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2 S. KANG AND OTHERS
APPENDIX A: OUTLINE OF THE PROOFS OF THEOREMS 1 AND 2

We assume the following conditions hold: Let {T';,C;, Z;(-)},i = 1,...,n, be independent
and identically distributed where T; = (Tj1,--- , Tix)T, C; = (Ci,---,Cix)T, and Z;(+) =
{Zi(), -, Zig()} fori=1,---,n; Pr(Yir(r) >0) >0fori=1,--- ,nand k = 1,--- , K;
|Ziji(0)| + [y |dZiji(u)] < C. < oo almost surely for some constant C.; The matrix Ay =
E (fOT Yik(0){Z 1 (t)®2 — [E{Ylk(t)Zlk(t)}/E{Ylk(t)}]®2}dt) is positive definite;

Jo Aok(t)dt < oo, forallk=1,..., K.

The following additional conditions are also needed to ensure the desired asymptotic con-
vergence of the generalized case-cohort samples: As n — oo, & = n/n converges to a constant
a € (0,1); Forall k = 1,...,K, § = m®™/(n® — 2R)) converges to a constant g in (0, 1];
n®) /n converges to a constant py € [0,1] as n — oc.

The consistency of the estimators for the hazards regression parameters were shown via the in-
verse function theorem in Foutz (1977). The key steps to show the asymptotic normality involved
the decomposition of the weighted estimating functions into three terms which are asymptoti-
cally independent plus some asymptotically negligible terms. In addition, asymptotic expansion
of & (t) and @i (t) are needed to handle the time-varying weight functions. This was based on
Lemmas 1 and 2 in this section, the strong embedding theorem (Shorack and Wellner, 1986), and
the Kolmogorov-Centsov Theorem (Karatzas and Shereve, 1988). Each of the three terms were
shown to be mutually independent and asymptotically normally distributed via some theories
of modern empirical processes (van der Vaart and Wellner, 1996) and the asymptotic theory for
sampling from finite population (Hdjek, 1960). The Taylor expansion ensures the desired asymp-
totic normality of the estimators for the hazards regression parameters. The uniform consistency
of the cumulative baseline hazards estimators and the weak convergence to a tight Gaussian
processes were shown via similar arguments mentioned above.

The following lemmas will be frequently used in proving the theorems.



Lemma 1 Let W, (t) and G, (t) be two sequences of bounded processes. For some constant 7,

assume that the following conditions (a) - (c¢) hold where
(a) supg < ¢ < - [[Wa(t) = W()| 25 0 for some bounded process W (t),
(b) W, (t) is monotone on [0, 7] and

(¢) Gy (t) converges to a zero-mean process with continuous sample paths. Then

SN 0, sup

o<t

/Ot{Wn(s) — W(s)}dGn(s) /Ot Go(8)d{W ,,(s) — W(S)}H N

sup
0<t<T

The proof of this lemma follows from the strong embedding theorem (Shorack and Wellner,
1986, p47-48), Lemma 1 of Lin and others (2000) and the triangular argument of a norm. More

detailed proof can be found in Kang (2007, Lemma 2).

Lemma 2 Let & = (&1,...,&,) be a random vector containing 7 ones and n — 7 zeros, with each
permutation equally likely. Let B;(t), i = 1,...,n, be i.i.d. real-valued random processes on [0, 7]
with E{B;(t)} = up(t), Var{B;(0)} < oo and Var{B;(7)} < co. Let B(t) = {Bi(t),...,Bn(t))}

and & be independent. Suppose that almost all paths of B;(t) have finite variation. Then,
WS 6 (BE) — s (t))
i=1
converges weakly in £°°[0, 7] to a zero-mean Gaussian process and therefore
P S B ()
i=1
converges in probability to 0 uniformly in ¢.

