Hierarchical clustering analysis of blood plasma lipidomics profiles from mono- and dizygotic twin families

Harmen H.M. Draisma,^{1,6,*} Theo H. Reijmers,¹ Jacqueline J. Meulman,² Jan van der Greef,¹ Thomas Hankemeier,^{1,3,5} Dorret I. Boomsma^{4,5}

Supplemental Material

¹Division Analytical Biosciences, Leiden/Amsterdam Center for Drug Research, Einsteinweg 55, NL-2333CC Leiden, The Netherlands. Phone: +31-71-5274220. Fax: +31-71-5274277 ²Leiden University, Mathematical Institute, Niels Bohrweg 1, room 224A, NL-2300RA

Leiden, The Netherlands. Phone: +31-71-5273830

³Netherlands Metabolomics Centre, Einsteinweg 55, NL-2333CC Leiden, The Netherlands. Phone: +31-71-5274220. Fax: +31-71-5274277

⁴Department of Biological Psychology, VU University Amsterdam, Van der Boechorststraat 1, room 2B-41, NL-1081 BT Amsterdam, The Netherlands. Phone: +31-20-5988787. Fax: +31 - 20 - 5988832

 $^{^5\}mathrm{Both}$ authors contributed equally to this study.

⁶Present address: Department of Biological Psychology and the EMGO Institute for Health and Care Research, Faculty of Psychology and Education, VU University Amsterdam, Van der Boechorststraat 1, room 2B-09, NL-1081 BT Amsterdam, The Netherlands. Phone: +31-20-5986871. Fax: +31-20-5988832

^{*}Corresponding author. E-mail: hhm.draisma@psy.vu.nl

Clustering algorithm	Before equating	After equating
Average linkage	0.75	0.60
Ward's method	0.64	0.52
Single linkage	0.60	0.12
Complete linkage	0.68	0.53
McQuitty's method	0.72	0.52
Median linkage	0.15	0.10
Centroid linkage	0.29	0.01

Table S1: Pearson correlations between cophenetic distances and original Euclidean distances among all study participants, before and after equating

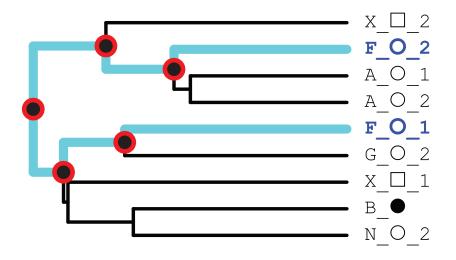


Figure S1: Example of 'node analysis': the distance between relatives in the hierarchical clustering dendrogram is assessed by counting the number of separating nodes. In this example, the highlighted nodes and edges illustrate that the pair of objects " F_-O_-1 " and " F_-O_-2 " is separated by five nodes.

Cluster dendrogram with AU/BP values (%)

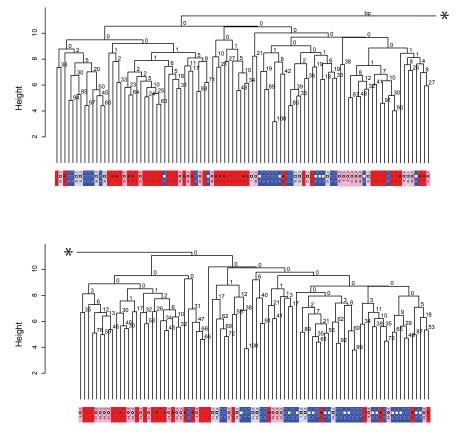


Figure S2: Clustering dendrogram on the basis of combined equated B1–B2 data sets, with associated probability values based on nonparametric bootstrap procedure. Numbers near the branching points in the dendrogram indicate bootstrap probability (bp) values; high values indicate high stability of the corresponding node during bootstrapping. The dendrogram structure in this Figure is equal to that of the dendrogram displayed at the top of the heatmap in Figure 1B in the main document. The dendrogram was split at the highest level (as indicated by asterisks) to enhance the legibility of the object labels. Participants are denoted as follows: the family identifier (1–65) is followed by a square (\Box , for males) or a circle (O, for females) to indicate the sex of the participant, and, in case of twins, a "1" or a "2" to indicate the first and second members of the twin pair, respectively. Nontwin siblings are indicated by filled squares (\blacksquare) or filled circles (\bigcirc) for males and females, respectively. For the participants from B1, see Table S5 for a comparison between the labeling as used in Draisma *et al.* (2008)¹ and the labeling used in the current manuscript.

