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The Algorithm to solve P:

Notations:

Mi: map i, i=1,2

pi
j: grid point pj in map i.

Λ i
j: LRD at grid point pj in map i.

m(pi
j, pk

l): A match pair of grid points pi
j (from map i) and pk

l (from map k), i~=k

O(pi
j) or  Oi

j: O-XYZ Cartesian reference frame at grid point pi
j

If S is a set, S(i) is the i-th element of S

X’: transpose of X

The Algorithm to solve P  
Inputs: Volumetric density maps M1, M2

1. Compute Cartesian frame sets for M1 and M2:

O(M1):{O
1
1, O

1
2, …}=compute_frame_set(M1)

O(M2):{O
2
1, O

2
2, …}=compute_frame_set(M2)

2. Compute LRD sets for M1 and M2:

Λ(M1)={Λ
1
1, Λ

1
2, …}=compute_LRD_set(M1, O(M1))

Λ(M2)={Λ
2
1, Λ

2
2, …}=compute_LRD_set(M2, O(M2))

3. For a given LRD Λ
1
i in Λ(M1), find k closest LRDs from Λ(M2): 

Λ
1
i_closest={Λ

2
i1,Λ

2
i2, ...,Λ

2
ik}, Λ

2
j Λ(M2);

Let m(p
1
i,p

2
ij): {Λ

1
i, Λ

2
ij} define a match pair, 

 Λ
2
ij is the j-th element in Λ

1
i_closest

4. For every match pair m(p
1
a,p

2
b), obtained in step 3, find the 

corresponding 6DOF(p
1
a,p

2
b)=find_dof([O

1
a p

1
a], [O

2
b p

2
b])

5. Cluster the 6DOFs obtained in step 4.

6. For each large cluster Ci, from step 5, construct an un-weighted 

graph Gi. A node in Gi is a match pair from Ci. An edge exists between 

two nodes in Gi if inter-point distances, corresponding to the match 

pairs in the two nodes, are preserved. Find the largest clique S(Gi) in 

Gi and return the match pairs in S(Gi) as the rigidly conserved domain 

pair.

Fig. S1. Outline of the algorithm to solve P from (Saha et al, 2010)



(Notations: See Fig. S1)

Algorithm compute_frame_set

Input: map M

1. At a grid location pi of M, 

Cartesian reference frame Oi = compute_frame(M, pi)

2. Return {O1, O2, …}

Algorithm compute_frame

Inputs: map M, grid location po in M

S1. Sample k points {p1, p2, ..., pk} uniformly in the 

neighborhood (within ro radius) of po

S2. Let vi be the density value at pi in M

Define matrix Pkx3 as [w1*v1*(p1-po); w2*v2*(p2-po); ....]

 - i-th row of Pkx3 is wi*vi*(pi-po)

 - wi is a Gaussian wt: wo1*exp(-(wo2*|po-pi|
2
))

S3. [U3x3 D3xk V3xk]=SVD(Pkx3) 

S4. Return the Cartesian reference frame at po, 

O-XYZ(po): [Ox Oy Oz]=U3x3

Fig. S2. Outline of algorithm for computing local Cartesian reference frames in Step 1 of Fig. 

S1, from (Saha et al, 2010)



(Notations: See Fig. S1)

Algorithm compute_LRD_set

Input: Map M, Cartesian frame set: {O1, O2, …} (Oi is the frame at pi in M)

1. At a grid location pi of M, LRD Λi = compute_LRD(M, pi, Oi)

2. Return {Λ1, Λ2, …}

Algorithm compute_LRD

Inputs: Map M, grid location po in M, Cartesian frame O(po):[Ox Oy Oz] at po

S1. Let H be a gradient histogram with m bins: {b1,b2,..b8*26}

    S1.1 divide the region around po into 8 equal quadrants: {q1, q2, …, q8}, 

   in the local frame O(po). Let each quadrant have 26 representative 

   directions: D:{d1, d2, …, d26}={{[-1/0/1, -1/0/1, -1/0/1]}-[0, 0, 0]}. 

   di is finally normalized.

    S1.2 bin bi corresponds to {q(ceil(i/26)), d(1+i%26)}

    S1.3 initialize bi=0

S2. Sample k points {p1, p2, ...pk} uniformly in the neighborhood 

(withen r radius) of po

    S2.1 let Vi=O(pi)x 

    S2.2 let Vi2=(O(po).Vi)’

    S2.3 let pi2=(O(po).(pi-po))’

    S2.4 find a bin bi={qa, db}, such that pi2 is in qa and db is the 

   direction from D closest to Vi2.

    S2.5 let bi+=vi.wi

         -vi: magnitude of Vi or D3xk(1) obtained from step S3 in Fig. S2

         -wi: Gaussian wt: wo1.exp(-wo2.|po-pi|
2
)

Fig. S3. Outline of algorithm for computing local region descriptors (LRDs) in Step 2 of Fig. S1, 
from (Saha et al, 2010)







Fig. S4. Cartoon representation of the steps (of algorithm in Fig. S1) to solve P, from (Saha et  

al, 2010).

(a): Step 1 of Fig. S1, mimicked in 2D. A Cartesian reference frame is placed at each of the grid 

points. The length of a frame axis reflects the extent of local density variation along the axis.

(b):  Step 2 of Fig. S1, LRD or gradient histogram construction, mimicked in 2D. The principal 

direction (X axis) of the reference frame of a grid point around  po is first re-expressed in  po‘s 

reference frame and then stored in the bin (of the gradient histogram) representing the direction 

closest to the re-expressed one. The magnitudes of the stored gradients in a bin are summed 

up to obtain a numerical value for each bin (reflected in the length of the directions in (C)).

(c): The local region around po can be divided into quadrants. LRDs, one from each quadrant, 

can be stacked together as a single vector to construct a more complex LRD.