This lemma is an extension of the proposition in Kulich and Lin (2000). The proof of this
lemma follows from Hdjek (1960)’s central limit theorem for finite population sampling and
Example 3.6.14 of van der Vaart and Wellner (1996). More detailed proof can be found in Kang

(2007, Lemma 5).
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Note that for our case, &; is the subcohort membership indicator and 7);; is the sampling
indicator for the ith subject with the kth disease outside the subcohort where both the sampling
of the subcohort and the cases outside the subcohort were conducted by simple random sampling
without replacement. Thus, it is clear that our &;’s and 7;’s satisfy the conditions in Lemma 2.

The following asymptotic properties of the time-varying sampling probability estimators

Gi(t) = KB g gy(r) = Her el OBl will also be frequently used in

proving the theorems. &y (t) and & converge to the same limit uniformly in ¢ and

2 {an(t)™ -7 = 1_ilk>y1k<>}”_l/2{z(1 &)(I_Al m’“(”}””(”'

- (0.1)

I around &, Lemma, 2, Glivenko-Cantelli lemma,

This follows from the Taylor expansion of & (t)~
and Slutsky’s theorem. By similar arguments, ¢ (t) and g converge to the same limit uniformly

in ¢ and

W () 6 = s /{2( ”““)Aial—@)mw}+op<1>.
(0.2)

Proof of Theorem 1 We first consider the proof for the consistency of BH. Based on a

straightforward extension of Foutz (1977), one can show 3;; to be consistent for B, provided: (i)

8n*1lAJH( )/08” exists and is continuous in an open neighborhood B of 3, (ii)an*1UII (8,)/08%

o IT
is negative definite with probability going to one as n — oo, (i) dn~ U (8)/0B" converges to

A in probability uniformly for B in an open neighborhood about 3, and (iv) n*1UII (B)—0

in probability.
One can write

~ 1T

on-10" (8) Sy Z (1) ywar (1)Yir (1) Z4
I Z;/ {Zin(t) — Z5 () wir () Vi () Zin (1) Tt

n K T B
_nlzz/o Wit ()Y ({ Zi ()22 — Z (1)®? }dt (0.3)



Then, (i) is clearly satisfied on the basis of (0.3) and by the continuity of each component. Now,

(0.3) can be decomposed as the followings:

n K
N71 ZZ/ wlk(t)}/zk(t){zlk(t)®2 — Z:(U@Q}dt

i=1k=1"0
n K T n K p )
= T3 [ va0iZa® - {0 e 3 [0 20 (&-1) v

‘/OT Ak (% — 1) Y;k(t){zik(t)@a — Z;:(t)®2}dt

/T(l = D) {1 (1) — @ Y (O{Za (0)®? = Z3 (1) ®}dt
0

/

(1= &)Aw ' (1) = @} YaO{Ziw ()™ = Zy (1) }dt

It follows from Lemma 2 that, for k = 1,..., K, Zj (t) uniformly converges to e(t) in t since
Yir () Z ()24 (d = 0,1, and 2) is of bounded variation. Applying Lemma 2 together with this
uniform convergence implies that the first term on the right side of the above equality converges
to A in probability as n — oco. Each of the rest terms on the right side of the above equality can
be shown to converge to zero as n — co. This follows from the uniform convergence of Zj, (t) to
e(t) in ¢, (0.1),(0.2), and Lemma 2.

Hence,

T
LU B) py g o

and, thus, (ii) and (iii) are satisfied.
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1T
For (iv), we can show that n=1/2U " (3,) is asymptotically equivalent to

E{(1 = Aw)Yie(t)}

K
n K r
w2y S0 a0 (£ 21) [ Ratdo0 - v B ST B I
] k=1
K
>

i=1 0
BYRS _ Nik _ [Ty E{AML 1k (Bg, )| Ar = 1,6 = 0}]
33 =60 (e -1) Mo - [ B =
(0.4)
Specifically, one can decompose n-1/2g" (B,) into four parts:
. II n K n K .
n 20" () =n 230 ST ML (8o, ) ZZ/ {er(t) — Z} (t)} dMik (B 1)
i=1 k=1 =1 k=1
n K B
+n—”222/ {wir(t) = 1}dML ik (B, £) +n '/ ZZ/ {wir(t) = 1} {ex(t) = Zi(6)} dMu(Bo, 1)
i=1 k=1 i=1
(0.5)

