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Schematic of the three mean-based methods. Algorithmic steps in Mean all, Mean top 50%, and Mean 
CORGs are schematized. 



Mathematical description of the mean-based methods 
Given a gene expression data with n samples and a pathway whose m member genes are represented in the 

data, let an m x n matrix X be a z-scaled gene expression profile of the pathway’s member genes. Then, each 
element xij is a z-scaled expression level of a member gene i in sample j. Pathway-level aggregation methods 

seek to derive a pathway expression profile a which is a vector with n elements. 
 

Mean all 
Each element aj is calculated as 
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Mean top 50% 
The member genes’ expression profile is subject to Student’s t-test. Then, the member genes are sorted by |t| 
in descending order, or equivalently, by p-value in ascending order. The top 50% of the member genes are 
selected, and their gene expression profile is averaged as in Equation (1). 
 

Mean CORGs 
The member genes’ expression profile is subject to Student’s t-test. Overall direction of the pathway’s 

expression change is found by the sign of the mean of all the member genes’ t-statistics ( t ). Then, the 
member genes are sorted by t-statistic according to the overall direction; 

 Descending order if 0t >  (Most up-regulated genes are arranged to the top) 
 Ascending order if 0t <  (Most down-regulated genes are arranged to the top) 
In this way, a sorted list of member genes {g1, g2, g3, …, gm} is obtained.  
Let Gk be a set of CORGs containing top k member genes. Then each element aj is given by; 
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where the sum is divided by square root of k to stabilize variance. 

Let S(Gk) the pathway-level t-statistic obtained from a. Finding CORG set amounts to identify optimal k 
member genes that maximize the pathway-level t-statistic. 
The CORG set is iteratively expanded until the pathway-level t-statistic does not improve, at which point the 

final CORG set and its aggregated pathway expression profile a is returned, as shown in the pseudocode; 
 

Initialize G0 = { } and S(G0) = 0 
FOR i = 1 to m 
    Add the next ranked gene gi to CORG set Gi 

    Aggregate the member genes’ expression by Equation (2) to obtain a 
    Perform t-test on a to obtain S(Gi) 
    IF |S(Gi)| < |S(Gi-1)| 
      BREAK 
END FOR 



 

Schematic of the two projection-based methods. Algorithmic steps in PCA and PLS are schematized. 

 
 



Mathematical description of the projection-based methods 
 
PCA (Principal Component Analysis) 
PCA expects a data matrix in which samples are arranged in rows and variables in columns. Thus the 

aforementioned m x n matrix X needs to be transposed to an n x m matrix so that samples are arranged in 
rows and genes in columns. To simplify notation, the transposed matrix XT will be referred to simply as X 
from now on.  
 

Method 1. PCA by singular value decomposition (SVD) of X 
PCA can be performed by SVD of X, which yields the factorization 

T=X UΣV                                                                            (3) 
where 

U is an n x n orthogonal matrix 
Σ is an n x n diagonal matrix 
V is an m x n orthogonal matrix. 
The matrix product UΣ is called the scores, in which each column gives the location of n samples with each 
PC axis. The matrix V is called the loadings, in which each column gives the location of each PC axis 
relative to the original system of m axes. First column in the scores matrix is taken as the pathway expression 

profile vector p. 
 

Method 2. PCA by eigenvalue decomposition of a covariance matrix of X 
Alternatively, PCA can be performed by eigenvalue decomposition of a covariance matrix of X. 
An m x m symmetric matrix C which is given by the following equation 
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where pi is i-th eigenvector a
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Since C is a symmetric matrix, C is an orthogon
linearly independent eigenvectors p such that 

,        1, ,i i id i m= =Cp p …               

nd di is corresponding eigenvalue. 
In matrix form, Equation (5) can be written as 
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T 1−=P PSince P is an orthogonal matrix, it holds that . Thus Equation (6) can be written as 
                 (7) 

where 

m x m orthogonal matrix whose columns are eigenvectors of C 
f C. 

T=C PDP                                                           

P is an 
D is an m x m diagonal matrix whose diagonal entries are eigenvalues o



 

Relationship between the two methods 
 approaches yield the same results as shown below. It can be seen that the two aforementioned

From Equation (3), XTX is given by 
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From Equations (4) and (7), XTX is given by 

Thus, it follows that =

 

ow to perform PCA in R 
sed n x m matrix X, PCA can be performed by either prcomp() or svd(), 

omp() 
comp(X, center=F, scale=F) 
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ctor <- Scores[,1] 

 
 the analysis shown in the paper, moduleEigengenes() function in WGCNA package was used, which 

 numberOfMemberGenes) 
scale=F, color=dummyColors) 

 

LS (Partial Least Squares) 
T and U (the principal component scores of X and those of Y, 

s decomposed into a score matrix T and a loading matrix P, and an error term E. The matrix Y 
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H
For the z-scaled and transpo

yielding the same results. First column of the resultant scores matrix is taken as the pathway expression 

vector a. 
Using prc

PCA <- pr
Scores <- PCA$x 

nVector <- Scores[,1]PathwayExpressio

g svd() 
SVD <- svd

U <- SVD$u 
D <- diag(SV
Scores <- U %*% D 
PathwayExpressionVe

In

use svd(). To correct the sign of the elements in the pathway expression vector a, the function was called 
with the align parameter as follows; 

dummyColors <- rep(“grey”,
ME <- moduleEigengenes(X, align=”along average”, 
PathwayExpressionVector <- ME$eigengenes[[1]] 

 

P
PLS seeks to find a regression model between 
respectively). 

The matrix X i
is decomposed into a score matrix U and a loading matrix Q, and an error term F. In two-class classification 
problems, the matrix Y is a dummy coded class vector. The goal of PLS is to minimize the norm of F while 
keeping the correlation between X and Y by the relation U = BT. 
 



How to perform PLS in R 
sed n x m matrix X, and a dummy coded class vector Y, PLS can be performed 

data=Data, validation=”LOO”) #ncomp value does not 

  

athematical description of the ASSESS method 

ince this algorithm is comparably complex, interested readers are advised to refer to the original article for 

For the z-scaled and transpo
by pls package. First column of the resultant scores matrix is taken as the pathway expression vector a. Sign 
correction can be done by using 0(control)/1(case) coding for an overall up-regulated pathway and 
1(control)/0(case) coding for an overall down-regulated pathway. 

Data <- data.frame(Y, X) 
PLS <- plsr(Y~X, ncomp=2, 
matter since we use only the first component 
PathwayExpressionVector <- PLS$scores[,1] 
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