(d): Step 3 of Fig. S1, mimicked in 2D. For a given grid point  p in input cryoEM grid 1, locally 

similar grid points are found in the input cryoEM grid 2 by comparing the LRD at p with LRDs in 

grid 2.

(e): Step 4 of Fig. S1, mimicked in 2D. For a given match, there exists a spatial rotation R and a 

spatial translation t, that transforms the match pair onto each other.

(f):  Step 5 of  Fig.  S1,  mimicked in 2D. The match pairs obtained in Step 4 of  Fig.  S1 are 

clustered in the [rotation x translation] space.

(g): Step 6 of Fig. S1, mimicked in 2D. A graph is constructed such that match pairs are nodes. 

An edge between two nodes indicates that the distance between the corresponding two grid 

points is preserved between the two maps. A clique in the graph (formed by blue nodes) is a 

collection of grid points whose inter-point distances are preserved between the maps.



Fig. S5. A result from (Saha et al, 2010): Solving P using MOTIF-EM for a pair of ribosome 70S 

conformations. (a) & (b) show two low resolution (10 Å+) conformations (pre- and post- 

translocational states, respectively) of ribosome 70S. MOTIF-EM in (Saha et al, 2010) 

decomposes the two conformations into two rigid domains (the two regions colored as yellow 

and cyan) as shown in (c) & (d). The red region in (c) & (d) is the remnant non-conserved region 

in the input maps (a) & (b). (e) & (f) (enlarged compared to a & b) show the correspondences 

(numbered red balls), established by MOTIF-EM, between the first extracted domain pair (e) 

and the second extracted domain pair (f), respectively. The first extracted pair is predominantly 

the 30S subunit of the 70S ribosome, as per (Valle et al, 2003). The second extracted pair is 

predominantly the 50S subunit of the 70S ribosome, as per (Valle et al, 2003). Putting these 



results together leads to the inference of ratchet like conformation change between the pre- and 

post- translocational states: http://cs.stanford.edu/~mitul/motifEM/rna_anim.gif 



Fig.  S6.  Additional  flexible fitting test-cases.  (a):  A synthetic  atomic resolution  conformation 

build using three copies of atomic resolution domain 1YAR (H:1-203). FOLD-EM flexible fitting 

was used to fit the synthetic conformation into a low resolution cryo-EM map of 20S proteasome 

shown in (b). (c) shows the fit of (a) into (b). The FOLD-EM flexible fitter had to alter the relative  

orientation and position of  the individual  domains in order to complete the fitting.  Along the 



same line, the rest of Fig. S6 shows three other test-cases ((d,e,f): flexible fitting into a rice 

dwarf  cryo-EM  map;  (g,h,i):  flexible  fitting  into  synthetic  map  made  from  arbitrary  spatial 

arrangement of domains 1KP8 (A:2-526), 1UF2 (C:1:147, C:301-421) & 1YAR (H:1-203); (j,k,l); 

flexible fitting into a synthetic map made from arbitrary spatial arrangement: 1KID (A), 1UF2 

(C:1:147,  C:301-421)  &  1YAR (H:1-203)),  where  FOLD-EM flexible  fitting  was  applied  with 

similar outcome.



Fig. S7.  Four atomic resolution domains (1KID (A), 1UF2 (C:1-147, C:301-421), 1UF2 (C:148-

300), 1YAR (H:1-203)) were arbitrarily arranged in space to create a conformation shown in the 

figure at left. Synthetic cryo-EM maps (like the one at left) were created using EMAN from this 

conformation in the resolution range 5-15 Å. 



Map
resolution 

(Å)

Fitting Error 
(RMSD Å)

Fitting Error 
(RMSD Å)

Fitting Error 
(RMSD Å)

5 0.29 0.23 0.23

10 0.29 0.26 0.31

15 0.47 0.17 0.33

20 0.53 0.36 0.43

Table S1 (a). RMSD error in docking/fitting, using FOLD-EM

Column 2: Fitting errors for the intermediate domain of GroEL (size: 90 residues), 

Column 3: Fitting errors for the apical domain of GroEL (size: 182 residues),

Column 4: Fitting errors for the equatorial domain of GroEL (size: 249 residues).

The fittings are done into simulated GroEL cryo-EM maps with resolution ranging from 5-20 Å 

(column 1).

(A RMSD (all-atom) error for a fitting is computed between the fitted atomic-resolution domain 

and the atomic-resolution domain used to simulate the map region where the fitting is supposed 

to occur).

 

ID of target Cryo-EM map; 
PDB ID of domain to be fitted 

Fitting 
error at 
original 

map 
resolution
(RMSD Å)

Fitting error at 10  Å 
map resolution (RMSD 

Å)

Fitting error at 15  Å 
map resolution (RMSD 

Å)

5001 (GroEL 4Å); 1AON 
(equatorial)

0.97 0.9 1.67

5001 (GroEL 4Å); 1AON (apical) 0.86 0.9 0.76

1060 (Rice Dwarf Virus 6.8 Å); 
1UF2 (C:1-147& C:301-421)

0.87 1.12 1.58

1060 (Rice Dwarf Virus 6.8 Å); 
1UF2 (C:148-300)

0.86 0.92 3.34

1120 (Phi29 7.9 Å); HK97 3.31 2.31 3.39

1740 (20S proteasome 6.8 Å); 
1YAR (H:1-203)

0.4 0.78 0.73

1623 (Yeast FAS 5.9 Å); 2VKZ 
(A:392-933)

0.63 1.04 1.58

2005 (GTPgammaS microtubules 1.04 0.9 1.7



8.6 Å); 4ABO (A)

1552 (Stressome; 8 Å); 2VY9 (A) 2.17 1.72 1.13

1079 (Metarhodopsin 5.5 Å); 
1GZM (A) 

0.5 0.71 1.05

5223 (Human Ndc80 microtubule 
8.6 Å); 3IZ0 (A)

2.27 1.72 0.77

5155 (Bovine Papillomavirus 4.2 
Å); 3IYJ (A)

0.44 1.14 1.87

Table S1 (b). Evaluation of the fitting/docking module of FOLD-EM on additional experimentally 

determined maps (from Electron Microscopy Data Bank (EMDB): http://www.ebi.ac.uk/pdbe-

srv/emsearch/). For a given map, a corresponding atomic resolution domain (2nd entry in column 

1) was fitted using FOLD-EM. Column #2 lists corresponding RMSD fitting errors. The following 

two columns list fitting errors when the same maps were filtered to lower resolutions (10 Å and 

15 Å, respectively). The low pass filtering of the maps were done using EMAN.  In all these 

additional thirty (ten maps, each at three levels of resolution) test-cases, FOLD-EM was able to 

successfully fit domains with reasonably low RMSD errors.



