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I. FISHER INFORMATION MATRIX FOR TWO EMITTERS

We calculate the Cramér-Rao lower bound on localization error for the four degrees of freedom

specifying the location of two emitters in 2D [1] [Fig. 1(a) in main text]. The separation between

emitters is 2dx. If the instrument’s PSF is approximated as a Gaussian, h(x, y) = 1
2πσ2 e

−x
2+y2

2σ2 , and

assuming both emitters are equally bright, the Fisher information matrix is diagonal with entries:

Jy0,y0 =
N

σ2
,

Jx0,x0 =
N

σ2

(
1− d2x

σ2
e−

d2x
2σ2

∫ ∞
−∞

fdx(x)dx

)
,

Jdy ,dy =
N

σ2

(
1− e−

d2x
2σ2

∫ ∞
−∞

fdx(x)dx

)
,

Jdx,dx =
N

σ2

(
1− e−

d2x
2σ2

∫ ∞
−∞

x2

σ2
fdx(x)dx

)
,

(1)

where fdx(x) ≡ 1√
2πσ

e−x
2/2σ2

cosh(dxx/σ2)
. Numerical results for an Airy disk PSF, as well as for a scene

containing two emitters with unequal intensities, are shown in Fig. S1.

A surprising result of our analysis is the dip in Jx0,x0 as a function of dx [Fig. 1(a), red]. Jx0,x0

approaches N/σ2 for dx � σ, as well as for dx � σ. In the first case, ample separation between

emitters makes it easy to assign each photon to its source. Averaging the photon locations from

each emitter provides just as much information about the four degrees of freedom as if the emitters

were imaged separately. In the opposite limit of overlapping PSFs, assigning photons correctly to

one emitter is impossible. However, when emitters are very close together their mean position may

be estimated by averaging the arrival locations of all observed photons, without regard to each

photon’s source. The minimum value of Jx0,x0 is ' 0.52N/σ2, which occurs at an intermediate

separation, dx ' 1.23σ. Unlike this non-monotonic behavior, Jy0,y0 is independent of dx [Fig. 1(a),

cyan].

II. MAXIMUM LIKELIHOOD FITTING PROCEDURES

We tested the ability of a maximum likelihood fitting algorithm to achieve the information-

theoretic limit on emitter localization for scenes containing two emitters with a Gaussian PSF

[Fig. 1(a)], as well as for single emitters and an Airy disk PSF [Fig. 2(b)]. The Airy disk PSF is

defined by h(x, y) =
J1
(√

x2+y2/σ
)2

π(x2+y2)
, where J1 is a Bessel function of the first kind. For both types

of PSF, the radial symmetry implies that the Fisher information per photon about the emitter’s
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x, y coordinates satisfies J
(1)
y,y = J

(1)
x,x and J

(1)
x,y = 0. We find for the Airy PSF,

J(1)
x,x ≡ −

∫∫
dxdy

∂2 log h(x, y)

∂x2
h(x, y)

=

∫∫
dxdy

1

h(x, y)

(
∂h(x, y)

∂x

)2

=

∫ ∞
0

dr
4J2(r/σ)2

rσ2

=
1

σ2
.

(2)

The Airy disk PSF thus has the same Fisher information matrix as the Gaussian PSF, despite

having infinite variance.

We generated simulated photon observation data by sampling from the two-dimensional distri-

bution defined by the PSF. Using the simulated photon locations, {zj}, we estimated the average

positions of the emitters by maximizing the appropriate likelihood function using a simplex search

method (MATLAB function fminsearch). This procedure gave an unbiased estimate of each emit-

ter’s location, and the error variance in each case saturated the CRLB for n & 100 [Figs. 1(a) and

2(b)].

III. EXACT RESULTS AND GENERAL BOUNDS FOR THE INFORMATION TRANS-

FER FUNCTION (ITF) FOR GENERIC SCENES

In this section we quantify the estimation accuracy for a scene examined by stochastic localiza-

tion microscopy, assuming no overlap between the images of neighboring emitters. This corresponds

to working with a low density of simultaneously active emitters, ρa � σ−2. In this regime, we

calculate the information transfer function, F (k), and its dependence on two key parameters: the

overall density of emitters, ρe, and the number of photons collected per emitter, n. Here, the emit-

ter density ρe is the density of all the emitters that are activated during many rounds of imaging.

