Additional file 1: Schematic and mathematical description of the pathway-level
aggregation methods
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Schematic of the three mean-based methods. Algorithmic steps in Mean all, Mean top 50%, and Mean
CORGs are schematized.



Mathematical description of the mean-based methods

Given a gene expression data with n samples and a pathway whose m member genes are represented in the
data, let an m x n matrix X be a z-scaled gene expression profile of the pathway’s member genes. Then, each
element x;; is a z-scaled expression level of a member gene i in sample j. Pathway-level aggregation methods
seek to derive a pathway expression profile a which is a vector with n elements.

Mean all
Each element g; is calculated as
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Mean top 50%

The member genes’ expression profile is subject to Student’s t-test. Then, the member genes are sorted by |f|
in descending order, or equivalently, by p-value in ascending order. The top 50% of the member genes are
selected, and their gene expression profile is averaged as in Equation (1).

Mean CORGs
The member genes’ expression profile is subject to Student’s t-test. Overall direction of the pathway’s
expression change is found by the sign of the mean of all the member genes’ t-statistics (f). Then, the
member genes are sorted by t-statistic according to the overall direction;

Descending order if t>0 (Most up-regulated genes are arranged to the top)

Ascending order if t<0 (Most down-regulated genes are arranged to the top)
In this way, a sorted list of member genes {g1, g2, g3, ..., gm} is obtained.

Let Gi be a set of CORGs containing top k member genes. Then each element g; is given by;

k
a; = % ; X )
where the sum is divided by square root of k to stabilize variance.
Let S(Gy) the pathway-level t-statistic obtained from a. Finding CORG set amounts to identify optimal k
member genes that maximize the pathway-level t-statistic.
The CORG set is iteratively expanded until the pathway-level t-statistic does not improve, at which point the
final CORG set and its aggregated pathway expression profile a is returned, as shown in the pseudocode;

Initialize Go = { } and S(Gg) =0
FORi=1tom
Add the next ranked gene g; to CORG set G;
Aggregate the member genes’ expression by Equation (2) to obtain a
Perform t-test on a to obtain S(G;)
IFS(Gi)| < [S(Gi)l
BREAK
END FOR
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Schematic of the two projection-based methods. Algorithmic steps in PCA and PLS are schematized.




Mathematical description of the projection-based methods

PCA (Principal Component Analysis)

PCA expects a data matrix in which samples are arranged in rows and variables in columns. Thus the
aforementioned m x n matrix X needs to be transposed to an n x m matrix so that samples are arranged in
rows and genes in columns. To simplify notation, the transposed matrix X" will be referred to simply as X
from now on.

Method 1. PCA by singular value decomposition (SVD) of X

PCA can be performed by SVD of X, which yields the factorization

X =UZV' @)
where

U is an n x n orthogonal matrix

X is an n x n diagonal matrix

V is an m x n orthogonal matrix.

The matrix product UX is called the scores, in which each column gives the location of n samples with each
PC axis. The matrix V is called the loadings, in which each column gives the location of each PC axis
relative to the original system of m axes. First column in the scores matrix is taken as the pathway expression
profile vector p.

Method 2. PCA by eigenvalue decomposition of a covariance matrix of X

Alternatively, PCA can be performed by eigenvalue decomposition of a covariance matrix of X.

An m x m symmetric matrix C which is given by the following equation

C= 1 xrx 4
n-1

is called the covariance matrix of X (if X is mean-centered) or correlation matrix of X (if X is mean-centered

and divided by standard deviation; i.e., z-scaled).

Since C is a symmetric matrix, C is an orthogonal matrix and orthogonally diagonalizable. Thus, C has n

linearly independent eigenvectors p such that

Cp, =d.p;, i=1...,m (5)

where p; is i-th eigenvector and d; is corresponding eigenvalue.

In matrix form, Equation (5) can be written as

CP = PD ©)
where D =diag{d,.,...,d,}

Since P is an orthogonal matrix, it holds that P =P . Thus Equation (6) can be written as

C =PDP’ (7)
where

P is an m x m orthogonal matrix whose columns are eigenvectors of C

D is an m x m diagonal matrix whose diagonal entries are eigenvalues of C.



Relationship between the two methods
It can be seen that the two aforementioned approaches yield the same results as shown below.
From Equation (3), X"X is given by

X'X = (UZV") (UZVT) = (VEUT)(UZVT) = (VE)(UTU)(ZVT) = (VE)(I)(2VT) = VE?VT
From Equations (4) and (7), X"X is given by

XX =(n-1)C=(n-1)PDP’

Thus, it follows that V=P and (n-1)D=X’.

How to perform PCA in R

For the z-scaled and transposed n x m matrix X, PCA can be performed by either prcomp() or svd(),
yielding the same results. First column of the resultant scores matrix is taken as the pathway expression
vector a.

Using prcomp()

PCA <- prcomp(X, center=F, scale=F)
Scores <- PCA$x
PathwayExpressionVector <- Scores[,1]

Using svd()

SVD <- svd(X)
U <- SVD$u
D <- diag(SVD$d)
Scores <- U %*% D
PathwayExpressionVector <- Scores[,1]

In the analysis shown in the paper, moduleEigengenes() function in WGCNA package was used, which
use svd(). To correct the sign of the elements in the pathway expression vector a, the function was called

with the al 1gn parameter as follows;

dummyColors <- rep(“grey”, numberOfMemberGenes)
ME <- moduleEigengenes(X, align="along average”, scale=F, color=dummyColors)
PathwayExpressionVector <- ME$eigengenes[[1]]

PLS (Partial Least Squares)

PLS seeks to find a regression model between T and U (the principal component scores of X and those of Y,
respectively).

The matrix X is decomposed into a score matrix T and a loading matrix P, and an error term E. The matrix Y
is decomposed into a score matrix U and a loading matrix Q, and an error term F. In two-class classification
problems, the matrix Y is a dummy coded class vector. The goal of PLS is to minimize the norm of F while
keeping the correlation between X and Y by the relation U = BT.



How to perform PLS in R

For the z-scaled and transposed n x m matrix X, and a dummy coded class vector Y, PLS can be performed
by pls package. First column of the resultant scores matrix is taken as the pathway expression vector a. Sign
correction can be done by using O(control)/1(case) coding for an overall up-regulated pathway and

1(control)/0(case) coding for an overall down-regulated pathway.

Data <- data.frame(Y, X)

PLS <- plsr(Y~X, ncomp=2, data=Data, validation="L00’") #ncomp value does not
matter since we use only the Ffirst component

PathwayExpressionVector <- PLS$scores[,1]

Mathematical description of the ASSESS method

Since this algorithm is comparably complex, interested readers are advised to refer to the original article for
a precise mathematical description of the algorithm (Edelman E, Porrello A, Guinney J, Balakumaran B, Bild
A, Febbo PG, Mukherjee S: Analysis of sample set enrichment scores: assaying the enrichment of sets of
genes for individual samples in genome-wide expression profiles. Bioinformatics 2006, 22:¢108-e116)