Tables S2 (a)-(d).  RMSD errors in docking/fitting in the presence of extraneous regions.

Map
resolution 

(Å)

Fitting Error
(RMSD Å)

(10% extra noise residues)

Fitting Error
(RMSD Å)

(20% extra noise residues)

Fitting Error
(RMSD Å)

(30% extra noise residues)

5 0.11 0.20 0.26

10 0.16 0.25 0.24

15 0.36 0.37 0.47

20 0.68 0.68 0.59

Table  S2  (a):  RMSD  error  in  FOLD-EM  generated  fitting  of  an  atomic  resolution  domain 

(intermediate domain of GroEL; size: 90 residues), with extraneous residues, into a simulated 

GroEL monomer with resolution ranging from 5-20 Å. Specifically, columns #2, #3, and #4 list 

errors when 10%, 20%, and 30%, respectively,  extra residues were added as noise  to the 

domain to be docked.

Map
resolution 

(Å)

Fitting Error
(RMSD Å)

(10% extra noise residues)

Fitting Error
(RMSD Å)

(20% extra noise residues)

Fitting Error
(RMSD Å)

(30% extra noise residues)

5 0.11 0.15 0.12

10 0.11 0.18 0.16

15 0.18 0.23 0.20

20 0.24 0.24 0.32

Table S2 (b): RMSD error in FOLD-EM generated fitting of an atomic resolution domain (apical 

domain  of  GroEL;  size:  182  residues),  with  extraneous  residues,  into  a  simulated  GroEL 

monomer with resolution ranging from 5-20 Å. Specifically, columns #2, #3, and #4 list errors 

when 10%, 20%, and 30%, respectively, extra residues were added as noise to the domain to 

be docked.



Map
resolution 

(Å)

Fitting Error
(RMSD Å)

(10% extra noise residues)

Fitting Error
(RMSD Å)

(20% extra noise residues)

Fitting Error
(RMSD Å)

(30% extra noise residues)

5 0.25 0.20 0.22

10 0.19 0.28 0.26

15 0.35 0.36 0.28

20 0.49 0.43 0.42

Table S2(c): RMSD error in FOLD-EM generated fitting of an atomic resolution domain (equatorial domain 

of GroEL; size: 249 residues), with extraneous residues, into a simulated GroEL monomer with resolution 

ranging  from  5-20  Å.  Specifically,  columns  #2,  #3,  and  #4  list  errors  when  10%,  20%,  and  30%, 

respectively, extra residues were added as noise to the domain to be docked.

Map ID; 
Domain 
ID

Fitting 
Error 
(RMSD 
Å) 
(X=10 
% extra 
noise 
residue)

Fitting 
Error 
(RMSD 
Å) 
(X=20 
% extra 
noise 
residue)

Fitting 
Error 
(RMSD 
Å) 
(X=30 
% extra 
noise 
residue)

Fitting 
Error 
(RMSD 
Å) 
(X=10 
% extra 
noise 
residue) 
(map 
filtered 
to Y=10 
Å)

Fitting 
Error 
(RMSD 
Å) 
(X=20 
% extra 
noise 
residue)
(map 
filtered 
to Y=10 
Å)

Fitting 
Error 
(RMSD 
Å) 
(X=30 
% extra 
noise 
residue)
(map 
filtered 
to Y=10 
Å)

Fitting 
Error 
(RMSD 
Å) 
(X=10 
% extra 
noise 
residue)
(map 
filtered 
to Y=15 
Å)

Fitting 
Error 
(RMSD 
Å) 
(X=20 
% extra 
noise 
residue)
(map 
filtered 
to Y=15 
Å)

Fitting 
Error 
(RMSD 
Å) 
(X=30 
% extra 
noise 
residue)
(map 
filtered 
to Y=15 
Å)

5001 
(GroEL 
4Å); 
1AON 
(equato
rial)

0.89 0.81 1.07 0.93 0.78 1.18 1.17 1.52 1.53

5001 
(GroEL 
4Å); 
1AON 
(apical)

1.26 1.2 1.49 1.08 1 0.93 0.96 1.35 1.16



1060 
(Rice 
Dwarf 
Virus 
6.8 Å); 
1UF2 
(C:1-
147& 
C:301-
421)

0.69 0.56 0.77 1.18 1.09 0.65 1.52 1.83 2.36

1060 
(Rice 
Dwarf 
Virus 
6.8 Å); 
1UF2 
(C:148-
300)

1.12 1.55 1.43 0.96 1.07 1.01 4.13 3.11 0.94

1740 
(20S 
proteas
ome 
6.8 Å); 
1YAR 
(H:1-
203)

0.62 0.6 0.57 1.49 0.64 0.62 0.48 0.96 0.87

Table S2(d):   RMSD errors in FOLD-EM generated fitting of atomic resolution domains, with 

added extraneous residues, into experimentally determined cryo-EM maps. Column #1 lists the 

map EMDB ids and PDB ids of domains that were fitted. A subsequent column lists the fitting 

RMSD errors, when X% of extra noise residues are added to the domain to be fitted into a 

target map at resolution Y Å. Y is either the original resolution of the map or the new resolution 

(10 Å or 15 Å) of the map, after it being low pass filtered. The low pass filtering of the maps  

were done using EMAN. In all  these 45 test-cases FOLD-EM was able  to fit  domains with 

reasonably low RMSD errors.  



