
Biostatistics (2012), 0, 0, pp. 1–11
doi:10.1093/biostatistics/classificationsupplementary

Supplementary for “Classification of patients

from time-course gene expression”

YUPING ZHANG∗

Stanford Genome Technology Center, Palo Alto, CA 94306

yupingz@stanford.edu

ROBERT TIBSHIRANI

Departments of Health, Research and Policy, and Statistics, Stanford University, CA 94305

RONALD DAVIS

Stanford Genome Technology Center, Palo Alto, CA 94306

1. An underlying model

We now consider a model to support our method – TPAM (Time-course Prediction Analysis

using Microarray). Suppose we have a p × T × N dimensioned variable X with N observations

xgti, where g ∈ {1, . . . , p}, t ∈ {1, . . . , T}, i ∈ {1, . . . , N}. Let X∗∗i be the p×T matrix indicating

time course gene expression measurements of patient i. For simplification, we write X∗∗i as

Xi. Assume Xi ∼ MVN(µk,Σk) from class k, where µk is a p × T matrix and estimated by

µ̂k(g, t) = 1
Nk

∑
i∈Ck

xgti. Σk is a T × T × p array. For a given g, Σk(|g) is a T × T matrix. We

assume Σk(|g), k ∈ {1, . . . ,K}, have common covariance matrix Σ(|g), where K is the number

of classes. Let X̄ = 1
N

∑N
i=1Xi be the sample mean matrix (p× T ). X̄g and Xgi are the column
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vectors with length of T for gene g. The total sample variance matrix ST for gene g is defined as

STg =
1

N

N∑
i=1

(Xgi − X̄g)(Xgi − X̄g)
T .

The within-class k covariance matrix SWkg is given by

Σ̂k(|g) = SWkg =
1

Nk

∑
i∈Ck

(Xgi − µ̂gk)(Xgi − µ̂gk)T .

The overall pooled within-class covariance matrix Swg is given by

SWg =
1

N

K∑
k=1

∑
i∈Ck

(Xgi − µ̂gk)(Xgi − µ̂gk)T .

The between-class covariance matrix is given by

SBg = STg − SWg

For every gene g, Xgi is a T dimensional observation vector. Let θg be a non-singular linear

transformation that transforms the data variables Xg into new variables χg. We assume that all

the class discrimination information resides in a 1 dimensional sub-space of the T dimensional

observation space. This is equivalent to assuming that only the first component of χg carries

any class discrimination information. Thus, based on this assumption, the class means lie in a

one-dimensional subspace, and the remaining T − 1 dimensional subspace is homogenous with

respect to class means and variances. We partition the parameter space of θg as θg = [ag, θ/ag].

Let Zg denote the first row of χg and χ/Zg denote the remaining T − 1 rows of χg. The Zg,

g ∈ {1, . . . , p} constitutes the p×N transformed matrix Z with zgi = aTgXgi, i ∈ {1, . . . , N}. For

sample i from class k, the transformed vector Zi = (z1i, . . . , zpi) follows a multivariate normal

distribution MVN(νk, Dk), where νk = (aT1 µk(1), . . . , aTp µk(p)) is the mean vector for class k,

and Dk is the covariant matrix for class k. The covariance Cov(aTg1Xg1,Ck
, aTg2Xg2,Ck

) is equal to
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aTg1Σ(|g1, g2, Ck)ag2 . We further assume that the covariance matrices are the same across different

classes and are diagonal, that is,

Cov(aTg1Xg1,Ck
, aTg2Xg2,Ck

) =

{
aTg1Σ(|g)ag2 = σkg = σg, if g1 = g2 = g;
0, else.

The p × T mean matrix of χ/Z is denoted as υ/ν , with estimation ν̂0 = θT/aX̄, where X̄ =

1
N

∑N
i=1Xi. The (T − 1) × (T − 1) variance matrix of χ/Zg for gene g is denoted as Ω/Dg =

Diag(σ2
0g, . . . , σ

T
0g), with the estimation Ω̂/Dg = θT/agSTgθ/ag.