s of monozygotic co-twins (A) , dizygotic co- s of nodes, with respect to chance observatio	twins (B), and sex-matched nontwin siblings (C) separated by	
	s of monozygotic co-twins (A), dizygotic co-	f nodes, with respec

			0.0	0				0.0	0				0.0	0	s	00	no	00	
	25	0	0 100	0.00		25	0	0 100	0.00		25	0	0 100	0.0	blin	0 01	outio	Ie Li	
	24	0	100.0	0.00		24	0	100.0	0.00		24	0	100.0	0.00	re si	ts (1	strib	er tr	
	23	0	$100.0 \ 85.0 \ 100.0$	0.20 0.14 0.00 0.34 0.38 0.00 0.40 0.00 0.00 0.00 0.00 0.00		23	0	100.0 60.1 44.7 100.0 100.0 100.0	0.00		23	0	$28.9 \ \left 10.0 \ \left 100.0 \right 100.0 \ \left 100.0 \right 100.0 \ \right 100.0 \ \left 100.0 \right \\$	$0.16 \ \left 0.00 \ \left 0.37 \ \right 0.09 \ \left 0.43 \ \left 0.41 \ \right 0.35 \ \left 0.31 \ \right 0.30 \ \left 0.49 \ \left 0.45 \ \right 0.18 \ \left 0.54 \ \left 0.46 \ \left 0.23 \ \left 0.52 \ \left 0.36 \ \left 0.00 \ \left 0.00 \ \right 0.00 \ \left 0.00$	¹ The rows of each panel represent: number of nodes separating co-twins (row I); observed number of occasions where siblings	are separated by the number of nodes as given in row I (row II); average p-value ($\times 100\%$) over 100 permutation tests (10 000	iterations per permutation test; direct comparison of the observed frequencies as in row II with the chance distribution	generated by each permutation test) (row 111); and standard deviation of the p-value (×100%) as in row 111, over the 100 normitation tests (row IV). Asterisks indicate average p -values <0.05.	
	22	0	100.0	0.00		22	1	44.7	0.50		22	0	100.0	0.00	sions	tatic	chan	DW LI	
	21	0	100.0	00.0		21		30.1).53		21	4	10.0	0.36	occa	ermu	the .	in rc	
	20		5.0	.40 (20	0	0.00	0.53 0.40 0.00 0.53 0.50		20		8.9	.52 (er of	00 pe	vith) as	
		1	0.00	00 00		19 2		26.6 1	.40 0			4	.0* 2	.23 0	ımbe	ver 1	∧ H S	°%00-	
	3 19	0	82.0 1	38 0			3	40.5 2	53 0		8 19	2	6.9 6	46 0	n be	%) o	row	۲×)	
	18	2	87.4 82	34 0.		18	3		26 0.		18	4	59.0 66.9 6.0*	54 0.	serv	<100'	as in	value	
	17	2		0 0.5		17	1	93.9 100.0 93.6	0.23 0.00 0.26		17	5		8 0.5); ob	ue (>	cies	e p-	
	16	0	3 100	4 0.0		16	0	9 100	3 0.0		16	2	7 97.2	5 0.1	row]	-val	Juen	ot th	
	15	1	97.6	0.1^{2}		15	1		0.2		15	4	43.0 25.7	0.45	ins (1	age <i>t</i>	. frec	cion 05	200
	14	1	95.2	0.20		14	1	89.9	0.27		14	5		0.49	o-twi	avera	erved.	eviat	5
	13	2	74.8	0.42		13	1	87.3	0.28		13	2	90.5	0.30	ng c	II);	obse	rd d	auuc
	12	3	43.2	0.48		12	1	84.8	0.36		12	2	87.8	0.31	arati	(row	the	anda	h-4
	11	4	17.7	0.34		11	0	100.0	0.00		11	2	84.7	0.35	s sep	JW I	n of	id Sta	
	10			.39		10	0	100.0	00.0		10	3		.41	lodes	in re	arisc); ar e ave	
			100.0 81.4	0.00 0.51 0.50 0.49 0.00 0.39 0.34 0.48 0.42				21.6 4.3* 100.0 100.0 84.8	0.48 0.41 0.20 0.00 0.00				80.0 43.7	.43 (r of r	given	duno	W LLL dicat	חורמה
	6	0	69.3 1	49 0		6	3	1.6 4	41 0		6	1		0 60	mbe	s as g	ect c) (ro rs ind	
	00	1	57.6 6	50 0		8	2	47.7 2	48 0			9	100.0 12.7 0.7*	37 0	t: nu	node	; dir	test. Ferisl	
	2	1		51 0.		2	1		0.11 0.		4	3	0.0 12	0.0	esen.	r of 1	test	tion Asi	
	9	1	100.0 46.8	0 0.5		9	3	4.4* 1.1*	0.22 0.1		9	0	2.8* 10	6 0.0	repr	imbe	tion	nuta ' IV)	^ -
	ŋ	0	-			5	2	4			5	e		-	anel	le nu	muta	perion)	
	4	0	100.0	0.0(4	0	100.0 100.0 100.0	0.0(4	2	9.0	0.29	ach p	by tl	peri	each	ener
	e	1	20.8	0.42		3	0	100.	0.00		3	2	4.8^{*}	0.22	of e	ated	per	by t	
	2	1	15.0	0.30		2	0	100.0	0.00		2	2	$100.0 2.4^{*}$	0.14	rows	eparé	tions	rated	man
	1	15	0.0^{*}	IV 0.00 0.30 0.42 0.00		1	4	0.0^{*}	0.00 0.00 0.00 0.00		1	0	100.0	0.00 0.14 0.22 0.29	The 1	are se	terat	generated by each permutation test) (row III); and standard deviation normination tests (row IV) Astenisks indicate average $n_{\rm values} < 0.05$	
Α	I	II	III	N	В	I	II	III	N	0	I	II	III	IV	-			~ ~	