The second term on the right-hand side of (0.5) can be shown to converge to zero. Specifically, for
fixed t, Y1 | Mix(Bg,t) is a sum of i.i.d. zero-mean random variables. M;,(B,,t) can be shown
to be of bounded variation and therefore can be written as a difference of two monotone functions
in ¢. It then follows from the example of 2.11.16 of van der Vaart and Wellner (1996, p215) that
n=1/2 Sory Mik(By, t) converges weakly to a zero-mean Gaussian process, say Wiy (t). It can be
shown that E{Wask(t) = Wark(s)}* < C{Aok(t) — Aok (s)}? for some constant C' > 0. Thus, by the
conditions on Agg(t), 3 a constant M, such that Agx(t) — Agr(s) < M(t —s) for s < t. Therefore,
by the Kolmogorov-Centsov Theorem (Karatzas and Shereve, 1988, p53), Wiy (t) has continuous
sample paths. In addition, Z} (t) can be written as a sum of two monotone functions in ¢. Hence,
it follows from Lemma 1 that the second term on the right-hand side of (0.5) converges to 0.
By similar arguments, the fourth term on the right-hand side of (0.5) can be shown to converge

to 0.



The third term on the right-hand side of (0.5) can be written as

ZK: (— - 1) M. ik (8o, 7)

n—1/2

M=

1=1 k=1
n K T
a2y - Aik)fi/ {a;1(6) = 67" HdML. i (B, 1)
=1 k=1 0
n K
4oL/ ZZAZk(l - &) <77~L: — 1) M. ix(Bg, 7)
'L;l k;l .
+ /2 Z Z A1 — &)mk/o {ac' () = G} dMLik (B, ) (06)

-
Il

—

b

=1
The second term on the right side of (0.6) is asymptotically equivalent to
K

Yy ~ N & E{ 1— A1) Rk (B, 1)}
220 A“)< )/WY” E{l—Aqua%} & (0.7)

i=1 k=1

by (0.1) and applying Lemma 2. Likewise, by (0.2) and applying Lemma 2, the last term on the

right side of (0.6) is asymptotically equivalent to

n K
S . _ ik E{dM. 1x(By; t)[A1x = 1,& = 0}
. ;;%am( R 0.8

By combining (0.7) and (0.8), (0.6) is asymptotically equivalent to

n-1/ _ & s v o B{(0 = A)Rig(Bo, 1)}
12221 k( 1)/0 [Rzk(ﬁmt) Yir (1) E{(1 = Ap)Vir()} }dt

i=1 k=1

n—1/2 _ Nik _ T BAAME 1k (Bg, D) [A = 1,6 = 0}]
+ ;;Azk 1 51 ( = ) |:Mz,1k(/3077') A Kk(t) E{Ylk(t”Alk — 1} .

Combining the above results, we have shown that n~'/ QUH(BO) is asymptotically equiva-
lent to (0.4). Under the regularity conditions, the first term on the right-hand side of (0.4) is
asymptotically zero-mean normal with covariance matrix Q(8,) = E {Zszl M. i (By, 7')}®2 by
Yin and Cai (2004).

The second and the third terms on the right-hand side of (0.4) can be shown to be asymp-

totically zero-mean normal with covariance matrix —VH(ﬁO) and (1 — «) Zk L Pr(Ay =

1) (1;:”) Vg,ﬁ (By) by Lemma 2, respectively. It follows from conditional expectation arguments
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T
that these three terms are mutually independent. Therefore, n='/2U " (B,) is asymptotically

normally distributed with mean zero and with finite variance

Q(Bo) + !

