

## Fig. S1. Growth curve of *B. subtilis* wild type cells in the minimal medium and in

**LB medium.** 3610 cells were inoculated either in the minimal medium (panel A) or LB medium (panel B) in 24-well plates and grown at 37°C with shaking. Cell optical density of the cultures was measured periodically during a period of 24 hours. RE represents addition of 1% of the root exudate in the medium.



Fig. S2. Tomato root exudates induce expression of the matrix genes and the *sdpABC* operon in the minimal medium. Panels A and B show luciferase activities for the two wild type reporter strains harboring either  $P_{epsA}$ -*lux* (strain ALM89 in A) or  $P_{tapA}$ -*lux* (strain ALM90 in B) that were grown in the minimal medium with (squares in red) or without (diamonds in blue) addition of 1% root exudate. Panel C shows luciferase activities of the wild type (CY136) and the  $\Delta kinD$  mutant (CY137) cells that harbored the  $P_{sdpA}$ -*lux* reporter fusion in the presence (squares in red for WT and crosses in purple for  $\Delta kinD$ ) or absence (diamonds in blue for WT and triangles in green for  $\Delta kinD$ ) of 1% root exudate. The luciferase activities were presented in arbitrary units (AU).



Fig. S3. Pellicle induction of the wild type but not the  $\Delta kinD$  mutant cells in response to tomato root exudates in the minimal medium. Cells were inoculated to the minimal medium in 6-well plates and were incubated at 22°C for three days. Wild type cells (3610) formed pellicles in the minimal medium with the addition of 1% root exudates whereas the  $\Delta kinD$  mutant cells (RL1927) did not respond to the addition of root exudates in pellicle induction.



#### Fig. S4. Response of the matrix genes to the tomato root exudate depend on

**KinD.** Panels A and B show luciferase activities for the two wild type reporter strains harboring either  $P_{epsA}$ -*lux* (strain ALM89 in A) or  $P_{tapA}$ -*lux* (strain ALM90 in B) and the two  $\Delta kinD$  mutant strains harboring the same reporters (strain CY414 in A and strain CY415 in B) that were grown in LB shaking culture. Symbols are as follows: 3610, - root exudate (diamonds in blue);  $\Delta kinD$ , - root exudate (squares in red);  $\Delta kinD$ , + root exudate (triangles in green). RE represents addition of 1% of the root exudate in the medium. The luciferase activities were presented in arbitrary units (AU).



### Fig. S5. L-Malic acid stimulates early pellicle formation by *B. subtilis* in MSgg.

3610 cells were inoculated into 9-ml of MSgg liquid medium in a 6-well plate.  $_{\perp}$ -malic acid was added at a final concentration of 5 mM in one sample and absent from the other. Cell samples were incubated at 22°C. Images of the pellicles were taken 48 h and 72 h after inoculation.

#### Supplemental methods

Strain constructions. To construct the kinD mutant strains that bear either the PepsAlux or the P<sub>tapA</sub>-lux reporter fusion, the DNA fragment containing the insertional deletion of kinD (\(\Lambda kinD::mls)) was introduced into ALM89 and ALM90 by SSP1 phage-mediated transduction, resulting in strains CY414 and CY415, respectively. To construct strains that express fusion proteins between GFP and the wild type KinD or the CACHE domain mutant of KinD, the promoter sequence and the coding region of the kinD gene were amplified by PCR using the chromosomal DNA of CY185 or CY186 as the template. Note that CY186 contains the CACHE domain point mutations in the kinD gene. PCR products ( $P_{kinD}$  -kinD<sup>Wt</sup> and  $P_{kinD}$  -kinD<sup>Mut</sup>) were digested by EcoRI/BamHI and ligated into the plasmid pYC121 pre-digested with the same two restriction enzymes, generating the recombinant plasmids pCY393 and pCY394, respectively. The plasmids pCY393 and pCY394 were first introduced into PY79 by transformation. Integration of P<sub>kinD</sub>-kinD-gfp (wt or mut) via double crossover recombination at the amyE site was carefully verified. The DNA fragment containing amyE:: PkinD-gfp (wt or mut) was introduced into RL4569 (*\(\Lambda kinD::mls\)*) by SSP1 phage-mediated transduction, generating strains CY 416 and CY417.