To avoid a high-variance, grainy scene estimate, it is generally desirable to achieve ρe � σ−2 even

though the instantaneous density of activated emitters is much lower. The number of image frames

acquired, and thus the time required to attain a desired accuracy in reconstructing the scene, scales

as ρe/ρa.

The information transfer function (ITF) is defined by the diagonal of the inverse Fisher infor-

mation matrix:

F (k) ≡ 1

[J−1]I(k),I∗(k)
(3)
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where

JI(k),I∗(k′) ≡
〈
−δ

2 logP ({Nl}|I)

δI(k)δI∗(k′)

〉
, (4)

where {Nl} is the observed fluorescence data. The angled brackets here indicate averaging over

the distribution of the data, P ({Nl}|I). To calculate the ITF we must specify this distribution.

As in Eq. 2 in the main text, we will parameterize the fluorescence data in terms of the

locations of observed photons. Let zij be the observed location in the image plane of the i’th

photon emitted by fluorophore j. The fluorophore’s true position in the sample plane, xsamplej ,

corresponds via geometric optics to a location in the image plane, xj . The scene is represented by

a non-negative intensity function, B(x), and the total intensity, B0 =
∫
dxB(x), is the expectation

value of the number of activated emitters, m. The normalized image is I(x) ≡ B(x)/m. The

observed fluorescence data are completely specified by {m, zij}. If h is the microscope’s point

spread function (PSF), the statistical model is P ({zij},m|B) = P (m|B)P ({zij}|m,B), where:

P (m|B) = e−B0Bm
0 /m!

P ({zij}|m,B) =
m∏
j=1

∫
dxjP ({zij}|{xj})P (xj |B)

=

m∏
j=1

∫
dxj

nj∏
i=1

h(zij − xj)B(xj)/B0.

(5)

This equation assumes that each photon has been assigned to an emitter, whereas Eq. 1 and Eq.

2 in the main text describe a situation in which the observer does not know which emitter gave

rise to each photon.

The log likelihood simplifies:

logP ({zij},m|B) = logP (m|B) + logP ({zij}|m,B)

= −B0 +m logB0 − logm! +

m∑
j=1

log

[∫
dxj

nj∏
i=1

h(zij − xj)B(xj)/B0

]

= −B0 +
m∑
j=1

log

[∫
dxj

nj∏
i=1

h(zij − xj)B(xj)

]
− logm!.

(6)

In what follows we first derive the exact expression for J in case the PSF is Gaussian. We also

derive an exact result for any PSF in the limit of conventional microscopy (n = 1). Finally we

derive a bound on F (k) that is valid for general PSFs and shows how the ITF scales with spatial

frequency.
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A. Exact calculation of the ITF for a Gaussian point spread function

For notational convenience, in this section we work in one spatial dimension, but the general-

ization to 2D is straightforward. To do an exact calculation, we assume the microscope can be

effectively described by a Gaussian PSF with width σ, h(z) = 1√
2πσ

e−
z2

2σ2 . This form allows us to

directly compute the integral over all possible locations, xj , for the j’th emitter:∫
dxjB(xj)

nj∏
i=1

h(zij − xj) =

∫
dxjB(xj)

1

(
√

2πσ)nj
e−
∑nj
i=1

(zij−xj)
2

2σ2 (7)

It is convenient to write this in terms of the maximum likelihood estimate of the location of the

j’th emitter, x̂j ≡ 1
nj

∑nj
i=1 zij :

=
e−

1
2σ2

∑nj
i=1(zij−x̂j)

2

(σ
√

2π)nj−1

∫
dxj√
nj
B(xj)

√
nj

2πσ2
e−

nj

2σ2
(xj−x̂j)2

= Zj
B̃nj (x̂j)√

nj

(8)

where the factor Zj ≡ e
− 1

2σ2
∑nj
i=1

(z2ij−x̂
2
j )

(σ
√
2π)nj−1 is independent of B, and B̃nj (x) ≡

∫
dx′B(x′)hnj (x

′−x) is

a blurred version of the scene with Gaussian blurring kernel hnj (x) ≡ e−
nj

2σ2
x2
√

nj
2πσ2 . Note that the

blurring kernel width scales as σ/
√
nj , becoming sharper as more photon locations are averaged

to estimate the position of the j’th emitter. We can now write

logP ({zij},m|B) = −B0 +
m∑
j=1

log B̃nj (x̂j) +
m∑
j=1

logZj/
√
nj − logm!. (9)

Only the first two terms depend on the image and thus contribute to the derivatives with respect

to B:

δ logP ({zij},m|B)

δB(y)
= −1 +

m∑
j=1

hnj (x̂j − y)

B̃nj (x̂j)
,

−δ
2 logP ({zij},m|B)

δB(y)δB(z)
=

m∑
j=1

hnj (x̂j − y)hnj (x̂j − z)
B̃nj (x̂j)

2

(10)

We thus have

JB(y),B(z) =

∞∑
m=0

P (m|B)

m∑
j=1

∫
dz1j . . . dznjj

Zj√
njB0

hnj (x̂j − y)hnj (x̂j − z)
B̃nj (x̂j)

(11)

The integral with respect to {z1j , . . . , znjj} can be reduced to a one-dimensional integral by

a change of variables. Define wlj ≡ 1√
nj

∑nj
p=1 e

2πi(l−1)(p−1)/njzpj , l = 1 . . . nj . This change of

variables is an orthogonal transformation, so the volume element for integration is
∏
ij dzij =
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∏
lj dwlj . We also have

∑nj
p=1 z

2
pj =

∑nj
l=1 |wlj |

2. In terms of these coordinates, x̂j = 1√
nj
w1j and∑nj

i=1(z
2
ij − x̂2j ) =

∑nj
l=1 |wlj |

2 − w2
1j =

∑nj
l=2 |wlj |

2. We thus find∫
dz1j . . . dznjj

Zj√
njB0

hnj (x̂j − y)hnj (x̂j − z)
B̃nj (x̂j)

=

∫
dw2j . . . dwnjj

e−
1

2σ2

∑nj
l=2 |wlj |

2

(σ
√

2π)nj−1

∫
dw1j√
nj

hnj (x̂j − y)hnj (x̂j − z)
B0B̃nj (x̂j)

(12)

The first term on the right hand side of this equation is just 1, so we have

=

∫
dx̂j

hnj (x̂j − y)hnj (x̂j − z)
B0B̃nj (x̂j)

(13)

Thus

JB(y),B(z) =

∞∑
m=0

P (m|B)

m∑
j=1

∫
dx̂j

hnj (x̂j − y)hnj (x̂j − z)
B0B̃nj (x̂j)

(14)

We now simplify the Fisher information by assuming each fluorophore emits an equal number

of photons, nj = n. To verify that this approximation does not affect our results, we carried out

numerical calculations of the ITF using a more realistic model with Poisson distributed nj ; the

results (Fig. S2) show that the approximation is valid as long as n & 500. Under the assumption

of equal photon counts, we have

JB(y),B(z) =

∞∑
m=0

P (m|B)
m

B0

∫
dx̂
hn(x̂− y)hn(x̂− z)

B̃n(x̂)

=

∫
dx̂
hn(x̂− y)hn(x̂− z)

B̃n(x̂)
.

(15)

We now transform this to an expression for the Fisher information about image spatial frequency

components, B(k) ≡
∫
dxB(x)ei2πkx. We have:

JB(k1),B∗(k2) =

∫
dydz

δB(y)

δB(k1)
JB(y),B(z)

δB(z)

δB∗(k2)

=

∫
dydze−i2π(k1y−k2z)

∫
dx̂
hn(x̂− y)hn(x̂− z)

B̃n(x̂)

= hn(k1)hn(k2)

∫
dx̂
e−i2π(k1−k2)x̂

B̃n(x̂)

(16)

The inverse of J is simply

J−1B(k1),B∗(k2)
=

1

hn(k1)hn(k2)

∫
dx̂e−2πi(k1−k2)x̂B̃n(x̂) (17)
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We can verify directly that this is the inverse:∫
dk2JB(k1),B∗(k2)J

−1
B(k2),B∗(k3)

=

∫
dk2hn(k1)hn(k2)

∫
dx
e−2πi(k1−k2)x

B̃n(x)
×

1

hn(k2)hn(k3)

∫
dx′e−2πi(k2−k3)x

′
B̃n(x′)

=
hn(k1)

hn(k3)

∫
dxdx′e−2πi(k1x−k3x

′) B̃n(x′)

B̃n(x)

∫
dk2e

−2πik2(x′−x).

=
hn(k1)

hn(k3)

∫
dxdx′e−2πi(k1x−k3x

′) B̃n(x′)

B̃n(x)
δ(x− x′)

=
hn(k1)

hn(k3)

∫
dxe−2πi(k1−k3)x.

=δ(k1 − k3).