Y8 + (1 a) S Pr(Aue — 1) (1 - q’“) VIL(By).
gk

k=1
Hence n_lﬁll(ﬁ) converges to zero in probability. Thus, (iv) is satisfied.
By (i),(ii),(iii) and (iv), it follows that there is a unique sequence B;; s.t. ﬁH(ﬁH) = 0 with
probability converging to one as n — 0 and with ﬁ 17 converging in probability to B, by extension
of Theorem 2 (Foutz, 1977).
The asymptotic normality of ﬁ 11 follows from the consistency of ﬁ 77 and a Taylor series
expansion of o'’ (8).

Proof of Theorem 2 One can make decomposition

n'P{AGL(Brr.t) — Aor(t)}

= n'2{Al} (5117) ASE(Bo. 1)} + ' P{AFL(Bo, t) — Aok (t)}
Z 1w1k (u)(ﬁo /BH)TZUC i= 1szk(/307u)
/ ST 1wzk<u>m< ) Lan */ S o (1) Vi ()

/ Zz 1{Wzk ) — 1}dMi1(By, u)
> iy wik(u)Yir (u)

(0.9)

By the uniform convergence of Zy (t) to ey (t), the first term of (0.9) is asymptotically equivalent
to n'/2r(By, )" (BU - ﬁo). Since {n~! 31" | wik(u)Yik(u)}_l can be written as a sum of two
monotone functions in u and converges uniformly to [E{Y1x(u)}] ™!, where E{Y1x(u)} is bounded
away from 0, and n=Y23"" | M, (B, u) converges to a zero-mean Gaussian process with con-
tinuous sample paths, it follows from Lemma 1 that the second term on the right-hand side of

(0.9) is asymptotically equivalent to

t 1 - n
J md{ 1/2;Mik(ﬁo=u)}

For the last term on the right-hand side of (0.9), it follows from (0.1), (0.2), and the uniform

convergence of {n=! 3" | wik(u)Yik(u)}fl to [E{Yix(u)} 7!, where E{Y1x(u)} is bounded away



from O that

/ P {wik(u —1}de(ﬁ07 w)

Sy wik(u)Yik(w)
E{(l - Alk)Ylk(U)ﬁoTZlk(U)}] du

n-1/2 _ -
Z( ) 1— Ay, / Yig(u (u) E{(l— Awy) Yir(u)} E{Y1k(u)}

n—1/2 _ Nik 1 ) — Yo (u E {dMi(By, u)|A1r = 1,6 = 0}
ey - (B QAEmmmPMW’”“) Einmreer

Now by combining the above results and using the asymptotic expansion of n'/ Q(ﬁ 11— Bp) where

=1 k=1
) n K : T E{(1-A R it
+n Uz;;(l—Aik) (%—1>‘/0 |: zk(ﬁw )_ zk(t) {E(){(l_lz)lk);il(kﬁ(?)})})dt
n 1/22nszjA-k<1—£)<”ﬂ—1)
1=1 k=1 Z Z (jk

E{dM. 1x(B, t)|A1x = 1,& =0}
E{Ylk(t”Alk — 1} :|> + 0p(1)a

we have

Wﬁwmm—mm}
fn’mzum Bo,t) +n~ 1/QZ< ~) i (Bost) +n” WZukﬁo’ £+ op(1)

=1
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where

K t
vie(B,t) = ()T AT M. i (B,7) + / [E{Yi(u)}] " dMix (8, ),

m=1

11 _ T A-1 S AL ! )
Ui (Bt) = ()" ATN Y (1= Ain) [ [Rin(B,w)
m=1 0

Vi () E {(1 = Au) Rum (8, )} t r
T ey et 0= 2 [ [ 2t
E{(1 - Au) Yir(w)8" Zus(w) }

E{(1 - Aw) Yig(u)}

du
E{Y1,(u)}

and

K
V(B 1) = m()TAT S A1 - &) @—m - 1) B0 + An(l—6) <’;—: - 1) W),
m=1 m
E{dM(B,u)|A = 1,& = 0}
EA{Yir(u)|Ay =1}
E{dM. 1x(B,u)|A1x = 1,6 =0}
EA{Yir(u)|Ay =1} '

