Supplemental Information

Lamin B receptor recognizes specific modifications of histone H4 in heterochromatin formation

Yasuhiro Hirano, Kohji Hizume, Hiroshi Kimura, Kunio Takeyasu, Tokuko Haraguchi and Yasushi Hiraoka

SUPPLEMENTAL EXPERIMENTAL PROCEDURE

Calculation of the molar ratio of LBR to histone - To determine the amount of LBR within a nucleus, quantitative Western blotting was carried out according to Holaska *et al.* (1) with some modifications. HeLa cells were lysed with Laemmli's SDS sample buffer, and aliquots of the cell lysate, equivalent to 2.5×10^4 and 5.0×10^4 cells, were subjected to SDS-PAGE along with 2, 5, 10 and 20 ng [70.1, 175, 350 and 701 fmol (10^{-15} mol), respectively] of recombinant purified His-tagged NP^{WT}. After transfer to PVDF membrane, LBR protein was probed with anti-LBR antibody and quantified by comparing the staining with that of the control recombinant protein. According to Fig. S6, we determined there was 399 fmol of LBR in 5.0×10^4 HeLa cells. Based on this evaluation, we further estimated the concentration of LBR beneath the nuclear envelope as follows. We estimated the size of the nucleus as a sphere 20 µm in diameter, and defined its interaction zone (IZ) (1) within a region of 20 nm from the inner nuclear membrane (INM) as a globular protein of 24 kDa (equal to the molecular weight of the nucleoplasmic region of LBR), which was estimated to be nearly 20 nm in size. The volume of LBR's IZ (V_{IZ}) was estimated to be 25.1 fl (10^{-15} liters).

The amount of core histone was estimated as follows. It has been reported that chromatin of eukaryotes contains nearly equal weights of histone and DNA (2). In the case of human cells, one cell possesses approximately 6.0 pg of DNA. This amount is equal to 56 amol (10^{-18} mol) of histone octamer (molecular weight: 108 kDa). If histone is distributed uniformly in the 20 µm-diameter nucleus, the concentration would be approximately 13 µM. The ratio of the fluorescence intensity of DNA stained with DAPI around the NE to that of an intra-region of the nucleus was 5.8:1 (data not shown). Then, the concentration of core histone in the IZ was estimated at about 75 µM.

The concentration of LBR and that of core histone in the IZ were estimated to be 318 and 75.4 μ M, respectively, as shown above (also see Holaska *et al.* (1)). Therefore, the molar ratio of LBR to histone in the IZ region is estimated to be 4:1.

SUPPLEMENTAL FIGURE LEGENDS

Fig. S1. Celluspot histone peptide array data. (A) Celluspot was incubated with NP^{WT} for 1.5 h, washed, and then probed with anti-GST antibody. Blue, red and yellow regions indicate spots containing histone H3, H4 and H2A/B-related peptides, respectively. (B) Modified histone peptides on

each spot, located on the listed spot numbers, in (A) are shown. Details of the complete matrix of peptides are provided as supplemental table S1 on the *J. Biol. Chem.* website. Black staining of the spots indicates binding to NP^{WT}. In Figure 1d, green regions are indicated.

Fig. S2. Loss of histone modification-specific binding activity in NK^{W16A}. Celluspot was incubated with NP^{W16A} for 1.5 h, washed, and then probed with anti-GST antibody. Blue, red and yellow regions indicate spots containing histone H3, H4 and H2A/B-related peptides, respectively. An overexposed image is shown in the lower panel.

Fig. S3. Molar ratio of LBR to histones. (A) Quantification of LBR in HeLa cells. The cell lysates, equivalent to 2.5×10^4 and 5.0×10^4 cells, and a recombinant His-tagged NP^{WT} protein (70.1, 175, 350, 701 x 10^{-15} mol) were separated by SDS-PAGE, transferred to PVDF, and probed with anti-LBR antibody. The amount of LBR in 5.0×10^4 HeLa cells was estimated as 399 fmol. (B) The diagram shows how the volume of a 20 nm IZ region near the INM of a 20 µm-diameter nucleus was calculated; the concentration of LBR and of core histones in the IZ were estimated as 318 and 75.4 µM, respectively (see Methods and also Holaska *et al.* (1)). Therefore, the molar ratio of LBR to histone in the IZ region is estimated to be 4:1.