(18)

Finally, we express this as a bound on the estimate of a normalized image, I(x) = 1
mB(x):

J−1I(k1),I∗(k2) = 1
m2 J−1B(k1),B∗(k2)

. The diagonal elements of J−1 give the CRLB on error variance,

EI(k),I∗(k) = 〈|Î(k)− I(k)|2〉 ≥ [J−1]I(k),I∗(k). We have

J−1I(k),I∗(k) =
1

m2hn(k)2

∫
dxB̃n(x) =

hn(0)B0

m2hn(k)2
=
B0

m2
e

(2πσ)2

n
k2 , (19)

where we used the normalization of the PSF (
∫
dxhn(x) = hn(k = 0) = 1). This expression for

the inverse Fisher information depends on the total image brightness, B0, which is unknown to the

observer. To obtain an expression in terms of the known parameters (m,n, σ, k) we replace B0 with

its maximum likelihood estimate, argmaxB0
P (m|B0) = m. Finally, then, the ITF for Gaussian

PSF, F0(k), is:

F0(k) = 1/[J−1]I(k),I∗(k)

= Aρee
− (2πkσ)2

n ,

(20)

where Aρe = m. Surprisingly, the ITF is independent of the particular scene, I(x), and thus

provides a universal measure of performance that is valid for any scene. Eq. 20 shows how the

resolution at each spatial frequency, k, depends on both the number of photons per emitter, n, and

the emitter density, ρe.

B. Exact calculation of the ITF for conventional microscopy

Conventional microscopy can be treated as a special case of this framework when only a sin-

gle photon is observed for each emitter, n = 1. In this case, Eq. 5 becomes P ({zj}|m,B) =

8



∏m
j=1

∫
dxjB(xj)h(zj − xj)/B0 =

∏m
j=1 B̃(zj)/B0, where B̃ is a blurred version of the scene given

by convolution with the PSF. We have:

JB(k1),B∗(k2) = h(k1)h
∗(k2)

∫
dz
e−i2π(k1−k2)·z

B̃(z)
. (21)

By the same argument used in the previous section, we can find the diagonal element of the inverse

Fisher information matrix:

J−1I(k),I∗(k) =
1

m2|h(k)|2

∫
dzB̃(z) =

1

m|h(k)|2
, (22)

where we invoked the normalization of the scene and the PSF. As in the case of a Gaussian PSF

discussed in the previous section, the ITF is independent of the particular scene. Because n = 1

here, the total number of photons is the same as the number of emitters, N = m. We thus find

that the ITF for conventional microscopy is simply the square of the MTF, scaled by the number

of observed photons:

F (k) = N |h(k)|2. (23)

C. Bound on the ITF for stochastic localization microscopy with non-Gaussian PSFs

We now use the exact result, F0(k), to obtain a general bound on the ITF that applies for a

non-Gaussian PSF. Using the convolution theorem, the statistical model can be written in terms

of the Fourier transform of the image, B(k) ≡
∫
dxB(x)ei2πkx:

P ({zij}|m,B) =

m∏
j=1

∫
dkjB(kj)G(kj ; {zij})/B0,

G(kj ; {zij}) ≡
∫
dkij

nj∏
i=1

h(kij)e
−i2π

∑nj
i=1 kijzijδ

(
kj −

∑
i

kij

) (24)

We thus have

δ logP ({zij},m|B)

δB(k)
= −δ(k) +

m∑
j=1

G(k; {zij})∫
dkjB(kj)G(kj ; {zij})

,

−δ
2 logP ({zij},m|B)

δB(k1)δB∗(k2)
=

m∑
j=1

G(k1; {zij})G∗(k2; {zij})
[
∫
dkjB(kj)G(kj ; {zij})]2

(25)

The Fisher information matrix is

JB(k1),B∗(k2) =

∞∑
m=0

P (m|B)

m∑
j=1

∫
dz1j . . . dznjj

1

B0

G(k1; {zij})G∗(k2; {zij})∫
dkjB(kj)G(kj ; {zij})

(26)
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Diffraction limits the spatial frequencies transmitted by any microscope, so that h(k) ∼ 0

for k larger than some cutoff [2]. For example, a microscope with a circular limiting aper-

ture is characterized by an Airy pattern PSF, h(x, y) =
J1
(√

x2+y2/σ
)2

π(x2+y2)
, for which h(k) =

(1− 2k
√

1− k2π2 − 2
π sin−1(kπ)) if k < 1

πσ and h(k) = 0 otherwise.