E{Yix(u)}

t
¢O(B.1) = M.u(B,1) / V()
0

Q‘(li)(ﬁat) = /Ot ; |:dMik(ﬁ7u) — Yir(u) ] and

Now, let W (1) = (WD ()., W (1)} where W (t) = n=Y2 S0 vik(By, 1), WP(t) =
W), WP where W (1) =n 25, (1= %) vl (8y,1), and

W) = (W@, WP where WP (1) = n= V2" v (B, t) for k = 1,..., K.
Then, W (t) converges weakly to a zero-mean Gaussian process W) (t) = {Wl(l)(t), . ,Wé(l) (t)}T
in D[0, 7]% where the covariance function between WJ(I) (1) and W]gl) (t2) is E{v1;(Bo, t1)v1k(By, t2) }
by Yin and Cai (2004, Thm.2). W (¢) also can be shown to converge weakly to a zero-mean
Gaussian process W3 (t) = {Wl(Q)(t), . ,Wg) (t)}T where the covariance function between
WP (t1) and WP (t2) is =2 B{o{! (B, t1)¥1}(By, t2)}. This follows from Lemma 2, Cramer-
Wold device and the marginal tightness of W,iz) (t) for each k. It follows from the similar ar-
guments that W(g)(t) converges weakly to a zero-mean Gaussian process where the covariance

function between WJ@ (t1) and Wég)(tg) is
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(1) |16 =0 Pr(aw = 1) (222 cov {28100, B )l = 1.6 = 0}

#Pr(ay = 1) (F22) Cov {8000, malea) AT ¢ By 1)l = 1.1 =0}

"FPl‘Alk—l (

) Cov <1k (Bos t2), 75 (t1)T AT (Bo, 1) Ar = 1,61 = 0}

+mZ::1 r(App = 1) (1 q’”)

dm

x 75t A Cov {¢10 (8o 1), € (B t2)| A = 1,61 = 0 A7 ri(ta)]
It follows from the conditional expectation argument that these three terms are mutually inde-
pendent. Therefore, W (t) = WO (1) + WP (t) + W (¢) converges weakly to a zero-mean
Gaussian process W!(t) = W () + W) (t) + W) (¢). This completes the proofs.

APPENDIX B: EXPLICIT FORMS OF THE ASYMPTOTIC VARIANCES FOR nl/Q(BH — By) AND

n 2N (B t) — Mor(8)}, ..o, {ALE (B 1, ) — Aok (1)}]T AND THEIR CONSISTENT

ESTIMATORS

In Theorem 1,

K
S11(8y) =A™ {Q(Bo) +IZ0VI0B,) 4 (- 0) 3 Pran = 1) (122 Vif’@)(ﬂo)} At
k=1

gk

where

®2
A= ZAk,Q {ZMmﬁ, } :

E{(1 - Aw)Yie(t)}

I0,2), 4y {sz,lk(ﬁut”Alk =1, =0}
Vi @‘VM[ =14(8,7) / T @) = 18 = 1) }

VILM(8) = Var <i(1 _ Alk)/ [le(ﬁ £ — Yig@)E{( - Alk)le(ﬁvt)}:| dt) ,
k=1

M. 1 (8,1) = / {Zix(u) — ex(u)} dMig (B, u),

Ris(B.) = Yie(){ Zin(t) — ex ()} (or(t) + BT Zu (1)}, and ex(t) = E{ﬁfgﬁ’“}(“}.
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The matrices A, Q(8y), 52V (By), and (1-a) 1, Pr(Au = 1) (152) VE{(8,) can be

consistently estimated by A, Q(3;;), %V{I(Bn), and (1 — &) Zk:l or(Agy, = 1) (1%%) V(B

