Supplemental Figure 1. *DLKI-DIO3* miRNA/mRNA complementarity. Complementarity between the indicated *DLK1-DIO3* cluster miRNAs and the 3' UTR of *SOX2, SOX9, HIF1A, ZEB1, ZEB2, STAT3* and *CDH1* with mirSVR and PhastCons scoring.

Supplemental Figure 2. Effects of *DLKI-DIO3* miRNA gain and loss-of-function on expression of EMT-associated targets in TGF- β 1 treated MCF-10A cells. MCF-10A cells were transfected with the indicated miRNA mimic or antagomir, treated with TGF- β 1, and 5 days later expressed levels of the indicated mRNA targets were quantified by RT-PCR. Data are expressed as mean + SEM of three separate experiments. *, p < 0.05.

Supplemental Figure 3. Effects of *DLKI-DIO3* miRNA gain and loss-of-function on expression of EMT-associated targets in MDA-MB-231 cells. MDA-MB-231 cells were transfected with the indicated miRNA antagomirs and at 5 days post-transfection expressed levels of the indicated mRNA targets were quantified by real-time PCR. Data are expressed as mean + SEM of three separate experiments. *, p < 0.05.

Supplemental Figure 4. Effects of *DLKI-DIO3* miRNA gain and loss-of-function on expression of EMT-associated targets in MCF-10A cells. MCF-10A cells were transfected with the indicated miRNA antagomirs and at 5 days post-transfection expressed levels of the indicated mRNA targets were quantified by RT-PCR. Data are expressed as mean + SEM of three separate experiments. *, p < 0.05.

Supplemental Figure 5. *DLK1-DIO3* miRNAs affect changes in E-cadherin expression in the MCF-10A cell line. Phase contrast microscopy, DAPI (blue), and E-cadherin (green) staining of the MCF-10A cell line following 20 days of repeated transfection with the indicated miRNA mimics (Upper) or antagomirs (Lower).

Supplemental Figure 6. *DLK1-DIO3* miRNAs fail to upregulate E-cadherin in cells that have already undergone EMT. Phase contrast microscopy, DAPI (blue), and E-cadherin (green) staining of the MDA-MB-231 cell line following 20 days of repeated transfection with the indicated miRNA mimics (Upper) or antagomirs (Lower).

Supplemental Figure 7. *DLK1-DIO3* miRNAs are sufficient to block TGF- β 1 induced EMT and Ecadherin down regulation in the MCF-10A cell line. Phase contrast microscopy, DAPI (blue), and Ecadherin (green) staining of the TGF- β 1 treated MCF-10A cell line following 20 days of repeated transfection with the indicated miRNA mimics (Upper) or antagomirs (Lower).

Supplemental Table 1. Microarray analysis. MDA-MB-231 cells transfected with miR-544 or controlmiR were analyzed by micro-array and mRNAs that exhibited 2, 5, or 10-fold changes in expression were determined by comparative analysis.

Supplementary Table 2. Microarray data. MDA-MB-231 cells transfected with miR-544 or controlmiR were analyzed by micro-array and raw values from the array data are provided.

Supplementary Table 3. 3' UTR primer sequences. Primer sequences used to amplify and clone the 3'UTR of each indicated gene are listed.

Supplementary Table 4. Real time RT-PCR primer sequences. The primer sequences used to quantify expressed levels of each miRNA or mRNA target are listed.

Supplementary Table 5. CpG island methylation assay primer sequences. The primer sequences used to determine the methylation status of CpG islands upstream of the *DLKI-DIO3* miRNA cluster are listed.

Figure S1.

3' ucUCUCUCAGACGGGAACAUAu 5' hsa-miR-300	mirSVR: -0.3618
300:5' cqGGGGAAU-GGACCUUGUAUa 3' SOX2	PhastCons: 0.5823
3' ucucucucagacgggAACAUAu 5' hsa-miR-300	mirSVR: -0.2788 PhastCons: 0.7507
941:5' cuuuauuuuccguagUUGUAUu 3' SOX2	
3' gcUUAGGUGGUGCUUGUUGAAg 5' hsa-miR-382 ::::: :	mirSVR: -0.2155 PhastCons: 0.7754
452:5' uuAAUAU-UUGCAAGCAACUUu 3' SOX2	
3' gcuuagguggugcuuGUUGAAg 5' hsa-miR-382 1040:5' uaacagguacauuuuCAACUUa 3' SOX2	mirSVR: -0.6280 PhastCons: 0.8471
3' uucuucacguggcgcUUACAAa 5' hsa-miR-543	mirSVR: -0.2117 PhastCons: 0.7293
431:5' ccaagcgacgaaaaaAAUGUUu 3' SOX2	
3' ucucucucAGACGGGAACAUAu 5' hsa-miR-300 ::: 1409:5' aacuuguuUCUUUUUUUUUUUUUUUUUUUUUUUUU	mirSVR: -0.1284 PhastCons: 0.6255
3' ucucucucAGACGGGAACAUAu 5' hsa-miR-300 : ::: 1973:5' uucucuuuUUUUUUUUUUUUUUUAUa 3' SOX9	mirSVR: -0.4809 PhastCons: 0.6517
3' cuccAAAGGGCACAUACAAAGu 5' hsa-miR-494 : : 961:5' aaucUGUUCUGGGAAUGUUUCa 3' SOX9	mirSVR: -0.3831 PhastCons: 0.5542
3' uucuucaCGUGGUACAAACAAa 5' hsa-miR-495 :::: 1886:5' uguguucGUGUUUGUUUGUUU 3' SOX9	mirSVR: -0.7565 PhastCons: 0.6139
3' ugUGUGGUUCCUAUUAAAGAGg 5' hsa-miR-539 :::: 1559:5' auGUGUCAUCCAU-AUUUCUCu 3' SOX9	mirSVR: -0.2711 PhastCons: 0.5304
3' ugugugguuccuauuAAAGAGg 5' hsa-miR-539 1957:5' accuuuccuuuuucUUUCUCu 3' SOX9	mirSVR: -0.2059 PhastCons: 0.6328

