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3.1 of the paper. Please refer to the main paper for notations not defined here.

Lemma 1 Under conditions (A.1)-(A.3), S
(j)
k (t, v, β̄) converges to s

(j)
k (t, v, β̄) in probability uni-

formly in (t, v, β̄) ∈ [0, τ ]× [0, 1]2 × B as n → ∞, for j = 0, 1, 2 and 1 6 k 6 K.

Proof of Lemma 1.
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Let S
(j)
ki (t, v, β̄) = Yki(t) exp{β̄T Z̃ki(t, v)}Z̃ki(t, v)

⊗j . Then S
(j)
k (t, v, β̄) =

n−1
k

∑nk

i=1 S
(j)
ki (t, v, β̄). We prove the lemma for the case when j = 0. The proofs for

j = 1 and 2 follow similarly. Let ωki = (Xki, Zki). Then ωki, i = 1, . . . , nk, is a ran-

dom sample from a probability distribution Pk on a measurable space (Xk,Ak), where

Xk = [0, τ ] × Rp and Ak is its Borel σ-field. Let F be the class of all coordinate projections

ft,v,β̄(ωki) : Xk −→ R, where ft,v,β̄(ωki) = S
(0)
ki (t, v, β̄), for (t, v, β̄) ∈ [0, τ ] × [0, 1]2 × B. Then

S
(0)
k (t, v, β̄) = n−1

k

∑nk

i=1 ft,v,β̄(ωki). Let ‖ft,v,β̄‖Pk,r = (Pk|ft,v,β̄ |r)1/r = (Ek|S(0)
ki (t, v, β̄)|r)1/r

be Lr(Pk)-norm of ft,v,β̄ . Next, we show that F is Glivenko-Cantelli (van der Vaart, 1998).

Since Zki(·) is of bounded variation, for simplicity we assume that Zki(·) is an nonnegative

monotone increasing process. In general, Zki(·) can be expressed as the difference of two

nonnegative monotone increasing processes plus a constant. In this case, the class of functions

of interest, F , is the product of several functional classes. It is Glivenko-Cantelli if each of them

is Glivenko-Cantelli.

Let {th}, {vj} and {β̄m} be the grid points of finite partitions of the intervals [0, τ ], [0, 1]2, and

B, respectively. Let {th′ , th}, {vj′ , vj} and {β̄m′ , β̄m} be the grid points on the opposite ends of a

hyper-cubic of the partitions such that 0 6 th−th′ 6 ε, 0 6 vj−vj′ 6 ε and 0 6 β̄m− β̄m′ 6 ε for

ε > 0. Define the bracketing functions lh′ j′m′ = S
(0)
ki (th′ , vj′ , β̄m′ ) and uhjm = S

(0)
ki (th, vj , β̄m).

Then for any ft,v,β̄ ∈ F , there is a bracket [lh′ j′m′ , uhjm] such that ft,v,β̄ ∈ [lh′ j′m′ , uhjm].

Further,

‖uhjm − lh′ j′m′‖Pk,2 6 ‖S(0)
ki (th, vj , β̄m)− S

(0)
ki (th′ , vj′ , β̄m′ )‖Pk,2

= ‖Yki(th)exp{β̄T
mZ̃ki(th, vj)} − Yki(th′ )exp{β̄T

m′ Z̃ki(th′ , vj′ )}‖Pk,2

6 [C1‖th − th′‖+ C2‖vj − vj′‖+ C3‖β̄m − β̄m′‖]1/2

6 Cε1/2,
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where C1, C2, C3 and C are some positive constants. Hence, the bracketing number

N[ ](ε
1/2,F , L2(Pk)) is of the polynomial order (1/ε)4p+3. Thus N[ ](ε,F , L2(Pk)) is of the or-

der (1/ε)2(4p+3). By the Glivenko–Cantelli Theorem (Theorem 19.4 of van der Vaart, 1998),

S
(0)
k (t, v, β̄) converges in probability uniformly to s

(0)
k (t, v, β̄) for (t, v, β̄) ∈ [0, τ ] × [0, 1]2 × B.