where

- ®2
_avb (S oA _ Ya®B{(1 = A Ri(B,1)}
Vi(B) = ;a <;(1 Am)/o {R (8:1) TSRO M) :
®2
oS (S [ i g - Ye®E{L = A Rin(B.1)
{ ; a (;(1 Am)/o [Rm(ﬁ’t) E{(1 - Aw)Yie(t)} } dt)}
Xik + _ _ ®2
Vor(8) = (m ZAzk 1—&)%[ = ik(B,7) = /0 E{dMEI{kz(/lﬁ,;(tt))l|AAli_:?}& _0}]
n X - ®2
| (1 e oy B (dM;1:(8, )| A = 1,6 = 0)
<( ) ;Azk ( 51) Tik [ z,zk(ﬁv ) A E (Hk(t”Alk _ 1) ]) 5

M. .ix(8,7) = { ik — Z Z;k:ujjk ?k((); } {Zi(Xjn) — Zy (Xj)}

Xik ()ﬁ ij()
“ {Zuwzkmk(t) g2l }{Z““ Z; ()} dt

: o [ e {aNi ) - V0B Zi 0t}
Rin(B,t) = Yir(t) { Zir(t) — Z}. (1) } S o Vi (0 +B8" Zu(t) |,

) (k)
zk(ﬁut)7Pr(A1k = 1) - -

n

S;ﬁz|’\"r

E{(1 - Aw)Rix(8, 1)} i

n

E{(1—Au)Yie(t)} =n~" Z(l = A Yie (1), E{Y1k ()| A1 = 1} = ! ZAikYik(t),

E{sz zk(ﬁ t)|A1k =1 51 —O}— 1ZAzk 1_51 Nik {sz (t)}dMlk(/B;t)v

Yiu(6) 5y win(8) { AN () = Vi (087 Zu ()t }

g Try
S win () Yir (1) —Yu(t)B" Zx(t)dt.

and dM;;,(8,t) = dN(t) —
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In Theorem 2, The covariance function between WJI T(t1) and Wi (t2) is

T (t1,12)(80) = E{v1;(Bo, t1)vin(Bo. t2)

17 (Bo, t1)¥i11 By, t2)} + (1 — @)

x [I( B Pr(Ay = 1) (2 ) v (e (Bo.t0). ¢ (B 1) Ak = 1.6 =0}
Pr(Ar; = 1) ( ) § By, t1). ()T AT (B, )| Ay = 1,6 = 0}
+Pr(Ayp=1) ( ) /807t2 ()T AT C (B, t1)| A1k = 1,6 = 0}
+ Z Pr(Aq, = 1) (1 ; q’”)
m=1 m
X ’I“j(tl)TAil COV{ gi{(ﬁo, tl), Cgi{(ﬁo, t2)|A1m = 1,51 = O} Ail’l"k(tg)} .
where
K t
vin(B,t) = ri(t)T A7} Z M. im(8) +/0 [E{Y1(u)}] " dMx (B, u),
m=1

K

_ - i [me (g Y @ ELQ = M) Rin(Bu)}]
w(B.8) = ()4 1,;_:1/0 = Am) [R“”(ﬁ’ ) E{(1 = Apn)Yim(u)} }d

- t ; _ E{(l —Alk)le(/Bau)} n
-‘r(l—Azk)/(; E{Ylk(U)} |:le(135 ) 1k( ) E{(I—Alk)ylk(u)} ]d ,

(1) s 1 Y E {dMi(B,u)|A1 = 1,6 = 0}
Cik (ﬂat) _/0 E{Ylk(u)} |: 1k(/65 ) ( ) E{Ylk( )|Alk _ 1} :| ’

) M. [ o EAIMe 1k (B, u)[Ae = 1,6 =0} [ o\
Cik (ﬂvt) _szlk(ﬁat) /0 }/Zk( ) E{Ylk(u)|Alk — 1} and rk(t) - /0 ek( )d .