**Immunoblot analysis.** 20-ml of log phase cells (O.D.<sub>600</sub>=1.2) were harvested and washed with 5 ml of cold phosphate buffer (25 mM sodium phosphate buffer, pH7.2, 200 mM NaCl, 10% glycerol). Cells were resuspended in 2 ml of the same phosphate buffer (supplemented with 200  $\mu$ g/ml freshly made lysozyme, 1 mM DTT, 1 mM PMSF) and incubated on ice for 30 min. Samples were centrifuged and the pellets containing

cell debris and membrane fractions were resuspended with 2 ml of cold phosphate buffer supplemented with 6M urea. Treated samples were centrifuged again. The supernatants from the cytoplasmic fraction and the urea-treated membrane fraction were combined and were applied in western immunoblot assays. Western immunoblot was done similarly to a protocol described previously (Chai *et al.*, 2009). The fusion proteins were detected by commercially available antibodies against GFP (Abcam, MA, USA).

| No  | . Hit  | Feature                              | Prob  | P-value | Query<br>HMM | Template<br>HMM |
|-----|--------|--------------------------------------|-------|---------|--------------|-----------------|
| 1   | 3fos_A | sporulation histidine kinase         | 100.0 | 0       | 1-214        | 1-214           |
| 2   | 3lif_A | putative diguanylate cyclase         | 99.9  | 7.3E-28 | 13-186       | 5-193           |
| 3   | 3c8c_A | methyl-accepting chemotaxis protein  | 99.9  | 7.7E-27 | 7-183        | 2-183           |
| 4   | 3e4o_A | C4-dicarboxylate sensor protein DctB | 99.8  | 4.7E-23 | 4-188        | 43-233          |
| 5   | 3lic_A | sensor protein with PDC fold         | 99.8  | 4.7E-23 | 4-176        | 7-197           |
| 6   | 3li9_A | hypothetical histidine kinase        | 99.8  | 1.2E-21 | 4-184        | 7-213           |
| 7   | 3lib_A | hypothetical histidine kinase        | 99.8  | 4.0E-21 | 4-192        | 6-220           |
| 8   | 3by9_A | histidine kinase sensor domain       | 99.7  | 5.4E-21 | 2-188        | 3-192           |
| 9   | 3lid_A | putative sensory BOX/ggdef protein   | 99.7  | 2.0E-20 | 5-191        | 9-220           |
| 10  | 1p0z_A | sensor kinase CitA                   | 99.2  | 9.0E-15 | 27-149       | 6-128           |
| 11  | 3cwf_A | alkaline phosphatase                 | 98.0  | 4.7E-09 | 22-149       | 7-117           |
| 12  | 3b42_A | methyl-accepting protein             | 97.7  | 5.8E-08 | 5-151        | 1-131           |
| 13  | 2qkp_A | uncharacterized protein              | 97.5  | 2.6E-08 | 54-152       | 18-136          |
| 14  | 3b47_A | methyl-accepting protein             | 97.4  | 2.0E-07 | 5-147        | 1-126           |
| *15 | 3c38_A | autoinducer 2 sensor kinase LuxQ     | 97.4  | 6.8E-08 | 4-181        | 11-198          |
| 16  | 3luq_A | sensor protein with PAS domain       | 97.2  | 1.3E-07 | 55-146       | 3-113           |
| 17  | 2gj3_A | nitrogen fixation regulator          | 96.8  | 3.7E-07 | 54-146       | 4-116           |
| 18  | 3lyx_A | sensory BOX/ggdef domain             | 96.6  | 4.3E-07 | 53-146       | 5-118           |
| 19  | 3icy_A | sensor protein; sensory kinase       | 96.5  | 1.1E-06 | 54-146       | 3-117           |
| 20  | 3cax_A | uncharacterized protein              | 96.4  | 1.0E-06 | 54-151       | 238-349         |
| 21  | 2z6d_A | phototropin-2; PAS-fold              | 95.7  | 2.1E-06 | 51-146       | 2-120           |
| 22  | 3ewk_A | sensor protein; PAS domain           | 95.7  | 3.0E-06 | 70-175       | 2-137           |

### Table S1. An HHpred search based on the CACHE domain of KinD.

\* The star indicates the hit of LuxQ based on HHpred search of the CACHE domain of KinD.

| categories   | compounds                                                                                                   |
|--------------|-------------------------------------------------------------------------------------------------------------|
| amino acid   | glycine<br>alanine<br>aspartic acid<br>arginine<br>glutamic acid<br>valine<br>threonine<br>trimethylglycine |
| organic acid | citric acid<br>malic acid<br>succinic acid<br>fumaric acid<br>γ-aminobutanoic acid                          |
| sugar        | glucose<br>fructose<br>maltose<br>xylose<br>ribose<br>inositol                                              |

