
1 Estimation of the reproduction number

In the early stages of an epidemic, when the effect of increasing incidence on the deple-

tion of susceptibles is small, the growth of the epidemic is exponential in nature, with

rate r[1]-[4]. Assuming the classical SEIR (susceptible-infectious-recovered) transmis-

sion model, the reproduction number, R0, is determined from

R0 =

(

1 +
r

γ

)

(

1 +
r

κ

)

, (1)

where 1/κ and 1/γ are the latent and infectious periods, respectively.

Given M incidence measurements, ydata
i

, at time points, ti, separated by ∆t (i = 1, ..., M),

the best fit exponential rise r is determined by minimizing the Poisson negative log

likelihood[5]:

− logL = −

M
∑

i=1

(

ydata
i

log(ypred
i

) − ypred
i

)

, (2)

where

ypred
i

=
erti

(

er∆t − 1
)

(ertM − ert1)
. (3)

The s standard deviation upper and lower limits on r are determined from the

values of r that yield

− logL(r) = − logLmin + s2/2, (4)

where − logLmin is the minimum value of − logL[5].
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1.1 Determination of exponential growth phase

The standard deviation width of an epidemic curve consisting of N incidence measure-

ments, ydata
i

, at ti different time points (i = 1, ..., N) is

σt =

√

∑

N

i=1(ti − t̄)2ydata
i

∑

N

i=1 ydata
i

, (5)

where

t̄ =

∑

N

i=1 tiy
data
i

∑

N

i=1 ydata
i

. (6)

In this analysis we select the exponential rise portion of the epidemic curve by

identifying incidence data points at the beginning of the epidemic that are sufficiently

many standard deviations away from the time of peak incidence (denoted by tpeak)

that a fit of an exponential curve to simulated data in that region provides unbiased

estimates of the true exponential rise. The exponential rise region is thus the region

where ti < (tpeak − fσt).

In order to determine the optimal cut off value, f , we perform exponential rise

fits to simulated data incidence curves from an SEIR (susceptible-exposed-infectious-

recovered) model as explained below. Then we choose the value of f that provides

unbiased estimates of the true exponential rise.

We carry out a simulation study to generate synthetic data incidence curves from

the SEIR transmission model. That is, to estimate the time variation of the incidence,

ypred(t), we use a compartmental model that simulates the number of susceptible (S),

exposed (E), infectious (I), and recovered (R) individuals in the population using the
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coupled deterministic ordinary non-linear differential equations ([1]):

S ′ = −βSI/N (7)

E ′ = βSI/N − κE

I ′ = κE − γI

R′ = γI,

where 1/κ and 1/γ are the average latent and infectious periods, respectively, β = R0γ

is the transmission rate, and population size is given by N = S + E + I + R. We

assume that 1/γ = 1.5 days and 1/κ = 1.5 days, which are within the range of mean

estimates for the 2009 influenza pandemic [6, 7, 8, 9].

We simulate the incidence curve,
∑

t
ypred(t), under various R0 hypotheses from

1.1 to 2.0 in steps of 0.1, and then scale
∑

t
ypred(t) to simulate 1, 000 cases detected

during the epidemic. We then obtain the simulated data epidemic incidence curve by

random Poisson variation of the number of detected cases around the average within

each time bin.

The exponential growth phase consists of data points at the beginning of the epi-

demic incidence curve that are at least f standard deviations away from the epidemic

peak. Values of f between 0.5 to 2.0 in increments of 0.25 are examined, and the data

simulation and fitting procedure is repeated 1000 times for each value of f . The opti-

mal value of f is the one that is as low as possible, while still providing an unbiased

estimate of the initial exponential growth rate, r. The estimated R0 is determined

from the r estimate using Equation 1.

We found that f >= 1.0 provides estimates of the true R0 unbiased to within one
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standard deviation, and within 5% of the true R0.

In this analysis, we thus determine the exponential rise portion of the epidemic

curve by selecting points that are at least 1.0 standard deviation from the epidemic

peak.
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