Tables S3 (a)-(d). Flexible fitting.

Map
resolution 

(Å)

Fitting Error
(RMSD Å)

(equatorial domain)

Fitting Error
(RMSD Å)

(apical domain)

6 0.12 0.07

12 0.24 0.1

18 0.30 0.15

 
Table S3 (a): Error in the FOLD-EM predicted fitting, of conformation #1 (Fig. 7(a), left) into it's 

target map (Fig. 7(a), right), for each of the two domains in conformation #1.  

Map
resolution 

(Å)

Fitting Error
(RMSD Å)

(equatorial domain)

Fitting Error
(RMSD Å)

(apical domain)

Fitting Error
(RMSD Å)

(intermediate domain)

6 0.25 0.07 0.07

12 0.28 0.07 0.11

18 0.35 0.17 0.18

 
Table S3 (b): Error in the FOLD-EM predicted fitting, of conformation #2 (Fig. 7(b), left) into it's 

target map (Fig. 7(b), right), for each of the three domains in conformation #2.

Map
resolution 

(Å)

Fitting Error
(RMSD Å)
(equatorial

domain)

Fitting Error
(RMSD Å)

(apical
domain)

Fitting Error
(RMSD Å)

(intermediate
domain)

Fitting Error
(RMSD Å)

(intermediate
domain #2)

6 0.09 0.08 0.07 0.06

12 0.14 0.15 0.14 0.09

18 0.20 0.16 0.36 0.49

 
Table S3 (c): Error in the FOLD-EM predicted fitting, of conformation #3 (Fig. 7(c), left) into  it's 

target map (Fig. 7(c), right), for each of the four domains in conformation #3.



Map ID; domain in the atomic resolution 
conformation to be flexed and fitted

Fitting Errors
(RMSD Å)

(original resolution) 

Fitting 
Errors

(RMSD 
Å)

(10 Å)

Fitting 
Errors

(RMSD Å)
(15 Å)

5001 (GroEL 4Å); equatorial domain of the 
conformation in Fig. 8 (a)

1.03 0.98 1.4

5001 (GroEL 4Å); apical domain of the 
conformation in Fig. 8 (a)

2.94 1.59 1.16

5001 (GroEL 4Å); intermediate domain of the 
conformation in Fig. 8 (a)

1.19 2.94 -

1740 (20S proteasome 6.8 Å); domain 1 of the 
conformation in Fig. S6 (a)

0.78 0.75 1.12

1740 (20S proteasome 6.8 Å); domain 2 of the 
conformation in Fig. S6 (a)

1.6 1.07 1.98

1740 (20S proteasome 6.8 Å); domain 3 of the 
conformation in Fig. S6 (a)

1.06 1.92 1.56

1060 (Rice Dwarf Virus 6.8 Å); 
domain 1 of the conformation in Fig. S6 (d) 

0.52 0.65 1.08

1060 (Rice Dwarf Virus 6.8 Å); 
domain 2 of the conformation in Fig. S6 (d)

0.6 0.44 2.5

Synthetic cryo-EM map (Fig. S6 (h); domain 1 
of the conformation in Fig. S6 (g)

0.04 0.06 0.1

Synthetic cryo-EM map (Fig. S6 (h); domain 2 
of the conformation in Fig. S6 (g)

0.09 0.11 0.08

Synthetic cryo-EM map (Fig. S6 (h); domain 3 
of the conformation in Fig. S6 (g)

0.32 0.23 1.38

Synthetic cryo-EM map (Fig. S6 (k); domain 1 
of the conformation in Fig. S6 (j)

0.16 0.17 0.15

Synthetic cryo-EM map (Fig. S6 (k); domain 2 
of the conformation in Fig. S6 (j)

0.14 0.25 0.35

Synthetic cryo-EM map (Fig. S6 (k); domain 3 
of the conformation in Fig. S6 (j)

0.14 0.13 0.16

 
Table  S3  (d):  Error  in  the  FOLD-EM  predicted  flexible  fitting  in  more  simulated  and 

experimentally determined cryo-EM maps. A given row lists RMSD error in docking a domain 

into  it's  corresponding  region in  the  target  map at  it's  original  resolution  (column #2),  at  a 



reduced resolution 10  Å resolution (column #3), and at a further reduced resolution of 15  Å 

(column #4). The resolutions of the target maps were reduced using the low pas filtering module 

in EMAN. In all cases (except for GroEL 15 Å, intermediate domain), FOLD-EM successfully 

fitted  respective  domains  with  reasonably  low  RMSD errors.  In  the  case  of  fitting  the 

intermediate domain into the GroEL 15 Å, we  believe failure occurred because the domain 

is quite small and the map resolution is quite low too. 



Tables S4 (a)-(i). Automated fold recognition

Top candidates 
for domain #1

Score 
(SAV, SFE)

Top candidates 
for domain #2

Score
 (SAV,SFE)

Top candidates 
for domain #3

Score 
(SAV, SFE)

1KP8 (A:2-
136,A:410-526)

0.37, 250 1KP8 (A:137-190, 
A:367-409)

0.37, 96 1KID (A) 0.36, 177

1KP8 (A:137, 
A:367-409)

0.37, 96 1KID (A) 0.36, 177 1HF2 (A:100-
206)

0.32, 59

1KID (A) 0.36, 177 1HF2 (A:100-206) 0.32, 59 2IOJ (A:206-325) 0.32, 63

2IOJ (A:206-
325)

0.32, 63 2IOJ (A:206-325) 0.32,  63 1M1H (A:5-50, 
A:132-186)

0.32, 58

1HF2 (A:100-
206)

0.32, 59 1M1H (A:5-
50,A:132-186)

0.32, 58 2HI6 (A:1-132) 0.31, 63

1M1H (A:5-
50,A:132-186)

0.31, 58 2HI6 (A:1-132) 0.31, 63 2DST (A:2-123) 0.31, 61

2HI6 (A:1-132) 0.31, 63 2DST (A:2-123) 0.31, 61 1ASS (A) 0.30, 83

Table S4 (a): This lists candidate domains, with associated scores ((SAV: Chimera score, SFE: 

FOLD-EM score); see METHODS for score definitions), automatically picked by FOLD-EM for 

the simulated GroEL 10 Å map. Three domains were picked: equatorial (column 1&2; column 2 

is  the  associated  FOLD-EM  generated  score),  apical  (column  3&4),  and  the  intermediate 

domain (column 5&6). The first row lists the three domains with best scores, which are finally 

chosen by FOLD-EM to build the Cα model of the simulated map.