Draisma et al.

Table S3: Description of monozygotic twin pairs separated by only one node in the dendrograms of Figure 1B and Figure $S2^1$

Twin pair	Description
1_ O	Both co-twins had eaten rolls with jam and had drunk soft
	drink for breakfast at the day of sampling; furthermore, in the
	sample of 1_O_1 some hemolysis had occurred. Both co-twins
	had reported recent flu-like symptoms more than one week prior
	to sampling. Also, the menstrual cycles of both co-twins were
54_ O	not completely synchronous. 54 \bigcirc 2 smalled 4 size net day at the time of sampling
54_ O	54_O_2 smoked 4 cigarettes per day at the time of sampling while 54_O_1 did not smoke. 54_O_1 and 54_O_2 had had a
	cold more than one week and more than one month prior to
	sampling, respectively.
58 🗆	Both co-twins used antihistamine as medication for chronic
001	hay fever; 58_D_1 had suffered from hay fever in the week prior
	to sampling.
47_	Both co-twins had had a cold more than one month prior to
	sampling.
11_{-}	Both co-twins had had a cold more than one month prior to
	sampling.
43_\Box	43_\Box_1 and 43_\Box_2 had had a cold more than one month and
	less than one week prior to sampling, respectively. Also, both
	co-twins had left their parents' home approximately half a year
20_	prior to sampling.
20_	Both co-twins had had a cold more than one month prior to
2_ O	sampling. $2_{-}O_{-1}$ and $2_{-}O_{-2}$ had had a cold more than one month and
2_0	more than one week prior to sampling, respectively. Further-
	more, 2_0_2 suffered from allergy.
12_□	12_\Box_2 had eaten something during the fasting period. Both
	co-twins smoked at the time of sampling; 12_\Box_1 had been
	smoking 15 cigarettes/day for 3.5 years, whereas 12_\Box_2 had
	been smoking 8 cigarettes/day for 5 years. Furthermore, 12_\Box_1
	had suffered from fatigue and headache more than one week
	prior to sampling, whereas 12_\Box_2 had suffered from flu accom-
	panied by fever more than one month prior to sampling.
65_\Box	65_\Box_1 and 65_\Box_2 smoked 30 and 20 cigarettes/day at the
	time of sampling, respectively. Both co-twins had smoked less
	than one hour prior to sampling, and had had a cold less than one week prior to sampling.
15_□	Both co-twins had suffered from flu accompanied by fever
10-	more than one month prior to sampling.
	more man one monon pror to sampling.