### Table S2. Small chemical molecules identified in tomato root exudates.

| name             | genetype                                                                                                                                                | reference                                    |
|------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|
| E.coli           |                                                                                                                                                         |                                              |
| DH5α             | an <i>E. coli</i> strain used for molecular cloning                                                                                                     | Invitrogen                                   |
| RL1936           | DH5 $\alpha$ derivative containing the plasmid pDG780. Amp <sup>R</sup> . Kan <sup>R</sup>                                                              | Losick lab collection                        |
| YC311            | DH5 $\alpha$ derivative containing the plasmid pYC121, Amp <sup>R</sup> , Cm <sup>R</sup>                                                               | (Chai <i>et al.</i> , 2008)                  |
| YC317            | DH5 $\alpha$ derivative containing the plasmid pYC127, Amp <sup>R</sup> , Cm <sup>R</sup>                                                               | (Chai et al., 2008)                          |
| CY393            | DH5 $\alpha$ derivative containing the plasmid pCY393. Amp <sup>R</sup> Cm <sup>R</sup>                                                                 | This study                                   |
| CY394            | DH5g derivative containing the plasmid $pCV304$ Amp <sup>R</sup> Cm <sup>R</sup>                                                                        | This study                                   |
| VC 422           | Difference of the plasmid pC $1394$ , Amp, Cin                                                                                                          |                                              |
| 10433<br>VC424   | DH50 derivative containing the plasmid $pYC240$ , Amp , Spc                                                                                             | This study                                   |
| 10434<br>DI 1027 | DH50 derivative containing the plasmid pTC241, Amp , Spc                                                                                                | Cuérout Eloury et al. 1006                   |
| TMN387           | DH5g derivative containing the plasmid pMG 1002, Spc (                                                                                                  | a dift of Norman T                           |
| 111111307        | Drist derivative containing the plasmid platez, Amp                                                                                                     | a gin or Norman T                            |
| B. subtilis      |                                                                                                                                                         |                                              |
| PY79             | laboratory strain used as a host for transformation                                                                                                     |                                              |
| 3610             | undomesticated wild strain capable of forming robust biofilms                                                                                           | (Branda <i>et al</i> ., 2001)                |
| ALM89            | sacA:: P <sub>epsA</sub> -lux in 3610, Cm <sup>R</sup>                                                                                                  | (McLoon <i>et al</i> ., 2011                 |
| ALM90            | sacA:: Р <sub>tapA</sub> -lux in 3610, Ст <sup>к</sup>                                                                                                  | (McLoon et al., 2011                         |
| CY1              | $\Delta epsA-O$ in 3610, Kan <sup>R</sup>                                                                                                               | This study                                   |
| CY49             | amyE::P <sub>hyspank</sub> -mKate2 in 3610, Cm <sup>R</sup>                                                                                             | This study                                   |
| CY78             | $\Delta kinD$ , amyE:: kinD <sup>wt</sup> in 3610, MIs <sup>R</sup> , Spc <sup>R</sup> , Cm <sup>R</sup>                                                | This study                                   |
| CY79             | $\Delta kinD$ , amyE:: kinD <sup>mut</sup> in 3610, MIs <sup>R</sup> , Spc <sup>R</sup> , Cm <sup>R</sup>                                               | This study                                   |
| CY126            | $\Delta kinC$ , $\Delta kinD$ , $amyE$ :: P <sub>hyspank</sub> -mKate2 in 3610, MIs <sup>R</sup> , tet <sup>R</sup> , Cm <sup>R</sup>                   | This study                                   |