Map
resolution 

(Å)

Fitting Error
(RMSD Å)

Fitting Error
(RMSD Å)

Fitting Error
(RMSD Å)

5 0.48 1.4 0.63

10 0.49 1.41 0.63

15 0.54 1.4 0.66

20 0.73 1.44 0.68

Table S4 (b): RMSD error in docking/fitting, using FOLD-EM

Column 2: Fitting errors for the intermediate domain of GroEL (size: 90 residues), 

Column 3: Fitting errors for the apical domain of GroEL (size: 182 residues),

Column 4: Fitting errors for the equatorial domain of GroEL (size: 249 residues).



The fittings are done onto simulated GroEL cryo-EM maps with resolution ranging from 5-20 Å 

(column 1).

Top candidates for 
domain #1

Score 
(SAV, SFE)

1A7A (A:190-352) 5.35, 66

1QY9 (A:130-297) 5.21, 65

2FS2 (A:1-131) 5.14, 66

1F00 (I:658-752) 4.84, 64

2DI4 (A:406-607) 4.51, 68

Table S4 (c):  This lists candidate domains for the first domain, with associated scores ((SAV: 

Chimera  score,  SFE:  FOLD-EM score);  see  METHODS for  score  definitions),  automatically 

picked by FOLD-EM for building the Cα backbone of the ф29 map. The correct domain 1F00 is 

ranked #4. After this domain is picked, the final domain (2FT1) is picked as the domain with 

best score among those which occupied the whole input cryoEM map together with the first 

picked domain 1F00.

Top candidates 
for domain #1

Score 
(SAV, SFE)

Top candidates 
for domain #2

Score
 (SAV,SFE)

1UF2 (C:1-147, 
C:301-421)

0.18, 100 1UF2 (C:148-
300)

0.15, 86

1UF2 (C:148-
300)

0.15, 86 1WN0 (B:11-138) 0.12, 49

1WN0 (B:11-
138)

0.12, 56 1RCU (A) 0.08, 55

1RCU (A) 0.08, 55 1SUM (B) 0.06, 51

1SUM (B) 0.06, 54 4AIG (A) 0.06, 49

Table S4 (d):  This lists candidate domains, with associated scores ((SAV: Chimera score, SFE: 

FOLD-EM score); see METHODS for score definitions), automatically picked by FOLD-EM for 

building  the  Cα  backbone  of  this  RDV  map.  Two  domains  were  picked:  P8  lower  domain 



(column 1&2; column 2 lists the associated scores), P8 top domain (column 3&4). The first row 

lists the three domains with best scores, which are finally chosen by FOLD-EM to build the Cα 

model of the map.

Top candidates 
for domain #1

Score 
(SAV, SFE)

Top candidates 
for domain #2

Score
 (SAV,SFE)

Top candidates 
for domain #3

Score 
(SAV, SFE)

1YAR (H:1-203) 3.29, 100 1YAR (H:1-203) 2.56, 70 1YAR (H:1-203) 2.48, 65

1HQY (A) 2.59, 74 1HQY (A) 2.50, 70 1HQY (A) 2.46, 70

1YAR (H:1-203) 2.56, 70 1YAR (H:1-203) 2.48, 65 1HQY (A) 2.41, 67

1HQY (A) 2.50, 70 1HQY (A) 2.46, 70 1IAZ (A) 2.00, 67

1YAR (H:1-203) 2.48, 70 1HQY (A) 2.41, 67 1RVV (A) 1.99, 61

Table S4 (e):  This lists candidate domains, with associated scores ((SAV: Chimera score, SFE: 

FOLD-EM score); see METHODS for score definitions), automatically picked by FOLD-EM for 

building the Cα backbone of this 20S map. Three domains were picked: 1YAR (column 1&2; 

column 2 lists the associated scores), 1YAR (column 3&4), and 1YAR (column 5&6). The first 

row lists the three domains with best scores, which are finally chosen by FOLD-EM to build the 

Cα model of the map.



Top 
candidates 
for domain 
#1

Score 
(SAV, SFE)

Top 
candidates 
for domain 
#2

Score
 (SAV,SFE)

Top 
candidates 
for domain 
#3

Score 
(SAV, SFE)

Top 
candidates 
for domain 
#4

Score 
(SAV, 
SFE)

1UF2 (C:1-
147, C:301-
421)

0.88, 262 1KID (A) 0.86, 193
1YAR 
(H:1-203)

0.85, 210
1UF2 
(C:148-
300)

0.87, 
153

1KID (A) 0.86, 193
1YAR 
(H:1-203)

0.85, 210
1UF2 
(C:148-
300)

0.87, 153

3BZY 
(A:246-
262, 
B:263-
345)
 

0.36, 64
 

1YAR (H:1-
203)

0.85, 210
1UF2 
(C:148-
300)

0.87, 153 1HQY (A) 0.59, 113 1AZC (A) 0.35, 68

1UF2 
(C:148-300)

0.87, 153 1HQY (A) 0.59, 113
3BZK 
(A:325-
473)

0.36, 77
1HPL 
(A:337-
449) 

0.35, 65

1HQY (A) 0.59, 113 1ASS (A) 0.47, 86
2F9Z (C:1-
157)

0.35, 74
2G0Y 
(A:7-138)

0.27, 65

Table S4 (f):  This lists candidate domains, with associated scores ((SAV: Chimera score, SFE: 

FOLD-EM score); see METHODS for score definitions), automatically picked by FOLD-EM for 

building the Cα backbone of the 5 Å map simulated from the four domain atomic resolution 

structure shown in Fig. S7. The first row lists the four domains with best scores, which are finally  

chosen by FOLD-EM to build the Cα model of the simulated map.