Fig. S4. AFM images of the aggregated chromatin induced by NP^{WT} . Chromatin was reconstituted using 1.8 kbp linear dsDNA. After incubation with GST (A), NP^{WT} (B), NP^{W16A} (C) and Tud^{WT} (D), the chromatin structure was observed by AFM. Two μ m square regions are shown. Arrows indicate highly aggregated chromatin formed by NP^{WT} . Bars, 500 nm.

Fig. S5. NP^{WT} induced aggregation with 26 kbp chromatin as well as with 1.8 kbp chromatin. Chromatin was reconstituted using 26 kbp plasmid dsDNA. After incubation with GST (A), NP^{WT} (B), NP^{W16A} (C) and Tud^{WT} (D), the chromatin structure was observed by AFM. Bars, 500 nm.

SUPPLEMENTAL REFERENCES

- Holaska, J. M., Lee, K. K., Kowalski, A. K., and Wilson, K. L. (2003) J. Biol. Chem. 278(9), 6969-6975
- 2. Kornberg, R. D. (1974) *Science* **184**(139), 868-871

А																										
		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	2
	А			18							-		ł.	1		30	10		1			1	21			А
	в																					×				в
	С																								1	С
	D								a.																	D
	Е																									Е
	F			唐																						F
	G	۳.								5																G
	H			Ŧ	2											-							-			H
		2	-							æ								£								1
	J			1			2	2	2			2		1		2										J
	ĸ			*		2		2				2	_	-		-	100		-		14		-	-	4	ĸ
	L						-	100	-	-	-		J					2								L
	IVI				-	1		-	-	2	1	-	-	-	2	-	2	۳.	2	-					-	
	N					-					-		-		-				-	-		-	100	-	-	N
							100										÷.			•						
	F	1	2	2		5	G	7	0	0	10	11	10	12	14	15	16	17	10	10	20	24	22	<u></u>		Р
	and a	1	2	3	4	3	0	1	0	9	10	11	12	13	14	15	10	17	10	19	20	21	22	23 4	-4	
							: H3	3-re	late	ed∣	pep	tide	es]: H	14-ı	ela	ted	l pe	ptic	les			