Proof of Theorem 2.1.

Let

ηn(β̄) = n−1(l(β̄)− l(β̄0))

= n−1
K∑

k=1

nk∑
i=1

∫ τ

0

∫ 1

0

[
(β̄ − β̄0)

T Z̃ki(s, u)− log

{
S
(0)
k (s, u, β̄)

S
(0)
k (s, u, β̄0)

}]
Nki(ds, du).

By the condition (A.2), Lemma 1 and the uniform convergence of n−1
k

∑nk

i=1 Nki(t, v)
P−→∫ t

0

∫ v

0
s
(0)
k (s, u, β̄0)λ0k(s, u) dsdu (Gilbert, Mckeague and Sun, 2004), we have ηn(β̄)

P−→η(β̄), where

η(β̄) =

K∑
k=1

pkE

(∫ τ

0

∫ 1

0

[
(β̄ − β̄0)

T Z̃ki(s, u)− log

{
s
(0)
k (s, u, β̄)

s
(0)
k (s, u, β̄0)

}])
s
(0)
k (s, u, β̄0)λ0k(s, u) dsdu,

uniformly in β̄ ∈ B. Further,−∂2ηn(β̄)/∂β̄
2 = n−1I(β̄) converges in probability to Σ(β̄) uniformly

in β̄ ∈ B. The limiting matrix function is a positive definite matrix for β̄ ∈ B under the conditions

(A.2) and (A.3). Hence, ηn(β̄) converges in probability to η(β̄) which is a concave function with

a unique maximum at β̄0. Since
ˆ̄β is the maximizer of ηn(β̄), we have ˆ̄β converges in probability

to β̄0 as n → ∞, see van der Vaart (1998).

Proof of Theorem 2.2.

Note that U( ˆ̄β) − U(β̄0) = −I(β̄∗)( ˆ̄β − β̄0), where β̄∗ is on the line segment between ˆ̄β and

β̄0. By the uniform convergence of n−1I(β̄)
P−→Σ(β̄) in probability in β̄ ∈ B and the consistency

of ˆ̄β to β̄0, we have

n1/2( ˆ̄β − β̄0) = (I(β̄∗)/n)−1n−1/2U(β̄0)

= (Σ(β̄0))
−1n−1/2U(β̄0) + op(1). (S.1)
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It remains to show that n−1/2U(β̄0)
D−→N(0,Σ(β̄0)). Observe that

n−1/2U(β̄0) = n−1/2
K∑

k=1

nk∑
i=1

∫ τ

0

∫ 1

0

[
Z̃ki(t, u)−

S
(1)
k (t, u, β̄0)

S
(0)
k (t, u, β̄0)

]
Mki(dt, du). (S.2)

By Lemma 1 of this Appendix and Lemma 2 of Gilbert, Mckeague and Sun (2008),

n−1/2U(β̄0) = n−1/2
K∑

k=1

nk∑
i=1

∫ τ

0

∫ 1

0

[
Z̃ki(t, u)−

s
(1)
k (t, u, β̄)

s
(0)
k (t, u, β̄)

]
Mki(dt, du) + op(1), (S.3)

which converges in distribution to N(0,Σ(β̄0)). This completes the proof.

Proof of Theorem 2.3.