¹For an explanation of the labeling of families and participants, see the legend to Figure S2.

Table S3: Description of monozygotic twin pairs separated by one node (continued)

Twin pair	Description
60_□	Both co-twins had had muesli with diary products for break-
	fast at the day of sampling. 60_\Box_1 suffered from chronic back
	pain and had suffered from stomach flu accompanied by fever
	more than one month prior to sampling; 60_\Box_2 had had a cold
	more than one month prior to sampling.
53_O	53_O_1 and 53_O_2 had suffered from a cold and from stom-
	ach ache more than one month prior to sampling, respectively.
14_{-}	14_ \Box_2 had eaten a roll for breakfast at the day of sampling
	whereas 14_\Box_1 had not. 14_\Box_1 had had a cold more than one
	week prior to sampling; 14_ \Box_2 had suffered from flu accompa-
	nied by fever more than one month prior to sampling.
4_□	4_\Box_1 and 4_\Box_2 had had a cold less than one week and more
	than one month prior to sampling, respectively; furthermore,
	4_\Box_1 suffered from allergy.
-	

Table S4: Description of monozygotic twin pairs separated by more than one node in the dendrograms of Figure 1B and Figure $S2^1$

Twin pair	Description
46_O	46_O_1 had reported sickness and headache more than 1 week
	prior to blood sampling. Both twins had synchronous menstrual
	cycles, although 46_O_2 appeared to suffer from oligomenor-
	rhea.
3_□	3_\Box_1 had self-reportedly been ill without having a fever less
	than 1 week prior to blood sampling.
5_ O	5_O_1 had smoked in the past (2 cigarettes/day) for half a
	year 1.5 years prior to blood sampling. Furthermore, $5_{-}O_{-}2$
	had had a cold less than one week prior to sampling. Also, the
	co-twins did not have completely synchronous menstrual cycles.
10_ O	Both twins had self-reportedly suffered from a cold less than
	1 week prior to blood sampling.
13_□	131 had had a cold less than 1 week prior to blood sam-
	pling.
62_\Box	62_\Box_2 had suffered from infectious mononucleosis more than
	1 month prior to sampling. Moreover, during sample handling,
-	in the sample of this twin hemolysis had occurred.
16_O	16_O_2 had been smoking five cigarettes per day for 6 years
	and had smoked 2 h before blood sampling; 16_O_1 had quit
	smoking a half year prior to sampling, after having smoked 10
	cigarettes per day for 5 years. Furthermore, $16_{-}O_{-}2$ had had a
	half cup of sugared tea for breakfast on the day of blood sam-
10.0	pling. Both twins did not have synchronous menstrual cycles.
18_O	18_O_1 had self-reportedly suffered from flu-like symptoms
	less than 1 week prior to blood sampling. Both twins did not
	have synchronous menstrual cycles.
28_O	Twin 28_O_2 had been using the drug Fluoxetine for depres-
30_□	sion. Both twins did not have synchronous menstrual cycles.
30_	30_\Box_2 had had a sip of cola during the fasting period prior to sampling. Both co-twins smoked at the time of sampling.
	30_\Box_2 suffered from hay fever.
41_ O	Both twins had self-reportedly been ill less than 1 week
41_0	prior to blood sampling: $41_{-}O_{-1}$ had suffered from a cold,
	whereas 41_O_2 had had flu-like symptoms accompanied by
	fever. $41_{-}O_{-2}$ used oral contraceptives while $41_{-}O_{-1}$ did not;
	furthermore, their menstrual cycles were not synchronous.
45_O	More than one week prior to sampling 45_O_1 had had a cold.
	45_O_2 had suffered from stomach flu more than one week prior
	to sampling.
	I