: H2A/B-related peptides

В								
2	spot number	sequence	portion	1st	modii 2nd	4th	N-terminus	
K20-related peptides	N1 N2 N3 N4 N20 N21 N22 N23 N24 O1 C2 O3 O4 O5 O6 O7 O8 O9 O10 O11	GKGGAKRHRKmetVLRDNIQGIT GKGGAKRHRKme2VLRDNIQGIT GKGGAKRHRKme2VLRDNIQGIT GKGGAKRHRKme2VLRDNIQGIT GKGGAKRHRKme2VLRDNIQGIT GKGGAKRHRKme2Akme2VLRDNIQGIT GKGGAKRHRKme2Akme2VLRDNIQGIT GKGGAKRHRKme2Kme2VLRDNIQGIT GKGGAKRHRKme2VLRDNIQGIT GKGGAKRHRKme2VLRMe2DNIQGIT GKGGAKRHRKme1VLRMe2DNIQGIT GKGGAKRHRKme1VLRMe2DNIQGIT GKGGAKRHRKme1VLRMe2DNIQGIT GKGGAKRHRKme1VLRMe2DNIQGIT GKGGAKRHRKme1VLRMe2DNIQGIT GKGGAKRHRKme1VLRMe2DNIQGIT GKGGAKRHRKme1VLRMe2DNIQGIT	H4 11-30 H4 11-30	K20me1 K20me2 K20ac R19me2a R19me2a R19me2a R19me2a R19me2s R19me2s R19me2s R19me2s R19me2s R23me2a R23me2a R23me2a R23me2s R23me2s R23me2s R23me2s R23me2s R23me2s	K20me1 K20me2 K20me3 K20me2 K20me3 K20me1 K20me1 K20me1 K20me1 K20me3 K20me3 K20me3 K20me3 K20me3			acetyletted acetyletted
K12&K16-related peptides	L12 L18 M4 M5 M6 M6 M11 M12 M16 M16 M17 M18 M19 M20 N7 N8 N9 N10 N11 N13 N13 N13 N15 N15 N15 N15 N15 N17 N17 N19	SGRKGGKGLGKGGAKRHR SGRKGGKGLGKaGGAKRHR SGRKGGKGLGKaGGAKGRHR SGRKGGKGGLGKAGGAKGRHR SGRKGGKGGLGKGGAKGARHR SGRKGGKGGLGKGGGAKGRHR SGRKGGKAGGLGKAGGAKRHR SGRKGGKAGGLGKAGGLGKAGGAKRHR SGRKGGKAGGLGKAGGLGKAGGAKRHR SGRKGGKAGGLGKGGLGKAGGAKRHR SGRKGGGKAGGLGKAGGLGKAGGAKRHR SGRKAGGGKAGLGJGAGGAKGHR SGRKAGGKAGLGKAGGLGKAGGAKRHR SGRKAGGKAGCHRVLRDNIQGIT GKGGAKABHRKVLRDNIQGIT GKGGAKABHRKVLRDNIQGIT GKGGAKABHRKVLRDNIQGIT GKGGAKABHRKWLRDNIQGIT GKGGAKABHRKWLRDNIQGIT GKGGAKABHRKWLRDNIQGIT GKGGAKABHRKWLRDNIQGIT GKGGAKABHRKWLRDNIQGIT GKGGAKABHRKWLRDNIQGIT GKGGAKABHRKWLRDNIQGIT GKGGAKABHRKWLRDNIQGIT GKGGAKABHRKWLRDNIQGIT GKGGAKABHRKWLRDNIQGIT GKGGAKABHRKWLRDNIQGIT GKGGAKABHRKWLRDNIQGIT GKGGAKABHRKWLRDNIQGIT GKGGAKABHRKWLRDNIQGIT GKGGAKABHRKWLRDNIQGIT GKGGAKABHRKWLRDNIQGIT GKGGAKABHRKWLLRDNIQGIT GKGGAKABHRKWLRDNIQGIT GKGGAKABHRKWLLRDNIQGIT GKGGAKABHRKKWLLRDNIQGIT GKGGAKABHRKKWLLRDNIQGIT	$\begin{array}{c} \mathbf{H} & \mathbf{1:9} \\ \mathbf{H} & \mathbf{1:19} \\ \mathbf{H} & \mathbf{1:130} \\ \mathbf{H} & \mathbf{H} & \mathbf{H} & \mathbf{1:130} \\ \mathbf{H} & \mathbf{H} & \mathbf{H} & \mathbf{H} & \mathbf{H} \\ \mathbf{H} & \mathbf{H} & \mathbf{H} & \mathbf{H} & \mathbf{H} \\ \mathbf{H} & \mathbf{H} & \mathbf{H} & \mathbf{H} & \mathbf{H} \\ \mathbf{H} & \mathbf{H} & \mathbf{H} & \mathbf{H} & \mathbf{H} \\ \mathbf{H} & \mathbf{H} & \mathbf{H} & \mathbf{H} & \mathbf{H} \\ \mathbf{H} & \mathbf{H} & \mathbf{H} \\ \mathbf{H} & \mathbf{H} & \mathbf{H} & \mathbf{H} \\ \mathbf{H} & \mathbf{H} & \mathbf{H} \\ \mathbf{H} & \mathbf{H} & \mathbf{H} & \mathbf{H} \\ \mathbf{H} & \mathbf{H} \\ \mathbf{H} & \mathbf{H} \\ \mathbf{H} & \mathbf{H} \\ \mathbf{H} & \mathbf{H} & \mathbf{H} \\ \mathbf{H} & \mathbf{H} \\ \mathbf{H} & \mathbf{H} \\ \mathbf{H} & \mathbf{H} & \mathbf{H} \\ \mathbf{H} & $	Unmod K12ac K16ac K8ac K8ac K5ac K5ac K12ac K5ac Unmod K12ac K16ac	K12ac K16ac K12ac K5ac K5ac K5ac K5ac K5ac K5ac K5ac K16ac K16ac K16ac K16ac K16ac K16ac	K12ac K18ac K8ac K12ac K12ac K20me1 K20me2 K20me3 K20ac	K12ac K12ac K16ac	free free free free free free free free