Note that

Λ̂0k(t, v)− Λ0k(t, v)

=

∫ t

0

∫ v

0

[
1

nkS
(0)
k (s, u, ˆ̄β)

− 1

nkS
(0)
k (s, u, β̄0)

]
Nk·(ds, du) +

∫ t

0

∫ v

0

Mk·(ds, du)

nkS
(0)
k (s, u, β̄0)

+ op(n
−1/2
k )

=

∫ t

0

∫ v

0

[S
(1)
k (s, u, β̄0)]

T (β̄0 − ˆ̄β)

nkS
(0)
k (s, u, ˆ̄β)S

(0)
k (s, u, β̄0)

Nk·(ds, du) +

∫ t

0

∫ v

0

Mk·(ds, du)

nkS
(0)
k (s, u, β̄0)

+ op(n
−1/2
k )

=

∫ t

0

∫ v

0

[S
(1)
k (s, u, β̄0)]

T (β̄0 − ˆ̄β)

S
(0)
k (s, u, ˆ̄β)

λ0k(s, u) dsdu+

∫ t

0

∫ v

0

Mk·(ds, du)

nkS
(0)
k (s, u, β̄0)

+ op(n
−1/2
k ), (S.4)

where Mk·(t, v) =
∑nk

i=1 Mki(t, v). By Slusky Theorem, Lemma 2 of Gilbert, Mckeague and Sun

(2008), Lemma A.2 of Sun et al. (2009), we have

√
n{Λ̂0k(t, v)− Λ0k(t, v)}

= −
√
n( ˆ̄β − β̄0)

∫ t

0

∫ v

0

[s
(1)
k (s, u, β̄0)]

s
(0)
k (s, u, β̄0)

λ0k(s, u) dsdu+
√
n

∫ t

0

∫ v

0

Mk·(ds, du)

nks
(0)
k (s, u, β̄0)

+ op(1).

Since Mki(t, v)’s are mark-specific martingales, by (S.1) and (S.2), it is easy to check that

√
n( ˆ̄β − β̄0) is asymptotically independent of the processes

√
n
∫ t

0

∫ v

0
Mk·(ds,du)

nks
(0)
k (s,u,β̄0)

, k = 1, . . . ,K.

Following the proof of Lemma A.2 of Sun et al. (2009), it can be shown that the latter are

asymptotically independent mean-zero Guassian random fields, each of them has independent

increments.
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Proof of Theorem 3.1.

The cumulative martingale residuals are defined as

M̂ki(t, v) =

∫ t

0

∫ v

0

Nki(ds, du)− Yki(s) exp(
ˆ̄βT Z̃ki(s, u))Λ̂0k(ds, du),

where Λ̂0k(t, v) =
∫ t

0

∫ v

0
{nkS

(0)
k (s, u, ˆ̄β)}−1Nk·(ds, du) is the estimator of the doubly cumulative

baseline function Λ0k(t, v) =
∫ t

0

∫ v

0
λ0k(s, u)dsdu. It follows that

M̂ki(t, v) = Mki(t, v)−
∫ t

0

∫ v

0

Yki(s) exp(
ˆ̄βT Z̃ki(s, u))[Λ̂0k(ds, du)− Λ0k(ds, du)]

−
∫ t

0

∫ v

0

Yki(s)[exp(
ˆ̄βT Z̃ki(s, u))− exp(β̄T

0 Z̃ki(s, u)]Λ0k(ds, du)]. (S.5)

By (S.4), we have

Wk(t, v, z) = n−1/2
nk∑
i=1

gk(Zki, z)Mki(t, v)

+nkn
−1/2

∫ t

0

∫ v

0

S
(0)
kg (s, u, z,

ˆ̄β)[S
(1)
k (s, u, β̄0)]

T

S
(0)
k (s, u, β̄0)

λ0k(s, u) dsdu (
ˆ̄β − β̄0)

−n−1/2

∫ t

0

∫ v

0

S
(0)
kg (s, u, z,

ˆ̄β)

S
(0)
k (s, u, β̄0)

Mk·(ds, du)

−nkn
−1/2

∫ t

0

∫ v

0

[S
(1)
kg (s, u, z, β̄0)]

Tλ0k(s, u) dsdu (
ˆ̄β − β̄0) + op(1). (S.6)

Replacing ˆ̄β in S
(0)
kg (s, u, z,

ˆ̄β) by β̄0 results in a process that is equivalent to Wk(t, v, z) in prob-

ability by Slusky Theorem for the second term and by Lemma 2 of Gilbert, Mckeague and Sun

(2008) for the third term of (S.6).