| CY127            | $\Delta kinD$ , amyE::P <sub>hyspank</sub> -mKate2 in 3610, MIs <sup>R</sup> , Cm <sup>R</sup>                                                          | This study                                   |
| CY136            | sacA:: P <sub>sdpA</sub> -lux in 3610, Cm <sup>R</sup>                                                                                                  | This study                                   |
| CY137            | ∆ <i>kinD</i> , sacA:: P <sub>sdpA</sub> -lux in 3610, Mls <sup>R</sup> , Cm <sup>R</sup>                                                               | This study                                   |
| CY185            | ∆ <i>kinD</i> , <i>amyE::kinD<sup>wt</sup>, sacA</i> :: P <sub>sdpA</sub> - <i>lux</i> in 3610, Mls <sup>R</sup> , Spc <sup>R</sup> , Cm <sup>R</sup> _ | This study                                   |
| CY186            | $\Delta kinD$ , $amyE$ :: $kinD^{mut}$ , $sacA$ :: $P_{sdpA}$ - $lux$ in 3610, MIs <sup>R</sup> , Spc <sup>R</sup> , Cm <sup>R</sup>                    | This study                                   |
| CY189            | $\Delta kinD$ , $amyE$ ::P <sub>hysnank</sub> -mKate2, 317° $\Omega amyE$ :: $kinD^{wt}$ in 3610, Mls <sup>R</sup> , Cr                                 | n <sup>R</sup> , Spc <sup>R</sup> This study |
| CY190            | $\Delta kinD$ , amvE::P <sub>hysnant</sub> -mKate2, 317° $\Omega$ amvE::kinD <sup>mut</sup> in 3610. MIs <sup>R</sup> , C                               | m <sup>R</sup> .Spc <sup>R</sup> This study  |
| CY204            | $\Delta kinA$ , amvE::P <sub>hyspank</sub> -mKate2 in 3610. MIs <sup>R</sup> . Cm <sup>R</sup>                                                          | This study                                   |
| CY205            | $\Delta kinB. amvE::P_{hyspank}-mKate2 in 3610. KanR. CmR$                                                                                              | This study                                   |
| CY206            | $\Delta kinA$ , $\Delta kinB$ , $amvE$ ::Physical mKate2 in 3610. MIs <sup>R</sup> , Kan <sup>R</sup> , Cm <sup>R</sup>                                 | This study                                   |
| CY207            | $\Delta kinC$ , $amvE$ :: P <sub>buggent</sub> -mKate2 in 3610. MIs <sup>R</sup> , Cm <sup>R</sup>                                                      | This study                                   |
| CY209            | $\Delta epsA-O$ . $amvE::P_{hvspark}-mKate2$ in 3610. Kan <sup>R</sup> . Cm <sup>R</sup>                                                                | This study                                   |
| CY414            | $\Delta kinD$ sacA. $P_{and} - lux$ in 3610 MIs <sup>R</sup> Cm <sup>R</sup>                                                                            | This study                                   |
| CY415            | $\Delta kinD$ , sacA:: P <sub>tops</sub> -lux in 3610. MIs <sup>R</sup> , Cm <sup>R</sup>                                                               | This study                                   |
| CY416            | $\Delta kinD$ amv $F''PkinD$ kin <sup>Wt</sup> -GFP MIs <sup>R</sup> Cm <sup>R</sup>                                                                    | This study                                   |
| CY417            | $\Delta kinD$ amy E: PkinD kin <sup>Mut</sup> -GEP MIs <sup>R</sup> Cm <sup>R</sup>                                                                     | This study                                   |
| RI 4562          | $\Delta kinA$ in 3610 MIs <sup>R</sup>                                                                                                                  | (McLoon et al. 2011)                         |
| RI 4563          | $\Delta kinB$ in 3610 Kan <sup>R</sup>                                                                                                                  | (McLoon et al., 2011)                        |
| RI 4262          | $\Delta kinC$ in 3610 MIs <sup>R</sup>                                                                                                                  | (McLoon et al., 2011)                        |
| RI 4552          | $\Delta kinD$ in 3610. Tet <sup>R</sup>                                                                                                                 | (McLoon et al., 2011)                        |
| RI 4569          | $\Delta kinD$ in 3610, MIs <sup>R</sup>                                                                                                                 | (McLoon et al. 2011)                         |
| RI 4573          | $\Delta kinA \Delta kinB in 3610 Mls^{R} Kan^{R}$                                                                                                       | (McLoon et al. 2011)                         |
| RI 5273          | $\Delta kinC$ $\Delta kinD$ in 3610 MIs <sup>R</sup> Tet <sup>R</sup>                                                                                   | (McLoon et al. 2011)                         |
| VOTEA            | $24790 \text{ am}(\text{Fr})^{\text{m}} \text{R} \text{ in } \text{D}/\text{Z}$                                                                         | This study                                   |

