1,96	2,47	2,05	0,30	2,84	1,39	2,12	1,02
rps8	0,85	0,32	0,39	0,57	0,70	0,57	0,22	0,72	0,83	0,77	0,08
rrn16	21,96	17,61	13,59	13,09	16,33	16,51	3,58	21,42	18,08	19,75	2,36
trnK1	4,12	2,73	3,73	5,68	3,73	4,00	1,07	3,79	4,09	3,94	0,21
trnK2	1,60	1,15	1,96	3,54	4,31	2,51	1,35	2,31	1,88	2,10	0,31
trnL	1,82	3,87	4,28	5,95	5,38	4,26	1,60	3,18	1,95	2,56	0,87
ycf1	1,06	1,06	0,99	1,01	1,24	1,07	0,10	1,36	0,67	1,01	0,49
ycf10	0,70	0,93	2,14	1,66	1,72	1,43	0,60	1,37	0,89	1,13	0,34
ycf2	1,70	0,40	0,35	0,66	1,14	0,85	0,57	0,83	1,33	1,08	0,35
ycf5	1,46	0,68	1,56	2,02	3,11	1,76	0,89	1,99	1,57	1,78	0,30

Shown are differential values for each transcript, calculated by dividing the sum of the spot intensities of all transcripts analyzed by the spot intensity of each single transcript. exp = independent experiments

Supplemental Table 4: Quantitative RT-PCRs amplifying spliced and unspliced forms of the 12 chloroplast intron containing mRNAs in cp29a and cp31a mutant lines. Values were obtained by dividing quantities measured for the mutants with the ones measured for the wild-type (WT). Data were normalized to cytosolic 18S rRNA.

PCR product	cp29a-1			ср29а-6			cp31a-1			cp31a-3		
	ratiomutant/WT	STD+	STD-									
165	0,8727	0,0282	0,0273	1,0572	0,0210	0,0208	0,7308	0,0146	0,0142	0,8533	0,0764	0,0675
235	0,9611	0,0722	0,0632	0,9275	0,0722	0,0625	1,2152	0,2257	0,1807	1,7317	0,0791	0,0753
18Snucleus	1,0000	0,0190	0,0187	1,0000	0,0317	0,0311	1,0000	0,0213	0,0207	1,0000	0,0213	0,0209
atpF	0,8806	0,0155	0,0151	0,8855	0,0364	0,0350	0,5959	0,0120	0,0119	0,8738	0,0435	0,0419
atpFintron exon2	0,9799	0,1059	0,0901	0,8429	0,0496	0,0450	0,6467	0,2060	0,1409	0,8644	0,0309	0,0300
rpoC1	0,8907	0,0686	0,0612	0,9349	0,0306	0,0302	0,6717	0,1917	0,1845	0,9555	0,0842	0,0780
rpoC1intron exon2	0,9236	0,0127	0,0124	0,9684	0,1455	0,1133	0,4909	0,0452	0,0387	0,7199	0,0665	0,0641
ycf3 exon2 exon3	0,7119	0,4110	0,4049	1,1257	0,0875	0,0871	0,6252	0,1601	0,1317	1,3018	0,2477	0,2281
ycf3 intron2 exon3	0,8227	0,0682	0,0663	1,0254	0,1549	0,1331	0,5388	0,0716	0,0600	0,7980	0,0255	0,0246
ycf3 exon1 exon2	0,8105	0,1191	0,0984	0,9740	0,0332	0,0319	0,3051	0,0214	0,0197	0,4320	0,0928	0,0792
ycf3 intron1 exon2	0,7546	0,1551	0,1121	0,8243	0,0430	0,0414	0,8365	0,1251	0,1115	1,2454	0,0219	0,0217
clpPexon2 exon3	1,2360	0,1877	0,1814	0,9199	0,0541	0,0538	0,8614	0,0213	0,0213	1,4173	0,0557	0,0555
clpP intron2 exon3	1,1008	0,0138	0,0134	1,0507	0,0665	0,0630	0,6604	0,0729	0,0687	0,9680	0,0071	0,0070
clpP exon1 exon2	1,1211	0,0418	0,0390	1,0157	0,0264	0,0251	1,5097	0,1494	0,1265	1,5724	0,0392	0,0382
clpP intron1 exon2	0,9329	0,2486	0,2082	1,2235	0,0471	0,0451	0,7408	0,1410	0,1040	0,8943	0,0374	0,0356
petB	0,7354	0,0124	0,0124	0,8373	0,0370	0,0360	0,8454	0,1073	0,0896	0,6555	0,0175	0,0168
petBintron exon2	0,7660	0,0105	0,0102	0,8150	0,0512	0,0466	0,6697	0,0772	0,0645	0,7140	0,0282	0,0265
petD	0,8294	0,1345	0,1283	1,1026	0,0545	0,0540	0,7577	0,2665	0,2040	0,5173	0,5348	0,4551
petDintron exon2	0,8139	0,0338	0,0336	0,8762	0,0337	0,0314	0,6058	0,0441	0,0409	0,7382	0,2002	0,1686
rpl16	1,1823	0,1165	0,1040	1,0234	0,0485	0,0461	0,6157	0,1307	0,0939	1,0680	0,1169	0,1142
rpl16intron exon2	1,1201	0,0310	0,0298	1,2543	0,0156	0,0153	0,6880	0,0975	0,0941	1,1508	0,0525	0,0493
rpl2	0,9288	0,0247	0,0239	1,0241	0,0413	0,0397	0,6247	0,0876	0,0703	0,9810	0,0506	0,0479
rpl2intron exon2	1,0776	0,0566	0,0528	1,0899	0,0432	0,0416	0,6906	0,0165	0,0161	1,1150	0,0110	0,0109
ndhB	0,8799	0,0182	0,0178	1,0432	0,0451	0,0442	0,3799	0,0247	0,0243	0,6170	0,0268	0,0253
ndhBintron exon2	1,1804	0,0164	0,0160	1,3764	0,0916	0,0890	0,8843	0,0206	0,0203	0,9513	0,0822	0,0791
rps12 exon2 exon3	1,0139	0,0638	0,0634	0,8713	0,0753	0,0714	0,7006	0,0787	0,0762	0,8590	0,1613	0,1354
rps12 intron2 exon3	0,8859	0,0427	0,0393	0,9551	0,0286	0,0279	0,6936	0,0151	0,0147	0,6768	0,0150	0,0146
rps12 exon1 exon2	1,5027	0,0754	0,0705	1,3563	0,0259	0,0257	0,8103	0,0433	0,0420	1,5826	0,0420	0,0404
rps12 intron1 exon2	0,8149	0,0828	0,0800	0,8280	0,0530	0,0493	0,4355	0,0229	0,0214	0,7407	0,0278	0,0260
ndhA	0,7367	0,0179	0,0174	0,7929	0,0179	0,0172	0,3948	0,0193	0,0191	0,4142	0,0132	0,0129
ndhAintron exon2	0,8606	0,0332	0,0321	0,9710	0,0411	0,0392	0,4344	0,0581	0,0556	0,5289	0,0135	0,0134