From the proof of Theorem 2, we have n1/2( ˆ̄β − β̄0) = (Σ(β̄0))
−1n−1/2U(β̄0) + op(1). The

second term of (S.6) equals

(nk/n)

{∫ t

0

∫ v

0

[S
(1)
k (s, u, β̄0)⊗ S

(0)
kg (s, u, z, β̄)]

T

S
(0)
k (s, u, β̄0)

λ0k(s, u) dsdu

}
(Σ(β̄0))

−1n−1/2U(β̄0) + op(1)

Similarly, the fourth term of (S.6) is equal to

(nk/n)

{∫ t

0

∫ v

0

[S
(1)
kg (s, u, z, β̄0)]

Tλ0k(s, u) dsdu

}
(Σ(β̄0))

−1n−1/2U(β̄0) + op(1).
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Bringing the above expressions into (S.6), we have

Wk(t, v, z)

= n−1/2
nk∑
i=1

∫ t

0

∫ v

0

[
gk(Zki, z)−

S
(0)
kg (s, u, z, β̄0)

S
(0)
k (s, u, z, β̄0)

]
Mki(ds, du)

+nk/n

∫ t

0

∫ v

0

(
S
(1)
k (s, u, β̄0)⊗ S

(0)
kg (s, u, z, β̄0)

S
(0)
k (s, u, β̄0)

− S
(1)
kg (s, u, z, β̄0)

)T

λ0k(s, u) dsdu

(Σ(β̄0))
−1n−1/2U(β̄0) + op(1)

= n−1/2
nk∑
i=1

∫ t

0

∫ v

0

[
gk(Zki, z)−

S
(0)
kg (s, u, z, β̄0)

S
(0)
k (s, u, β̄0)

]
Mki(ds, du)

+(Rk(t, v, z))
T (Σ(β̄0))

−1n−1/2
K∑
l=1

nl∑
i=1

{∫ τ

0

∫ 1

0

[
Z̃li(s, u)−

S
(1)
l (s, u, β̄0)

S
(0)
l (s, u, β̄0)

]
Mli(ds, du)

}T

+op(1)

= n−1/2
K∑
l=1

nl∑
i=1

∫ τ

0

∫ v

0

I(l = k)I(s 6 t)

[
gl(Zli, z)−

S
(0)
lg (s, u, z, β̄0)

S
(0)
l (s, u, β̄0)

]
Mli(ds, du)

+(Rk(t, v, z))
T (Σ(β̄0))

−1n−1/2
K∑
l=1

nl∑
i=1

{∫ τ

0

∫ 1

0

[
Z̃li(s, u)−

S
(1)
l (s, u, β̄0)

S
(0)
l (s, u, β̄0)

]
Mli(ds, du)

}T

+op(1). (S.7)

By the uniform convergence of S
(0)
k (s, u, β̄0), S

(1)
k (s, u, β̄0), S

(0)
kg (s, u, z, β̄0) and S

(1)
kg (s, u, z, β̄0) to

s
(0)
k (s, u, β̄0), s

(1)
k (s, u, β̄0), s

(0)
kg (s, u, z, β̄0) and s

(1)
kg (s, u, z, β̄0) in (s, u) ∈ [0, τ ]× [0, 1]2 in probabil-

ity, respectively, and by the weak convergence of n
−1/2
k

∑nk

i=1 Mki(t, v) for k = 1, . . .K, the terms

S
(0)
k (s, u, β̄0), S

(1)
k (s, u, β̄0), S

(0)
kg (s, u, z, β̄0) and S

(1)
kg (s, u, z, β̄0) can be replaced by their expected

values respectively. This completes the proof.