Top 
candidates 
for domain 
#1

Score 
(SAV, SFE)

Top 
candidates 
for domain 
#2

Score
 (SAV,SFE)

Top 
candidates 
for domain 
#3

Score 
(SAV, SFE)

Top 
candidates 
for domain 
#4

Score 
(SAV, SFE)

1UF2 (C:1-
147, C:301-
421) 

0.40, 261
1YAR 
(H:1-203)

0.40, 210 1KID (A)
0.40, 
193

1UF2 
(C:148-300)

0.39, 152

1YAR (H:1-
203)

0.40, 210 1KID (A) 0.40, 193
1UF2 
(C:148-
300)

0.39, 
152

1G6G (A) 0.28, 77

1KID (A) 0.40, 193
1UF2 
(C:148-
300)

0.39, 152 1ASS (A) 0.33, 84 1CZS (A) 0.28, 74

1UF2 0.39, 152 1HQY (A) 0.37, 103 1G6G (A) 0.28, 77 1PJZ (A) 0.26, 75



(C:148-300)

1HQY (A) 0.37, 103
2VB1 
(A:1-129)

0.30, 88 1R8S (E) 0.27, 87 1R8S (E) 0.27, 88

Table S4 (g):  This lists candidate domains, with associated scores ((SAV: Chimera score, SFE: 

FOLD-EM score); see METHODS for score definitions), automatically picked by FOLD-EM for 

building the Cα backbone of the 10 Å map simulated from the four domain atomic resolution 

structure shown in Fig. S7. The first row lists the four domains with best scores, which are finally  

chosen by FOLD-EM to build the Cα model of the simulated map.

Top 
candidates 
for domain 
#1

Score 
(SAV, SFE)

Top 
candidates 
for domain 
#2

Score
 (SAV,SFE)

Top 
candidates 
for domain 
#3

Score 
(SAV, SFE)

Top 
candidates 
for domain 
#4

Score 
(SAV, SFE)

1YAR (H:1-
203)

0.32, 206

1UF2 (C:1-
147, 
C:301-
421 )

0.30, 255 1KID (A) 0.30, 192
1UF2 
(C:148-300)

0.29, 145

1UF2 (C:1-
147, 
C:301.421)

0.30, 255 1KID (A) 0.30, 192
1UF2 
(C:148-
300)

0.29, 145
3BZY 
(A:246-262, 
B:263-345) 

0.28, 74 

1KID (A) 0.30, 192 
1UF2 
(C:148-
300)

0.29, 145

3BZY 
(A:246-
262, 
B:263-345)

0.28, 74 1CZS (A) 0.26, 75

1UF2 
(C:148-300)

0.29, 145

3BZY 
(A:246-
262, 
B:263-345)

0.28, 74 1CZS (A) 0.26, 75
2ISB (A:2-
179)

0.25, 82

1HQY (A) 0.29, 91 1CZS (A) 0.26, 75
2ISB (A:2-
179) 

0.25, 82
1MG7 
(A:14-187)

0.22, 75

Table S4 (h): This lists candidate domains, with associated scores ((SAV: Chimera score, SFE: 

FOLD-EM score); see METHODS for score definitions), automatically picked by FOLD-EM for 

building the Cα backbone of the 15 Å map simulated from the four domain atomic resolution 



structure shown in Fig. S7. The first row lists the four domains with best scores, which are finally 

chosen by FOLD-EM to build the Cα model of the simulated map.

Map resolution 
(Å)

Fitting error 
(RMSD Å)

Fitting error 
(RMSD Å)

Fitting error 
(RMSD Å)

Fitting error 
(RMSD Å)

5 0.61 0.27 0.18 0.28

10 0.46 0.49 0.12 0.25

15 0.41 0.50 0.19 0.07

Table S4 (i): RMSD error in docking/fitting of the final selected domains reported in Tables S4 

(f)-(h). Row #1 corresponds to Table S4 (f), and so on.  Column 2: Fitting errors for selected 

domain #1. Column 3: Fitting errors for selected domain #2. Column 4: Fitting errors for selected 

domain #3. Column 5: Fitting errors for selected domain #4. Just like in Table S4 (b), a fitting 

error was obtained by comparing the corresponding docked domain with the domain that was 

used to simulate the corresponding region in the target map.



Table S5 | Evaluation of FOLD-EM generated fittings 

Fitting (Figure #; Structure name; Domain name; Reference) Cα RMSD 

error (Å)