Here we make the general assumption that the PSF envelope is dominated by a Gaussian,

|h(k)| ≤ e−(2πkσ)
2/2; this is true, in particular, for the Airy disk PSF, defined above. We will use

the triangle inequality, which implies |
∫
f(x)dx| ≤

∫
|f(x)|dx. We have

|G(kj ; {zij})| =

∣∣∣∣∣
∫ nj∏

i=1

dkijh(kij)e
−i2π

∑
i kijzijδ

(
kj −

∑
i

kij

)∣∣∣∣∣
≤
∫ nj∏

i=1

dkij |h(kij)|δ

(
kj −

∑
i

kij

)

≤
∫ nj∏

i=1

dkije
− (2πσ)2

2

∑
i k

2
ijδ

(
kj −

∑
i

kij

)
.

(27)

To evaluate the Gaussian integral, we use a similar change of variables as before, wlj ≡
1√
nj

∑nj
p=1 e

2πi(l−1)(p−1)/njkpj , l = 1 . . . nj . Note that w1j = 1√
nj

∑
i kij , and

∑
i k

2
ij =

∑
l |wlj |2. We

thus have

|G(kj ; {zij})| ≤
∫ nj∏

l=1

dwlje
− (2πσ)2

2

∑n
l=1 |wlj |2δ

(
kj −

√
njw1j

)
.

=
1
√
nj
e
− (2πσ)2

2nj
k2j (
√

2πσ)−nj+1.

(28)

As we did above, we assume that each emitter produces the same number of photons, nj = n.

The Fisher information matrix is then bounded by

|JI(k1),I∗(k2)| = m2

∣∣∣∣∣
∞∑
m=0

P (m|B)m

∫
dz1 . . . dzn

G(k1; {zi})G∗(k2; {zi})
B0

∫
dk′B(k′)G(k′; {zi})

∣∣∣∣∣
≤ m2

∫
dz1 . . . dzn

|G(k1; {zi})||G(k2; {zi})|
|
∫
dk′B(k′)G(k′; {zi})|

≤ me−
(2πσ)2

2n
(k21+k

2
2)

∫
dz1 . . . dzn

1

|
∫
dk′I(k′)G(k′; {zi})|

≤ mCe−
(2πσ)2

2n
(k21+k

2
2),

(29)

where C is a constant, scene-dependent coefficient that does not depend on k1, k2 or m.

To relate this result to the CRLB, we need to compute the inverse of the Fisher information

matrix. Here we can make use of a general relationship between the diagonal elements of a matrix,

and the corresponding diagonal elements of the matrix inverse [3]: 1
[J−1]kk

≤ Jkk. Applying this

10



bound in our case, we find

F (k) =
1

[J−1]I(k),I(k)∗
≤ mCe−(2πkσ)2/n = CF0(k). (30)

This proves the bound stated as Eq. 7 in the main text.

We can derive another bound on the ITF in the case of strictly band-limited PSFs, such as the

Airy disk, for which h(k) = 0 for all |k| ≥ 1
πσ . In this case we can prove that |G(kj ; {zij})| = 0 for

|kj | > nj
πσ . To show this, note that

G(kj ; {zij}) =

∫ ∞
−∞

dkij

nj∏
i=1

h(kij)e
−i2π

∑
i kijzijδ

(
kj −

∑
i

kij

)

=

∫ 1/πσ

−1/πσ
dkij

nj∏
i=1

h(kij)e
−i2π

∑
i kijzijδ

(
kj −

∑
i

kij

)
,

(31)

where the second line follows from the fact that the PSF is band-limited. In the integrand we

therefore have |kij | ≤ 1
πσ , so that |

∑nj
i=1 kij | ≤

∑nj
i=1 |kij | ≤

nj
πσ . Thus for |kj | > nj

πσ the integrand

vanishes due to the delta function. Frequencies greater than this hard cutoff are not transmitted at

all, and the ITF, F (k), vanishes if |k| ≥ nj
πσ . Note, however, that this frequency cutoff grows linearly

with n, whereas the previously derived bound shows that the ITF is exponentially suppressed above

a cutoff that scales with
√
n. The inequality, Eq. 30, is thus a stronger result when n� 1.