In summary, the means υk(g) and variances Ωk(g) of χg for each class k and each gene g are

as follows

υk(g) =

(
νk(g)
υ/ν(g)

)
,

υ̂k(g) =

(
aTg µ̂k(g)
θT/agX̄g

)
,

Ωk(g) =

(
Dk(g) 0

0 Ω/Dk(g)

)
=

(
D(g) 0

0 Ω/D(g)

)
,

Ω̂k(g) =

(
aTg SWk

(g)ag 0
0 θT/agST (g)θ/ag

)
=

(
aTg SW (g)ag 0

0 θT/agST (g)θ/ag

)

The probability density function of variable Xgi, i ∈ Ck under the model can be written as

p(Xgi) =
|θ|

(2π)
T
2 |Dk|

1
2

exp{ (χgi − υk)TΩk(χgi − υk)

2
}

The log-likelihood of the data can be written as
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logL(υ,Ω, θ|X) = −pNT
2

log 2π + pN log |θ| −
p∑
g=1

{N
2

T∑
j=2

log |σj0g|−

K∑
k=1

Nk
2

log |σkg| −
1

2

K∑
k=1

∑
i∈Ck

(aTgXgi − νk(g))2

σkg
+

1

2

K∑
k=1

∑
i∈Ck

T∑
j=2

(θT/agXgi − υ/v(g))2

σj0g
}

The maximum likelihood estimation of ag, g ∈ {1, . . . p} can be obtained by maximizing

logL(θ|υ̂, Ω̂, X), that is,

θ̂ = argmaxθ{N
p∑
g=1

[−1

2
log |Diag(θT/agSTg

θ/ag)| −
1

2
log |Diag(aTg SWg

ag)|+ log |θ|]} (1.1)

It can be proved that θ̂g corresponds to the right eigenvectors of S−1Wg
STg

and ag is the first

eigenvector of S−1Wg
STg

with the largest eigenvalue. This maximization problem is equivalent to

the following maximization problem.

J(ag) =
aTg SBgag

aTg SWgag
, (1.2)

Let Υ be a N ×K matrix with elements γik indicating whether patient i is in class k, where

i ∈ {1, . . . , p} and k ∈ {1, . . . ,K}. We first center and scale each element zgi of Z to be

ygi = (zgi − z̄g)/(cksg + s0) = (aTgXgi −
1

N

N∑
i=1

aTgXgi)/(cksg + s0) (1.3)

and consider the linear regression:

ygi =

K∑
k=1

γikωgk + εgi, (1.4)

where ωgk = (νgk−z̄g)/(cksg+s0) = (aTg µk(g)− 1
N

∑N
i=1 a

T
gXgi)/(cksg+s0), ck =

√
1/Nk − 1/N ,

sg =
√

1
N−K

∑K
k=1

∑
i∈Ck

(zgi − z̄gk)2, and εgi are independent of each other and follow N(0, σεk),

if sample i belongs to class k. We add an L1 penalty to the above regression model to select the

predictors. The estimator of ωgk can be obtained by minimizing the following objective function.

The score function is
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ω̂gk = argmin
ωgk

1

2

N∑
i=1

p∑
g=1

K∑
k=1

γik
Nk

(ygi − ωgk)2 +4
p∑
g=1

K∑
k=1

|ωgk|

= sign(
∑
i

γikygi)(|
∑
i γikygi∑
i γik

| − 4)+

= sign(dgk)(|dgk| − 4)+

This is equivalent to shrinking the centroids of each gene towards zero as addressed in Wang and

Zhu (2007); Wu (2005).

2. Simulation Studies

2.1 Simulation study I

We performed a simulation study to validate the performance of our method. The simulated data

set of time point t - Xt consisted of 1000 “genes” (rows) and 100 “patients” (columns). Patients

1 ∼ 50 belong to “type I”, while patients 51 ∼ 100 belong to “type II”. Here we considered three

time points. Let xtgi, t ∈ 1, 2, 3 denote the “expression level” of the gene g and patient i at time

point t. We generated the data as follows:

x0gi =


6 + εb g 6 100, i 6 50
6.1 + εb g 6 100, i > 50
3.5 + 0.2I (µi < 0 .4 ) + εb 200 < g 6 300
3.5 + εb else

x1gi =


0.5 + εt + x0gi g 6 100, i 6 50
−0.3 + εt + x0gi g 6 100, i > 50
εt + x0gi else

and

x2gi =


−0.8 + εt + x1gi g 6 100, i 6 50
−0.7 + εt + x1gi g 6 100, i > 50
εt + x1gi else

Here, εb ∈ N(0, 2.5) and εt ∈ N(0, 2), and both are normal distributions. The µi is the

uniform random variable on (0, 1) and I (x ) is an indicator function. We introduced the time
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course structure in the 1 ∼ 100 genes.