Fig 2 (a); GroEL 6Å; equatorial domain; (Ludtke et al, 2004) 1.01

Fig 2 (a); GroEL 6Å; apical domain; (Ludtke et al, 2004) 1.51

Fig 2 (a); GroEL 6Å;  intermediate domain; (Ludtke et al, 2004) 2.87

Fig 3 (a); ф29 7.9Å; HK97 domain; (Morais et al, 2005) 3.31

Fig 3 (b) ф29 7.9Å; BIG2 domain; (Morais et al, 2005) 2.17

Fig 5 (d); GroEL 6Å;  apical domain; (Ludtke et al, 2004) 3.69

Fig 5 (e); GroEL 6Å; equatorial domain; (Ludtke et al, 2004) 1.75

Fig 8 (d); GroEL 4Å;  equatorial domain; (Ludtke et al, 2008) 1.03

Fig 8 (d); GroEL 4Å; apical domain (Ludtke et al, 2008) 2.94

Fig 8 (d); GroEL 4Å; intermediate domain; (Ludtke et al, 2008) 1.19

Fig 8 (h); GroEL 6Å; equatorial domain; (Ludtke et al, 2004) 1.06

Fig 8 (h); GroEL 6Å; apical domain; (Ludtke et al, 2004) 3.12

Fig 8 (h); GroEL 6Å;  intermediate domain; (Ludtke et al, 2004) 2.66

Fig 10 (a); GroEL 6Å; equatorial domain; (Ludtke et al, 2004) 1.38

Fig 10 (a); GroEL 6Å; apical domain; (Ludtke et al, 2004) 2.67

Fig 10 (a); GroEL 6Å; intermediate domain; (Ludtke et al, 2004) 2.95

Fig 10 (b); ф29 7.9Å; HK97 domain; (Morais et al, 2005) 3.05

Fig 10 (b); ф29 7.9Å; BIG2 domain; (Morais et al, 2005) -(*)-

Fig 10 (c); RDV 6.8Å; upper domain; (Zhou et al, 2001) 0.86

Fig 10 (c); RDV 6.8Å; lower domain; (Zhou et al, 2001) 0.87

Fig 10 (d); 20S 6.8Å; upper domain; (Rabi et al, 2008) 0.4

Fig 10 (d); 20S 6.8Å; middle domain; (Rabi et al, 2008) 2.28

Fig 10 (d); 20S 6.8Å; bottom domain; (Rabi et al, 2008) 1.84

Table S5: For a FOLD-EM generated fitting, reported in this manuscript, the above table shows 

the associated Cα RMSD error with respect to the corresponding fitting proposed by the authors  

of the respective low resolution cryo-EM structure. The authors of a cryo-EM structure may not  

have deposited/released the respective fitted high resolution domains along with the structure. 

So, in many of our test-cases we had to re-generate the fittings, as directed in the respective 

publications, with which we compared our results. For instance, in the case of Fig.  2 (a), (Ludtke 

et  al,  2004)  indicated  where  in  the  GroEL  cryo-EM structure  the  individual  domain  regions 



(equatorial,  apical,  intermediate)  occur.  These  domain  regions  from the  map were  manually 

segmented and SITUS was used to fit  the respective high resolution domains (from PDB ID: 

1OEL, as indicated in (Ludtke et al, 2004)). A fitting resulting from SITUS was then compared 

with the corresponding fitting from FOLD-EM and the respective RMSD deviation between them 

is reported in the 2nd column of the above table. In the case of Fig. 3 (a), the authors of the 

structure were able to make available the fitted HK97 and BIG2 domains. 

-(*)-: As stated in the main text, FOLD-EM retrieved a different domain (PDB ID: 1F00; residues: 

658-752) from SCOP for the, so called, BIG2 region in the case of ф29 model building, than what 

is  reported (PDB ID:  1F00;  residues:  658-752)  in  (Morais  et  al,  2005).  However,  both these 

domains have similar fold and hence they are in the same SCOP family called “Invasin fragments 

from Yersinia pseudotuberculosis”. We concluded that FOLD-EM preferring a different domain is 

not surprising because the BIG2 region is ambiguous, as the co-author of (Morais  et al, 2005) 

recently proposed another domain (PDB ID: 2L04; (Pell et al, 2010)), with a similar fold, for this 

region.



Text S1 | MOTIF-EM



MOTIF-EM (Saha et al, 2010)  solves the structural comparison problem P defined as 

follows: compare a non-atomic resolution structure (i.e.,  a cryoEM map from EMDB) 

with  another  structure  (another  map or  an  atomic  resolution  structure)  and  identify 

conserved structural domains or motifs or sub-map (if there is any) between the pair of  

input structures. The precise algorithm used by MOTIF-EM to solve P is outlined in the 

Figs.  S1,  S2,  &  S3.  The  technique  used  by  MOTIF-EM  to  detect  conserved  sub-

structures is inspired by a recent breakthrough in 2D object recognition, called “scale-

invariant feature transform” or SIFT (Lowe et al, 2004). The input to MOTIF-EM is a pair 

of  volumetric  electron  density  maps.  The program then uses geometric  processing, 

statistical analysis, and graph theory to detect conserved regions between the input pair 

by executing the following six steps. In step 1 (Figs. S1 (step 1), S2, & S4 (a)), three-

dimensional Cartesian reference frames are assigned to every grid point in each of the 

input  maps.  These  reference  frames  are  computed  by  examining  the  local  density 

variations  at  each grid  point,  using  singular  value  decomposition.  For  example,  the 

primary  axis  of  the  reference  frame  points  to  the  direction  of  largest  local  density 

variation. In step 2 (Figs. S1 (step 2), S3, S4(b & c)), for each grid point in the input  

maps,  we  construct  a  local  region  descriptor  (LRD)  -  a  rotationally-invariant,  low-

dimensional representation of electron density variation in the local region around the 

grid point. The LRD for a grid point p is essentially an orientation histogram of the local 

density variation vectors around p that were calculated in step 1, i.e., the first axis of the 

reference frames for the neighboring grid points. LRD is a simple 3D version of the 2D 

local descriptor (known as “keypoint” in (Lowe, 2004)) that was invented for the feature  

detection  algorithm,  known as SIFT,  in  (Lowe,  2004).  In  step 3 (Figs.  S1 (step 3),  

S4(d)), for a grid point p in input map 1, we find k potential matches in input map 2, i.e., 

local regions in map 2 which are “similar” to the local region around p. These matches 

are essentially those grid points in input map 2, whose LRDs closely match the LRD for 

point p in map 1. In steps 4 and 5 (Figs. S1 (step 4 & 5), S4(e & f)), we cluster all the 



matches  obtained  from  step  3,  based  on  the  six  degrees  of  freedom  geometric 

transformation that maps a grid point (along with the local reference frame) onto its 

match in map 2. In step 6 (Figs. S1 (step 6), S4(g)), we choose the most prominent  

cluster obtained in the previous step. The matches in this prominent cluster form the 

potential conserved domain between the input maps. False positives occur due to two 

main reasons: (a) high noise in either/both of the input maps and (b) dimensionally  

reduced representations (LRDs) used to characterize local regions necessarily result in 

information loss.  However,  these false positives are removed using graph theory;  a 

graph is constructed with the matches in the prominent cluster as its node. An edge is 

added between two nodes in the graph if the inter-point distance (between the two grid  

points of the same map in the two graph nodes) is preserved across the input map pair.  