IV. ITF FOR SCENES CONSISTING OF A SET OF DISCRETE EMITTERS

Here we calculate the ITF, F (k), for a scene composed of discrete emitters, I(x) = 1
m

∑m
j=1 δ(x−

xj) in real space or I(k) = 1
m

∑m
j=1 e

−i2πk·xj in the frequency domain. More generally, the model

applies to scenes of M emitters obtained in M/m distinct rounds with exactly m active emitters

per round. Each round contributes independent information, so the total ITF is the sum of the

ITF for each. We first treat the super-resolution limit, ρa � σ−2, and then turn to the limit of

conventional microscopy, ρa � σ−2. Finally we use numerical simulations of 2D scenes to calculate

the ITF for intermediate values of the active emitter density.

A. Super-resolution limit

In the super-resolution limit, emitters are sufficiently separated that their images can be treated

as non-overlapping. In this case, and assuming an isotropic PSF, the Fisher information matrix for

the location of a single emitter, Jij , is diagonal: Jij = nJ (1)δij . Here we have defined J (1) to be the
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Fisher information per photon for each of an emitter’s two location coordinates. n is the number

of detected photons assigned to each emitter. For the Gaussian and Airy disk PSFs defined above

(see “Maximum likelihood fitting procedures”), J (1) = 1
σ2 .

To compute the ITF, we use the change of variable formula [4]:

1/F (k) =
2M∑
i,j=1

∂I(k)

∂qi
J−1ij

∂I∗(k)

∂qj
. (32)

Noting that ∂I(k)
∂xj

= −i2πk
M e−i2πk·xj , we have

1/F (k) =
1

nJ (1)

2M∑
i,j=1

∂I(k)

∂qi
δij
∂I∗(k)

∂qj

=
1

nJ (1)

M∑
j=1

∣∣∣∣∂I(k)

∂xj

∣∣∣∣2 +

∣∣∣∣∂I(k)

∂yj

∣∣∣∣2
=

1

nJ (1)
M

(2π)2(k2x + k2y)

M2

=
(2πk)2

nAρeJ (1)
.

(33)

Here, ρe = M
A is the total emitter density, summed over each separate round of imaging. This

result shows that the ITF declines as 1/k2 in the limit of super-resolution microscopy. This exact

result pertains to any isotropic PSF.

B. Conventional microscopy

In conventional microscopy, the PSFs of neighboring emitters overlap extensively. We approx-

imate the Poisson photon count distribution in each camera pixel using a Gaussian noise model.

(Note this assumption has nothing to do with the shape of the PSF, which may be Gaussian or Airy

or, indeed, any other functional form). This noise model is valid if the mean number of photons

per pixel is large enough, N & 10. The approximation thus approaches the original Poisson model

as the emitter density, and hence the total photon flux, increases. Denoting the PSF of the optical

instrument used to collect the photons by h(x), the observed fluorescence intensity (number of

photons) at location x is

ν(x) = N

∫
dx′h(x− x′)I(x′) + η(x), (34)

where ν(x) is the number of detected photons at x, N is the mean total number of detected photons,

and the noise term, η, is Gaussian distributed with 〈η(x)〉 = 0 and 〈η(x)η(x′)〉 = 〈ν(x)〉δ(x− x′).
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We set the noise variance equal to the mean signal strength in each pixel to mimic Poisson shot

noise, including independent noise statistics in different pixels. The Fourier transform of the

observed data is

ν̃(k) = Nh(k)I(k) + η̃(k), (35)

where η̃ is a Gaussian random process, with 〈η̃(k)〉 = 0 and 〈η̃(k)η̃∗(k′)〉 = 〈ν̃(k−k′)〉. Note that,

because the noise term η(x) lacks translational invariance, the noise components at different spatial

frequencies are correlated. The probability distribution for the observations, ν̃, is thus Gaussian

with mean µ(k) ≡ 〈ν̃(k)〉 = Nh(k)I(k) and covariance Ck,k′ = µ(k− k′).

The Fisher information for a Gaussian distributed random process is J = J(mean) + J(var),

where [4]

J
(mean)
k,k′ =

∂µT

∂I(k)
C−1

∂µ

∂I∗(k′)
,

J
(var)
k,k′ =

1

2
Tr

[
C−1

∂C

∂I(k)
C−1

∂C

∂I∗(k′)

]
.

(36)

The first term, J(mean), represents the information carried by the mean photon count whereas

the second term accounts for information conveyed by the variance in photon count. Note that

µ and C are both proportional to the total photon count, N , so that J(mean) ∝ N but J(var) is

independent of N . Thus in the limit of a large number of photons, we expect J(mean) will make the

dominant contribution to J. We therefore neglect the information in the variance and approximate

J ≈ J(mean).