After generating the training data sets, we constructed the test data sets by the same manner

independently. We performed the simulation data sets 10 times independently, and applied the

prediction on each simulation. First we performed the class prediction. To compare, for gene

expression data from each time point, we applied the PAM to build the predictors using training

data and make the prediction on the test data set. The performance of prediction was character-

ized by the error rate in the test data. We repeated the whole process 10 times and calculated

the average performance of the 10 time simulations. Then we generated one big matrix of gene

expression for each simulation by simply combining the gene expression from three time points.

We performed the regular PAM on the pooled matrix directly. For each tuning parameter, we

recorded prediction performance and averaged them across the 10 independent simulations. We

also applied the PC-PAM with the first principal component as the unsupervised direction at

the first stage and PAM at the second stage. Finally, we applied our prediction methods for

longitudinal data (TPAM) with the linear optimal projection at the first stage and PAM at the

second stage respectively. We use the number of features as the tuning parameter. As shown

in the top-left panel of Figure 1, the TPAM using longitudinal gene expression has the best

performance.

2.2 Simulation study II

We performed a simulation study to validate the performance of our method. The simulated data

set of time point k - Xk consisted of 1000 “genes” (rows) and 100 “patients” (columns). Here we

considered three time points. Let xijk, k ∈ {1, 2, 3} denote the “expression level” of the gene i

and patient j at time point k. We generated the data as follows:
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xij0 =

 6 + εb i 6 100, j 6 50
6.1 + εb i 6 100, j > 50
3.5 + εb else

xij1 =


0.5 + εt + x0ij i 6 100, j 6 50
−0.3 + εt + x0ij i 6 100, j > 50
εt + x0ij else

and

xij2 =


−0.8 + εt + x1ij i 6 100, j 6 50
−0.7 + εt + x1ij i 6 100, j > 50
εt + x1ij else

Here, εb ∈ t(3), εt ∈ t(3), which is Students t-distribution with the degree of freedom 3. We

introduced the time course structure in the 1 ∼ 100 genes.

Patients 1 ∼ 50 belong to “type I”, while patients 51 ∼ 100 belong to “type II”. After generat-

ing the training data sets, we generated the test data sets by the same manner independently. We

generated the simulation data sets 10 times independently, and applied the prediction on each

simulation. First we performed the class prediction. For gene expression data from each time

point, we applied the PAM to build the predictors using training data and make the prediction

on the test data set. The performance of prediction was characterized by the error rate. We per-

formed the whole process 10 times and calculate the average performance of 10 times simulation.

Then we generated one big matrix of gene expression for each simulation by simply combining the

gene expression from three time points. We performed the PAM on the pooled matrix directly.

For each tuning parameter, we recorded prediction performance and averaged them across 10

times independent simulation. At last, we applied our prediction methods for longitudinal data

with linear optimal projection at the first stage and PAM as the second stage respectively. One

can notice that in the original PAM method, the tuning parameter has different range across the

above five prediction scenario. To make the performance across the five scenario comparable, we

use the number of features as the tuning parameter. As shown in the top-right panel of Figure

1, our approach using longitudinal gene expression has the best performance.
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2.3 Simulation study III

We performed another simulation to further validate the performance with correlated genes.

We simulate expression for 1000 genes, 100 patients and three time points. We first generate a

1000× 1000 non-diagonal correlation matrix Σ as below:

Σij =

 1, if i = j
0.5, if i 6 50, j < 50, i 6= j
0 else

The formula for the simulation is below:

xgi0 =

 6 + εb g 6 100, i 6 50
6.1 + εb g 6 100, i > 50
3.5 + εb else

xgi1 =

 0.5 + εt + xgi0 g 6 100, i 6 50
−0.3 + εt + xgi0 g 6 100, i > 50
εt + xgi0 else

and

xgi2 =

 −0.8 + εt + xgi1 g 6 100, i 6 50
−0.7 + εt + xgi1 g 6 100, i > 50
εt + xgi1 else

Here, εb ∈MVN(0,Σ) , εt ∈ N(0, 2) which are multi-variate normal distribution and normal

distribution respectively. The µj is the uniform random variables on (0, 1) and I (x ) is an indicator

function. We introduced the time course structure in the 1 ∼ 100 genes.