Finally the largest clique in the graph (the sub-graph with an edge between every pair of 

nodes) is the final predicted domain region that is structurally conserved between the 

pair of input maps. Steps 1-3 are the ones that are inspired by the SIFT algorithm in 

(Lowe et al, 2004). In (Lowe et al, 2004), the corresponding situation was to identify 

correspondences between a pair  of  2D photographic images using local  descriptors 

called “keypoints”, which we call LRDs here.

Briefly, the input to MOTIF-EM is a pair of volumetric electron density maps obtained 

either  experimentally  from cryo-EM image reconstructions or  calculated from atomic 

coordinates. The program uses geometric processing, statistical  analysis, and graph 

theory to detect conserved regions between the input pair by executing six steps. In 

laymen’s terms, MOTIF-EM first  tries to find small  regions of similarity between two 

maps, and then determines how each small region in one map must be rotated and 

translated to superimpose it on the equivalent region in the other map. Next, MOTIF-EM 

groups regions that require similar rotations and translations, and if the members of a 

group  also  form  contiguous  regions  in  the  maps  then  this  region  is  considered  a 



structurally  equivalent  domain/motif.  Since MOTIF-EM also gives the relative spatial 

orientation of the common sub-structures extracted, the fitted domain/motif is returned 

along with its corresponding transformation matrix. If no homologous structural motifs 

are identified between the input pair, then no fitted structure is returned. Hence, MOTIF-

EM only outputs fitted coordinates if meaningful structural homology can be detected. In 

this regard, MOTIF-EM differs from other fitting programs which always return a fitted 

structure regardless of whether or not the determined fit is meaningful.

In essence, MOTIF-EM identifies conserved domains/motifs in large macromolecular 

assemblies.  Because domain/motif  correspondences are built  from matching smaller 

structural units, no prior knowledge of the extent of homologous domain/motif structures 

is required and the program will thus work even if only portions of domains are similar.  

In  contrast,  other  fold  recognition/fitting  algorithms require  that  the  structures  being 

compared are similar over the entirety of the search structure. Similarly, MOTIF-EM is 

inherently  able  to  compare  and  fit  structures  that  have  undergone  conformational 

changes; the ‘bottom-up’ approach of assembling structural correspondences in MOTIF-

EM assures that  discrete conserved structural  units  are automatically  identified  and 

fitted separately,  thus providing a computationally  objective approach for  performing 

flexible fitting. As a result, MOTIF-EM automatically identifies domains/motifs in large 

macromolecular assemblies that remain conserved upon conformational rearrangement. 

As a by-product, non-conserved regions in structures are also revealed, which can point 

to potentially  important  molecular  flexibility.   Hence,  MOTIF-EM has the potential  to 

facilitate biomedical research and discovery by accelerating the rate at which structures 

of large macromolecular assemblies can be determined and analyzed. 



Text S2 | Validation of P22 results (shown in Figs. 6 (a-h))

 We claim that alignment obtained by FOLD-EM (Fig. 6 (g)) is better than in (Jiang et al, 

2003) (Fig. 6 (h); obtained using FOLDHUNTER (Jiang  et al, 2001)) using these two 

means:

(a) visual inspection: in Fig. 6 (h), we circled the regions where local alignment can be 

clearly seen (by eyes) as worse than in corresponding regions in Fig. 6 (g).

(b)  automated  scoring:  FOLD-EM  had  a  better  alignment  score  (obtained  using 

Chimera) of 0.91 compared to 0.87 obtained by FOLDHUNTER.

FOLD-EM improves the alignment obtained using FOLDHUNTER by RMSD of 2.8 Å.

FOLD-EM was able to improve the alignment of the P22 subunits done in (Jiang et al, 

2003) (using  FOLDHUNTER),  because  it  is  able  to  automatically  separate  the 

conserved base domain from the rest in the two subunit maps (as seen in Fig. 6 (c) & 

(d)).  FOLDHUNTER  has  no  means  to  the  separate  conserved  (base)  and  non-

conserved regions, and hence looses it's accuracy due to inclusion of non-conserved 

regions while trying align the subunits by their conserved base. Also, very importantly, 

FOLDHUNTER  needed  an  initial  approximate  alignment  guess,  whereas  FOLD-EM 

didn’t.



Text S3 | Fold recognition in ribosome 70S

The two domains 50S and 30S of the ribosome 70S do not exist in the SCOP database.  

So, the way we came up with the fold shown in Fig. 10 (e) is as follows. We extracted 

the two low resolution domains (50S and 30S) from the 70S conformation #1 (from 

(Valle et al, 2003)) by comparing it with 70S conformation #2 (from (Valle et al, 2003)), 

as described in Fig. S5. We included the extracted domains along with other domains in 

the  SCOP to  build  the  fold  for  the  conformation  #2 using  FOLD-EM. As expected, 

conformation #2 scored the best against the the two extracted domains. The authors of 

(Valle  et al, 2003) have also released the high resolution models for these domains, 

which we used to construct the final fold shown in Fig. 10 (e). The point of this testcase 

of building a fold for 70S was to show that FOLD-EM is applicable to real cryo-EM maps 

with resolutions as low as 13 Å. In the future, we would like to also test FOLD-EM on 

real cryo-EM maps with resolutions worse than that. 


