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Overview

This file provides a brief description of the individual-based modeling framework Rstisim. It
contains examples on how to define the partnership formation and an infection. It also contains
a section on simulation times for different models.

Rstisim is an individual-based (or agent-based) model simulation software written in C++ and is
fully integrated into the statistical software package R [1]. Its main purpose is to simulate STI-type of
infections, which involve formation of complex dynamic partnership networks. Some of the internal
structure of Rstisim was inspired by a model developed for the Chlamydia Screening Studies (ClaSS)
project [2], which was designed to investigate the effectiveness and cost-effectiveness of systematic
screening for Chlamydia trachomatis infections. We refer to Garnett et al. [3] for a survey on general
modeling techniques, including individual-based models, and to Althaus et al. [4] for STI-specific
model comparisons.

The software is event-based and runs in continuous time. At the heart is a so-called event-queue
that stores events in form of a binary heap [5]. This structure allows for fast insertion of new events
at any time point and fast access to the root, which represents the event to be executed next. These
are the only two operations needed for our purpose (deleting arbitrary events from the queue is
done by flagging them as deleted). Event-based simulations (EBS) differ from the popular discrete
time, day-by-day simulations (DBDS, the time steps can be others than days, of course). In DBDS,
the occurrences of events are regulated by per-day probabilities of these events happening (see e.g.
Low et al. [2]), which may be intuitive from the modeling point of view, but is rather wasteful in
terms of CPU time, as the potential occurrence of each possible event has to be simulated each
day for each object. It is clear that, especially for rare events, this is not optimal. Even if events
(such as death of an agent, end of partnerships) are simulated far in advance, the software has to
query every day whether or not the event is due on that specific day. In EBS, the time points of
occurrences of events are simulated in advance and stored in the event queue, and, as events are
executed, new events are created and stored in the queue. The drawback of this approach is that it
can add considerable complexity to the software because future events need to be re-evaluated due
to changes in the states of the agents so these events have to be deleted and re-sampled correctly.
The pay-off is increased speed: once a future event has been determined and it has been stored in the
event-queue, there is no need to enter this subroutine again, until the event actually occurs. However,
the intuitive per-day probabilities have to be replaced by a distributional approach, that is, all events
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have a certain distribution of when they occur in the future. In EBS, the analogue of a constant per-
day probability is the exponential distribution and events with changing per-day probabilities can be
simulated using a combination of time inhomogeneous Poisson processes and thinning [6] and the
well-known rejection algorithm [7].

The different (simplified) conceptual layers of Rstisim consist of

• Agents (birth/death);

• Partnerships (formation/dissolution, any number of concurrent partnerships possible);

• Sexual contacts (protected/unprotected, within partnerships only);

• Infections (transmission during sexual contacts);

• Intervention (visit to health care setting due to symptoms or due to screening);

• Partner notification / contact tracing.

Agents, partnerships and infections (let us call them objects from now on) can be configured to be
of any finite number of types (such as gender for agents, casual/steady partnerships); types are fixed
during the lifetime of an object. Objects can also be in any finite number of states (e.g. an infection
may be programmed to be latent, symptomatic and asymptomatic); states can change during the
lifetime of an object. The flexibility of Rstisim comes from the fact that the types and states can be
freely configured by the user and that the time points of any future events can depend on the types
and current states of the agents, partnerships and infections at the time when the future time point
is decided (that is, sampled). Furthermore, these time points might also depend on built-in variables
(current number of partners, distance from the index case in a sequence of partner notifications,
number of treatments for an infection that an agent has undergone, etc.).

We give three short examples of the capabilities of Rstisim below. A full description of the
functionality of the software is not possible here. A full model is defined in one configuration file,
which is read and interpreted by the R part of the package in order to initialize the C++ code. The
simulation can be run repeatedly any fixed length of time. After that, the user can retrieve various
data matrices describing the current individual states of the agents, partnerships, infections etc. From
these basic data matrices, more complex statistics such as detailed partnership networks and partner
notification cascades can be reconstructed. As all the data matrices are stored in native R formats one
can make full use of all the built-in functionality and extensions of R, which simplifies and speeds
up the analysis.

The partnership formation rule currently implemented is that from the ClaSS model [2]. Assume
there are n agents in the population. Once an agent (initiator) decides to start a partnership that
agent will form a new partnership at that time point. The software will then find a partner among all
the other (n-1) agents proportionate to (n-1) weights that depend on the initiator and each respective
individual. In order to avoid calculating all the weights, the rejection algorithm is used again: assume
that the weights are standardised to be less or equal to one; pick uniformly an agent among the (n-
1) remaining ones, calculate the weight w based on the initiator and the chosen agent, then toss a
coin with probability w of showing heads. If the coin shows heads, take that agent as the partner,
otherwise repeat the loop. Two examples of how weights are assigned to potential partners are given
in Configuration Example 1 and 2.
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Configuration Example 1: Definition of the partnership formation in a model with concurrency

1 partnershipformers: {

2 individual = {

3 active = ["female","male"];

4 seek = { depends="currentpartners";

5 0 : { rate = 1.34544/1y; };

6 1 : never;

7 };

8 accept = { depends="currentpartners";

9 0 : 1;

10 1 : 0.294195;

11 2 : 0;

12 };

13 mixingfactors = {

14 names=["f2m","m2f"];

15 f2m = { from="female"; to="male"; value=1; };

16 m2f = { from="male"; to="female"; value=1; };

17 };

18 };

19 };