e (t1,12)(By) can be consistently estimated by A% (t1,t2)(B;;) where

bk (tr,t2)(8) = n*lz = 0i5(B. 1)k (B, 1) + 1 a *12 %{f (B, 1)V (B t2) + (1 — &)

x {I(j — k)Pr(Ar = 1) <1 qkq’“> { D3,11), V(B )| Ary = 1,6 = o}

+Pr(ny = 1) () Cov {80 mulen)™ AT (B,t2) 1y = 1,6 =0}
J
4+ Pr(Ay, = 1) (1 gqu) {< V(8,12), r;(t1)T A (B 1) A = 1,6 = o}
K ~
+ 3 Pr(Arm = 1) (1 — ’”) (tl)TA‘lcE)v{ @ (3,t1), ¢2 (B, t2)| A1 = 1,6 = O}A_lfk(tg)T] :
m=1 m
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1

~ Man(B0) + / [B{Vix ()}~ Nk (B, w),

| b iy Yim (W)E{(1 — Avyn)Rim (u)} N
(1-— Azm)/o |:Rzm( ) E{(1— Apm)Yim(u)} } I

Vlk(,B t = ’l"k TA

»M*

-1

(8,0 = (wﬁa

T il

: B{(0- A Yi@B Zuw}] g
+ (1= Ai) [ Yie(uw) |B" Zip(u) - B{(l— A Yir(w)} B{Yix(u)} |’
CE)V{ W81, (R (B ta)| Ay = 1,61 = 0} ZAm — &)minCy (B, 11)C3 (B, 1)

- { -1 ZAzk 1 —&)Wm(lk /3 31 } { ZAzk 1 - 51 kam (/6 tQ)}
1=1

1=1

Cov {CS@) (B, t1), Tj(t)TAflguc (B, t2)| A1 = 1,6 = 0}

T Al - Emadi (8.0 {0 a7l B0}

- {ﬁc}g > Au(l- &)minCiy (B, t1)} { Z Aip(1 = &)munty(t)" A Clk (B, tz)}

i=1 =1

A (1l — fi)mkég@)(ﬁ, tl)&gg (B,t2)"

M:

Cov {¢{(8,11), ¢ (B, t2) A = 1,6 = 0} =}

Il
-

3

n n T
- {<mk>1ZAik<1 — &y (B,11) } { 7S Al - &)nad (8, m)} ,
=1

=1

A1) — AN _ E{dM(8,u)|Arp = 1,6 = 0}}
G (8.1) 0 E{Ylk )} { (B ) W E{Yik(u)|Ay =1} ’
(2) B ¢ E (dM. 1(8,u)|A1 = 1,6 = 0)
C’Lk (ﬁt - zzkﬁt /0 Kk E{}/lk( )|A1k:1} )
B (dM1x(8,1)| A, = 1,& = 0) = (m™) 71> " Ay (1 — &) mind Mir (8, ),
1=1
Pt / Z3 (u)du, and B{Yix(u)} =n 1Zm

The asymptotic variance functions for n'/2(3,—8,) and n'/2[{A}, (B}, )= Aor (1)}, .. ., {Al (B, 1) —
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Aok (t)}]T are the same as those in their time-varying counterparts except that

B 8o BB} 5 y11) () and
E{(l - Alk)Ym(u)} Vv (ﬁ) d wzk (/87 t)7

E{dM. 11(8,u)|A1p = 1,& = 0} o IO
E{Yir(u) = 1|Ay, = 1} k

E{dM(B,u)|A1x =1, =0}
E{Yir(u)|Ay =1}

(8) and ¢ (8,1)

in ¢ (8,1),

and

will disappear in the asymptotic variances for n'/2(8;—8,) and n'/2[{A}, (B;,t)—Ao1(t)},. . ., {AéK(BI, t)—
Aok (t)}]T since these terms are generated from the asymptotic expansion of &y (t) and g (t) ((0.1)

and (0.2)) which exist only in the time-varying weighed estimators.