| Table S3. | Strains | used i | n this study. |  |
|-----------|---------|--------|---------------|--|
|           |         |        |               |  |

## Table S4. Primers used in this study.

| eps-KO-P1        | 5'-GCTGTGGCATCAAGCACATCT-3'                           |  |
|------------------|-------------------------------------------------------|--|
| eps-KO-P2        | 5'-CAATTCGCCCTATAGTGAGTCGTAACTCATATTCTCATTCAT         |  |
| eps-KO-P3        | 5'-CCAGCTTTTGTTCCCTTTAGTGAGTCCTGCTCACATGTGAGCGGAA-3'  |  |
| eps-KO-P4        | 5'-GGTCTAGGATGAAGAGCCGCGATA-3'                        |  |
| kinD-F1          | 5'-GTACGAATTCCAGTGATTTTTCTGTCATGTCTC-3'               |  |
| <i>kinD</i> -MF1 | 5'-AACCTGGCCGACCTATTAGATTCTATAAAAGCAAAGG-3'           |  |
| <i>kinD</i> -MR1 | 5'-CCTTTGCTTTTATAGAATCTAATAGGTCGGCCAGGTT-3'           |  |
| <i>kinD</i> -R1  | 5'-GTACGGATCCTATGATGCGGGATACGGGGAGGG-3'               |  |
| mkate2-F1        | 5'-GTACAAGCTTAAGGAGGAACTACTATGGATTCAATAGAAAAGGTAAG-3' |  |
| kinD-R2          | 5'-GTACGGATCCTGATGCGGATACGGGGAGGGTGA-3'               |  |
| mkate2-R1        | 5'-GTACGGATCCTTATCTGTGCCCCAGTTTGCT-3'                 |  |
|                  |                                                       |  |

# Table S5. Plasmids used in this study.

| Plasmid | feature                                                                                                                                     | reference                  |
|---------|---------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|
| pCY393  | amyE:: P <sub>kinD</sub> kin <sup>wt</sup> -gfp, cm <sup>R</sup> , amp <sup>R</sup>                                                         | this study                 |
| pCY394  | amyE:: P <sub>kinD</sub> kin <sup>mut</sup> -gfp, cm <sup>R</sup> , amp <sup>R</sup>                                                        | this study                 |
| pDG780  | a plasmid for Campbell integration in <i>B. subtilis, kan<sup>R</sup>, amp<sup>R</sup></i>                                                  | Losick lab collection      |
| pDG1662 | a plasmid for integration at amyE in B. subtilis, cm <sup>R</sup> , amp <sup>R</sup> (Gué                                                   | rout-Fleury et al., 1996)  |
| pMKate2 | contains a gene encoding the far-red fluorescent proteins, $amp^R$                                                                          | Evrogen                    |
| pYC121  | contains a promoter-less <i>gfp</i> for <i>amyE</i> integration, <i>cm</i> <sup>R</sup> , <i>amp</i> <sup>R</sup>                           | (Chai et al., 2008)        |
| pYC127  | contains P <sub>hyspank</sub> -gfp, an amyE integration vector, cm <sup>R</sup> , amp <sup>R</sup>                                          | (Chai et al., 2008)        |
| pYC240  | contains $amyE$ :: $P_{kinD}$ -kin <sup>Wt</sup> , an $amyE$ integration vector, spec <sup>R</sup> , $amp$                                  | p <sup>R</sup> this study  |
| pYC241  | contains <i>amyE</i> :: <i>P<sub>kinD</sub>-kin<sup>Mut</sup></i> , an <i>amyE</i> integration vector, <i>spec</i> <sup>R</sup> , <i>an</i> | np <sup>R</sup> this study |

#### **Supplemental references**

- Branda, S. S., J. E. Gonzalez-Pastor, S. Ben-Yehuda, R. Losick & R. Kolter, (2001) Fruiting body formation by *Bacillus subtilis*. *Proc. Natl. Acad. Sci. USA* **98**: 11621-11626.
- Chai, Y., F. Chu, R. Kolter & R. Losick, (2008) Bistability and biofilm formation in *Bacillus subtilis. Mol. Microbiol.* **67**: 254-263.
- Chai, Y., R. Kolter & R. Losick, (2009) Paralogous antirepressors acting on the master regulator for biofilm formation in *Bacillus subtilis*. *Mol. Microbiol.* **74**: 876-887.
- Guérout-Fleury, A. M., N. Frandsen & P. Stragier, (1996) Plasmids for ectopic integration in *Bacillus subtilis. Gene* **180**: 57-61.
- McLoon, A. L., I. Kolodkin-Gal, S. M. Rubinstein, R. Kolter & R. Losick, (2011) Spatial regulation of histidine kinases governing biofilm formation in *Bacillus subtilis*. *J. Bacteriol.* **193**: 679-685.