Patients 1 ∼ 50 belong to “type I”, while patients 51 ∼ 100 belong to “type II”. After generat-

ing the training data sets, we generated the test data sets by the same manner independently. We

generated the simulation data sets 10 times independently, and applied the prediction on each

simulation. First we performed the class prediction. For gene expression data from each time

point, we applied the PAM to build the predictors using training data and make the prediction

on the test data set. The performance of prediction was characterized by the error rate. We per-

formed the whole process 10 times and calculate the average performance of 10 times simulation.
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Then we generated one big matrix of gene expression for each simulation by simply combining the

gene expression from three time points. We performed the PAM on the pooled matrix directly.

For each tuning parameter, we recorded prediction performance and averaged them across 10

times independent simulation. At last, we applied our prediction methods for longitudinal data

with optimal projection at the first stage and PAM as the second stage respectively. One can

notice that in the original PAM method, the tuning parameter has different range across the

above five prediction scenario. To make the performance across the five scenario comparable, we

use the number of features as the tuning parameter. As shown in the bottom-left panel of Figure

1, our approach using longitudinal gene expression has the best performance.

2.4 Simulation study IV

We performed another simulation to further validate the performance using the non-linear pro-

jection at the first stage of our method. We simulate expression for 1000 genes, 100 patients and

2 time points. Patients 1 ∼ 50 belong to the first class, while patients 51 ∼ 100 belong to the

second class. The formula for the simulation is below:

x0gi =


6 + εb g 6 100, i 6 50
6.1 + εb g 6 100, i > 50
3.5 + 0.2I (µj < 0 .4 ) + εb 200 < g 6 300
3.5 + εb else

x1gi =


0.1x0gix

0
gi − 0.1x0gi + 4 + εt g 6 100, i 6 50

0.05x0gix
0
gi − 0.1x0gi + 4 + εt g 6 100, i > 50

εt + x0gi else

Here, εb ∈ N(0, 2.5) , εt ∈ N(0, 2) which are normal distributions. The µi is the uniform

random variables on (0, 1) and I (x ) is an indicator function. We introduced the time course

structure in the 1 ∼ 100 genes.

After generating the training data sets, we generated the test data sets by the same manner

independently. We generated the simulation data sets 10 times independently, and applied the
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prediction on each simulation. First we performed the class prediction. For gene expression data

from each time point, we applied the PAM to build the predictors using training data and make

the prediction on the test data set. The performance of prediction was characterized by the error

rate. We performed the whole process 10 times and calculate the average performance of the

10 simulations. Then we generated one large matrix of gene expression for each simulation by

simply combining the gene expression from three time points. We performed the PAM on the

pooled matrix directly. For each tuning parameter, we recorded prediction performances and

averaged them across the 10 independent simulations. Last, we applied our prediction methods

for longitudinal data with nonlinear optimal projection at the first stage and PAM at the second

stage respectively. We use the number of features as the tuning parameter. As shown in the

bottom-right panel of Figure 1, our approach using longitudinal gene expression has the best

performance in both situations.
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Fig. 1. Classification performances of TPAM and PAM on simulation data with different types of distribu-
tion assumptions. Top-left: Simulation study I (independent normal distributions, section 2.1); top-right:
Simulation study II (independent t-distribution, section 2.2); bottom-left: Simulation study III (normal
distribution with correlated genes, section 2.3); bottom-right: Simulation study IV (optimal direction is
non-linear, section 2.4). Black ◦: TPAM with linear “optimal direction” projection at the first stage; red
4: PAM 1, PAM using the first time point; green +: PAM 2, PAM using the second time point; blue ×:
PAM 3, using the third time point; cyan �: PAM C, applying PAM to the data set combining the early
and middle time points; pink: PC-PAM with the first principal component as the direction of projection
at the first stage. Y-axis is the error rate on the test data.
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