APPENDIX CZ EXPLICIT FORMS OF THE ASYMPTOTIC VARIANCE FUNCTIONS FOR
n'/2(B,, — By) AND nY2[{Ah(By.t) — Aot ()}, {AS (Bars t) — Aok ()T

The asymptotic variance function for n'/2(8,, — B,) is

L K
ALY {Qlwo) + 1;—l‘”vl”’<”<ﬁo> +(1=a) > Pr(Ay =1) (1‘—q> vi® (m)} ALl

=1 k=1 qik

where

K - K ®2
Ay =Y piAu, A = Ei { / Yok (D Zuk (1)%° — ezt(t)®2}dt] ,Q,(B) = Ei {Z M. 1% (8, r)} ,
0 k=1

k=1

K
11,00 3Y — Var B T _Yzlk(t)Ez{(l—Alm)Rzlk(ﬁi)}] N
" (m_val@_l“ T (v 1) Rl )
|

M. 1ix(B,t) = /0 {Ziik(u) — ex(w)} dMyir (8, 1), Ryk (B, t) = Vi (){ Zuar (1) — et () Hox () + BT Z1ux (1)},

L
Yiie(t)Z t
= Zl:lpl Eu (Vi (t) Zu ( )},al = lim &y, qr = lim ¢, and p; = lim ﬂ.
n— oo

st
ep (t)
Zlel o EdYne(t)} n—o0 n—oo N

Note that E;, Var; and Cov; denote the expectation, the variance and the covariance within the

lth stratum, respectively.
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The covariance function between W/, (t1) and Wi/, (t2) is

(507t1)7/11111k(50a t2)}+ (1 — )

L
sz <El{Vl1j(B07t1)Vl1k(ﬂ0at2)

. 1-
x [I(y = k) Pr(Ang = 1) <ql—f”“> Cov, {q(f;(ﬁo,tl),<§f,2<50,t2>|Auk = 1L.&n =0},
1 i -
# Pr(8ny = 1) (2212 ) Con {68 (By,t2) i) 4562 (Bos )l s = 1,60 =0
J
1 _
+Pr(Ane =1) (ql_quk) Cov; {Cl(lllz(ﬁmt2)=T;t(tl)TAstICl(fl)c(ﬁmtl)|Al1k =1,&n = 0}

K 1
+ 3 Pr(Ap, = 1) (ﬂ)
me1 qim
1,.st

X 73 ()T AL Covi {3, (Bost1): €l By, 12) | B = 1,60 = 0} AL ril(12)] ).
where

K
vik(B,t) = rif ()T AL Z M. 1im (B / Zpl E{Yix(u)}] " dMx (B, u),

m=1 0 1=

Yiim (u) Ei {(1 — Apim) Rizm (8, )}
’(/J (/8 t) = ’f’ TASt Z / 1 — Alzm) |:Rlzm(/3 t) E {(1 — Allm) llm(t)} :| dt’
- Ei{(1 — Aur)Ruk(B,u)} »
s > e SN Rt Vit B SR T O
_ ) — Vi () B {dM11(B,u)| Ak = 1,61 = 0}
e / Sy i Yok (u) [dMle(ﬁ’ ) Vi) Er {Yar(u)|Ang = 1} }

Ei {dM. 11 (8, uw)|Ank = 1,1 = 0} st -
(Bt =M. k(8. 1) —/0 Yiir (u) B (Vi (@B = 1) and v’ (t) = —/0 es! (u)du.

APPENDIX D: PLOTS FOR CHECKING THE MARGINAL ADDITIVE HAZARDS ASSUMPTION FOR

THE ARIC STUDY DATA

[Fig. 1 about here.]
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Fig. 1. Plots of the observed standardized score process (the bold, solid line) and the simulated score
processes (the dashed lines) for the ARIC study data. (a) CRP2 for CHD; (b) CRP3 for CHD; (c)
CRP2*(LDL-C < 130) for CHD; (d) CRP3*[(LDL-C < 130) for CHD; (e) CRP2 for stroke; (f) CRP3
for stroke; (g) CRP2*(t > 1,069) for stroke; (h) CRP3*(t > 1,069) for stroke