In Line 3 we declare that both males and females should actively initiate partnerships. The seek
parameter defines at which time points this should happen (it corresponds to the pair formation rate
ρ in the triple model from the main text). In the above example, initiating partnerships will only
happen if the individual is single (that is, if the internal variable currentpartners is zero). If this
is the case, then the next time point of initiating a partnership will be an exponentially distributed
time with mean 1.35 years away from the current simulation time (Line 5); the first such event
is set when the individual is created (that is, “born”). The accept and mixingfactors are used
to calculate the weights between the initiator and the potential partner. If the potential partner has
currently no partners, then the base weight is 1, if it has 1 partner it is 0.29 (corresponding to α in the
triple model from the main text) and if it has more partners it will always be 0. This number is then
multiplied by mixingfactors, which ensures that only heterosexual partnerships are created (that
is, if both individuals have the same sex, then the mixingfactors parameter will be 0, otherwise it
will be 1). Note that if an individual accepts a partnership, then its next partnership initiation event
defined via the seek parameter will automatically be re-evaluated (in the above case just deleted, as
individuals who are in a partnership do not initiate as defined on line 6). If the person becomes single
again, the seek parameter is again used to install a new partnership initiation event in the future.

Configuration Example 2: Definition of the partnership formation in a model with risk classes

1 partnershipformers: {

2 individual = {

3 active = ["female","male"];

4 seek = { bybin;

5 low : { rate = 0.6078578/1y; };

6 high : { rate = 8.0517338/1y; };

7 };

8 seekfactor = 0.5;

9 mixingfactors = {
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10 symmetric = "type";

11 names = ["female2malelow","female2malehigh"];

12 female2malelow = {from="female"; to={type="male";bin="low";};

13 value = {bybin; low=0.07549403; high=0.07549403;};};

14 female2malehigh = {from="female"; to={type="male";bin="high";};

15 value = {bybin; low=1.0; high=1.0;};};

16 };

17 };

18 };

In Line 4 we declare the rate at which individuals seek their partners. The heterosexual popula-
tion is stratified into two risk classes (low and high) that have their specific contact rates as given
in the risk class model (see Text S1). The contact rates are scaled with 0.5 (seekfactor) because
an individual can both be an initiator and acceptor of a partnership (Line 8). Potential partners are
randomly chosen from the population and weighted depending on the risk class of the initiator and
the acceptor (mixingfactors). The mixing is symmetric according to type, i.e., it is the same if
a female chooses a male and vice versa. The values are interpreted as follows: if a female of risk
class low seeks a partner and the algorithm samples a male of risk class low, the probability that this
partnership will be accepted (its weight) is 0.075 (Line 13). If the algorithm samples a male partner
of risk class high for the same female, the partnership will be immediately accepted because the
weight is 1.0 (Line 15). The values in mixingfactors are derived from the mixing matrix of the
risk class model (see Text S1) through division by the proportion of individuals in the risk group of
the acceptor and scaling so that the highest value is 1 (the probability that a partnership is accepted
if both partners belong to risk class high, Line 15).

Configuration Example 3: Definition of Chlamydia trachomatis infection

1 infections : {

2 chlamydia : {

3 states = {

4 names = ["latent", "asymptomatic", "cleared", "treated"];

5 transitions = {

6 names = ["l2a","a2c"];

7 a2c : { from="latent"; to="asymptomatic"; at=10d; };

8 a2c : { from="asymptomatic"; to="cleared"; at={rate=1/1y;};};

9 };

11 };

12 prevalencewhenpopulating = 0.03;

13 infectiousness = {bystate; latent=0.01; asymptomatic=0.0895; *=0;};

14 };

15 };

In line 4, we define four states the infection can be in: latent, asymptomatic, cleared and
treated (for the simulations in the main text, we did not use latent but it is included here for
clarity). By default, an infection will always start in the first state, here latent. Line 7 defines
a transition from latent to asymptomatic after exactly 10 days since the infection was created.
Line 8 defines a transition from asymptomatic to cleared (which means naturally cleared). The
part “rate=1/1y;;” means that after an exponentially distributed time with mean 1 year the in-
fection will change into state cleared. By default, the infection will be detached from the agent
but will remain in the memory for later analysis via R. Note that there is no natural transition from
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Figure S10: Simulation times for different population sizes. The four different models were simulated on the
Amazon Elastic Compute Cloud (Amazon EC2, 64bit Linux, m2.2xlarge, 34.2 GB of memory, one core has
3.25 EC2 Compute Units,which corresponds to about 3.5 GHz Intel Xeon Core). Note the double logarithmic
scale.

asymptomatic to treated. This transition can only be invoked by visiting a health care setting and
hence is defined elsewhere in the configuration file. The infectiousness of the infection depends on
the state as defined on Line 13: if the infection is in latent state, the probability per unprotected
sex-act is 0.01. Once the infection proceeds to the asymptomatic state, the probability increases
to 0.09; otherwise it is 0 (which is not relevant here, as for the two remaining states the infection is
removed from the host anyway).

Simulation time
Simulation times in Rstisim heavily depend on the model complexity (Fig. S10). Models where
individuals engage in repeated sex acts within partnership (pair and triple model from the main
text) require substantially more simulation time than models where sex contacts are assumed to
happen instantaneously (instantaneous contact model from the main text and the risk class model
from Text S1). There is an almost linear relationship between simulation time and population size;
100 simulations runs with a population of 20,000 take about the same time as 10 simulations with
a population size of 200,000. However, memory requirements increase with increasing population
size. We chose a population size of 20,000 for the simulations in the main text and in Text S1
because it ensures that the infection does not die out while 100 simulation runs yield acceptably
small standard errors of the results. Robust estimation of multiple parameters for complex models is
not feasible with current simulation times.
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