We next invert the Fisher information,[
J(mean)

]−1
k,k′

=
1

N2

1

h(k)
Ck,k′

1

h∗(k′)
=

1

N

1

h(k)
h(k− k′)I(k− k′)

1

h∗(k′)
. (37)

The fact that the PSF and the scene are both normalized, h(k = 0) = I(k = 0) = 1, implies that

F (k) =
1[

J(mean)
]−1
k,k

= N |h(k)|2. (38)

This result agrees with the previous exact calculation for a generic scene, Eq. 23, which was derived

using a different model for the class of images and assuming n = 1 detected photons per emitter.

C. Numerical calculation of ITF for scenes with a discrete set of simultaneously active

emitters

To study the dependence of the ITF on the density of simultaneously activated emitters, ρa,

we numerically calculated the Fisher information matrix, Jij , for simulated 2D scenes comprising
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a set of discrete emitters (Fig. 3 in the main text). Each simulated scene had M = 150 emitters

of equal brightness within a square field of view of area A = M/ρa. Emitter locations were chosen

randomly from a uniform distribution over the field of view. We binned the field of view using a

fine grid of pixels at locations zk, whose spacing was much smaller than σ to avoid aliasing. We

used Eq. 2 in the main text, with an Airy disk PSF, to calculate the probability distribution,

P (zk|{xj}), for observing a photon at location zk [analogous to Fig. 1(b)].

We next computed the 2M × 2M Fisher information matrix for the parameters {qi, i =

1, . . . , 2M} = {x1, . . . , xM , y1, . . . , yM}. We used an analytic formula for the derivative of h to

compute the gradient of the probability distribution with respect to each emitter location parame-

ter, ∂P (zk)
∂qi

, at each of the pixels, zk. The Fisher information matrix for the emitter locations [Fig.

1(c)] is then given by

Jij = N
∑
k

∆zk
∂P (zk|{qi})

∂qi

∂P (zk|{qi})
∂qj

1

P (zk|{qi})
, (39)

where the sum is over all pixels, ∆zk is the pixel area, and N is the total number of detected

photons.

To compute the ITF for the simulated scene, we used the change of variable formula, Eq. 32.

We averaged over angles in k-space to define the ITF, 1/F (k), as a function of the magnitude, k,

for each scene. Finally we repeated this procedure for 40 randomly generated scenes at each value

of ρa to determine the median and standard deviation of 1/F (k).

V. CRAMÉR-RAO BOUND FOR BIASED ESTIMATORS AND THE PERFORMANCE

OF PRACTICAL SCENE ESTIMATORS

The Cramér-Rao theorem provides a fundamental lower bound on the variance of an unbiased

estimator. In this section we consider situations in which there is no unbiased estimator, or in

which there is no estimator that achieves the lower bound on error variance.

We first state a generalization of the Cramér-Rao theorem which applies to biased and unbiased

estimators [5]:

E−A†J−1A ≥ 0. (40)

Here, Aij = ∂〈q̂i〉
∂qj

is a measure of the bias which, for an unbiased estimator, is simply Aij = δij . A

depends on the estimator, and so Eq. 40 does not provide a universal bound on scene estimation

for all data processing procedures.
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In practice there may be no data processing procedure with variance equal to the information-

theoretic limit for all the parameters. If such a procedure does exist, it is called an efficient

estimator. In fact, an efficient estimator exists if and only if the derivative of the log likelihood

function can be expressed in the following form:

δ

δI(k)
logP ({zij}|I) =

∫
dk′JI(k),I∗(k′)

[
g({zij})− I∗(k′)

]
, (41)

where JI(k),I∗(k′) is the Fisher information matrix and g is a function of the observed data [4].

However, for a Gaussian PSF we have (see Eq. 25):

δ logP ({zij},m|B)

δI(k)
= −mδ(k) +

m∑
j=1

G(k; {zij})∫
dkjI(kj)G(kj ; {zij})

. (42)

Because the dependence on I(k) in this expression does not have the form of Eq. 41, no efficient

scene estimator exists. However, the situation may not be as dire as this result suggests.

In fact, simple estimators, including those that have been used in stochastic localization mi-

croscopy experiments [6, 7], are unbiased and efficient over a broad range of spatial frequencies

in which the ITF is non-zero. The inefficiency of these estimators only applies to high spatial

frequencies, above the cutoff at which the ITF vanishes.