¹For an explanation of the labeling of families and participants, see the legend to Figure S2.

Table S4: Description of monozygotic twin pairs separated by more than one node (continued)

Twin pair	Description
<u>1 and pair</u> 50_O	In the week prior to sampling, 50_O_2 had suffered from
	nausea and fatigue whereas 50_O_1 had not. 50_O_1 used
	terbinafine hydrochloride while $50_{-}O_{-}2$ did not.
51_□	More than one month prior to sampling, 51_\Box_1 had had a
-	cold and 51_\Box_2 had suffered from flu with fever, respectively.
55_O	Both co-twins did not have synchronous menstrual cycles.
	Furthermore, both co-twins had had a cold in the week prior to
	sampling.
57_O	57_O_1 suffered from chronic hay fever; 57_O_2 suffered from
	chronic asthma, for which she used budesonide/formoterol as
	medication.
63_□	63_\Box_1 had suffered from flu with fever and laryngitis in the
	week prior to sampling, for which she used feneticilline. Also,
	in the blood sample from 63_\Box_1 some hemolysis had occurred.
	63_□_2 suffered from irritable bowel syndrome. Furthermore,
	63_\Box_2 had smoked in the past (15 cigarettes/day), and had
	quit smoking two years prior to blood sampling after having
	smoked for two years.
26_O	26_O_1 had had a cold more than one week prior to sam-
	pling; 26_O_2 suffered from severe eczema for which she used
	a corticosteroid cream as a medication, from lymphedema in a
_	leg, and from chronic respiratory disease.
29_ O	In the blood sample of $29_{-}O_{-}2$, hemolysis had occurred; fur-
	thermore, $29_{-}O_{-}2$ had left her parents home about 4 months
	prior to sampling, while $29_{-}O_{-1}$ had not. Both co-twins had
	had a cold in the week prior to sampling, and their menstrual
	cycles were not completely synchronous.
33_□	Both co-twins used fluticasone propionate as medication for
	slight asthma.
36_O	No tentative explanation for non-clustering on basis of avail-
10 🗆	able information
19_\Box	19_\Box_1 had been ill and 19_\Box_2 had had a cold more than
	one month prior to sampling, respectively

Family label in this paper	Family label in Draisma <i>et al.</i> $(2008)^1$
1_0	A_O
2_ O	B_O
3_□	$C_{-}\Box$
4_□	D_□
5_ O	E_O
6_O	F_O
10_ O	G_O
11_□	H_□
12_□	I_□
13_□	J_□
14 _	K_□
15_□	L_{\Box}
16_O	M_O
18_ O	N_O
19_	P_□
20_□	$Q_{-}\Box$
21_□	R_□
28_O	S_O
30_□	T_□
41_O	U_O
46_O	V_O
60_□	W_D
62_□	X_□

Table S5: Conversion table between labeling in this chapter and labeling in Draisma $et\ al.\ (2008)^1$ for families from $B1^1$

 1 For an explanation of the labeling of families and participants, see the legend to Figure S2.

References

 Draisma HHM, Reijmers TH, Bobeldijk-Pastorova I et al: Similarities and differences in lipidomics profiles among healthy monozygotic twin pairs. OMICS 2008; 12: 17–31.