To illustrate with a simple example, consider a 1D scene containing a single emitter (m = 1)

at location x0, so that I(x) = δ(x − x0) and I(k) = ei2πkx0 . Assuming the PSF is Gaussian, the

maximum-likelihood estimate of x0 given N observed photons is simply x̂0 = 1
N

∑N
i=1 zi. In fact,

this location estimator is both unbiased, 〈x̂0〉 = x0, and efficient, 〈(x̂0 − x0)2〉 = J−1x0,x0 = σ2/N .

A simple strategy for estimating the scene using x̂0 is the point estimator, Î1(x) ≡ δ(x − x̂0), or

Î1(k) ≡ ei2πkx̂0 . However, this estimate is biased since 〈Î1(k)〉 = e−(2πkσ)
2/2NI(k). As shown in

Fig. S3 (solid curves), the bias grows with k. However, for k <
√
N/2πσ the bias is small and the

variance is very close to the Cramér-Rao bound, [J−1]k,k = (2πkσ)2/N (Fig. S3, black lines).

To avoid the increasing error variance at high spatial frequencies, a blob estimator can be used,

such as Î2(x) =
√

N
2πσ2 e

−(x−x̂0)2N/2σ2
, or Î2(k) = e−(2πkσ)

2/2Nei2πkx̂0 . This is a commonly used

estimator for displaying the results of stochastic localization microscopy experiments [6, 7]. This

estimator reduces the variance of the high-frequency components of the scene, at the cost of slightly

increased bias (Fig. S3, dashed curves).

To produce an unbiased estimator would require an opposite approach, in which the point

estimator is sharpened rather than smoothed. In the spatial frequency domain we can define

such a sharp estimator, Î3(k) = e(2πkσ)
2/2Nei2πkx̂0 . Although this frequency-domain estimator is

unbiased, it blows up at high frequencies and has no inverse Fourier transform; it is therefore not
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practical for estimating the scene in real space. Nevertheless, we can compute the variance of this

estimator, var(Î3) = 〈|Î3(k) − I(k)|2〉 = e(2πk)
2σ2/N − 1. The sharp estimator indeed obeys the

CRLB corresponding to Eq. 33, var(Î3) ≥ (2πkσ)2

N , and its variance is very close to the lower bound

for frequencies lower than the cutoff, k <
√
N/2πσ.

All three of the estimators considered above are approximately unbiased and efficient for spatial

frequencies in the range k <
√
N/(2πσ). Bias and inefficiency become problematic for these

estimators only for very high spatial frequencies, k &
√
N/(2πσ). For these high spatial frequencies,

the ITF, F (k) = N/(2πkσ)2, becomes smaller than unity, meaning that the information about these

scene components is negligible.
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VI. SUPPLEMENTAL FIGURES

Figure S1
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Estimator variance for the localization of two emitters as a function of spatial separation as-

suming an Airy disk PSF (a) or a Gaussian PSF with unequal emitter brightness (b). In (a) and

(b), colors denote the four degrees of freedom illustrated in the inset of Fig. 1(a) in the main text

(red, x0; cyan, y0; green, dx; blue, dy). In (b), curves correspond to brightness ratio 1:1 (dashed),

1:2 (dotted) and 1:3 (solid).
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Figure S2
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Comparison of ITF for a one-dimensional scene calculated using the assumption that all emitters

produce the same number of photons (nj = n, colored curves) or by choosing nj from a Poisson

distribution with mean n (black dots). Simulations used m = 200 total emitters. The results are

in very close quantitative agreement, particularly for n ≥ 500.
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Figure S3
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Variance (a) and squared magnitude of bias (b) of practical scene estimators for a single emitter

in 1D. The Cramér-Rao bound is given by the black curve. Colored curves show performance for

N =1 (blue) or 100 (red) photons using three estimators: 1. the point estimator, Î1(k) = ei2πkx̂

(solid); 2. the blob estimator, Î2(k) = e−(2πkσ)
2/2Nei2πkx̂ (dashed); and 3. the sharp estimator,

Î3(k) = e(2πkσ)
2/2Nei2πkx̂ (dot-dashed). Note that only Î3(k) is unbiased, and therefore the dot-

dashed curve does not appear on the log scale in (b). Within the frequency range k .
√
n/(2πσ),

all three estimators have low bias and achieve the minimum variance limit set by the CRLB.
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