3' cuccaaAGGGCACAUACAAAGu 5' hsa-miR-494	mirSVR: -0.9865 PhastCons: 0.7131
722:5' gagaaaUCAUCUG-AUGUUUCu 3' HIF1A	
3' uucuucacguggcgcUUACAAa 5' hsa-miR-543	mirSVR: -0.1967 PhastCons: 0.7345
928:5' auuugcucaaaauacAAUGUUu 3' HIF1A	
3' cuccaaagggcacauACAAAGu 5' hsa-miR-494 	mirSVR: -0.1026 PhastCons: 0.7026
1165:5' uauuuggcucauaacUGUUUCc 3' ZEB1	
3' ugugugGUUCCUAUUAAAGAGg 5' hsa-miR-539 : :	mirSVR: -0.6979 PhastCons: 0.7703
372:5' gugcugUAAGUGCCAUUUCUCa 3' ZEB1	
3' ugugugguuccUAUUAAAGAGg 5' hsa-miR-539 	mirSVR: -0.9944 PhastCons: 0.6932
1070:5' gauugauuuucAGAAUUUCUCu 3' ZEB1	
3' uucuucACGUGGUACAAACAAa 5' hsa-miR-495 : :	mirSVR: -0.3155 PhastCons: 0.7710
866:5' auuuucUGUACU-UUUUUUGUUc 3' ZEB2	
3' uucuUCACGUGGUACAAACAAa 5' hsa-miR-495 : ::	mirSVR: -0.6735 PhastCons: 0.8506
1166:5' uuuuAUUAUUUUAUUUUUUGUUu 3' ZEB2	
3' uucuucacGUGGUACAAACAAa 5' hsa-miR-495 :	mirSVR: -0.4304 PhastCons: 0.5973
1316:5' aggucccuCAUCCUGUUUGUUu 3' STAT3	
3' uucuuCA-CGUGGUACAAACAAa 5' hsa-miR-495 ::	mirSVR: -0.6347 PhastCons: 0.5559
1783:5' uuucuGUGGAAUUCUGUUUGUUa 3' STAT3	
3' cuugaacGAUUUUUACGUCUUa 5' hsa-miR-544 : :	mirSVR: -0.4626 PhastCons: 0.7336
5:5' cugagaaCGGAAGCUGCAGAAa 3' STAT3	
3' uucuucacgugguacAAACAAa 5' hsa-miR-495	mirSVR: -0.3982 PhastCons: 0.6466
2015:5' auuuuauuaacaauUUUUGUUa 3' CDH1	
3' gcUUAGGUGGUGCUUGUUGAAg 5' hsa-miR-382	mirSVR: -0.5225 PhastCons: 0.5342
271:5' auAUUCCA-GAAGAACAACUUu 3' CDH1	

Figure S4.

Figure Sa	5. MCF10A mimi	cs						
	miR-300	miR-382	miR-494	miR-495	miR-539	miR-543	miR-544	control-miR
Phase								The second s
E-Cadherin								all a
DAPI								
Merged		se filip		St. A.				1
	MCF10A inhib	itors						
Phase	miR-300	miR-382	miR-494	miR-495	miR-539	miR-543	miR-544	control-miR
E-Cadherin						. Com	3	
DAPI								
Merged					in the second		The g	

Gene	Forward	Reverse
MYC	5' CAA ATG CAA CCT CAC AAC CTT	5' TGG CTC AAT GAT ATA TTT GCC
	GGC 3'	AGT 3'
FOX01	5' TGC CCA ATG TGT GCA GGT TAT	5' TAA TGG CAC GGG AGG AAA GTG
ТОЛОГ	GTG 3'	ACA 3'
SOX9	5' TGA CCT ATC CAA GCG CAT TAC	5' GGG AAA GGT AAG TTT CAC GGA
5011	CCA 3'	GAG 3'
OSTERIX	5' TCA CCA TGA GAC TGG CTT TCC	5'ACT TGA GGT TTC ACA GCT TCT
	ACA 3'	GGC 3'
SOX2	5' TCA CCA TGA GAC TGG CTT TCC	5'ACT TGA GGT TTC ACA GCT TCT
	ACA 3'	GGC 3'
TAZ1	5' ATA GAA GGC AGG TGA GCA ACC	5'CAG GCC CTA GGA TTC AAG TGA
	AGT 3'	1GT 3'
TWIST2	5' CCG AGC CTC TGC ATG ATT GTT	5'ATG GCT GCG CGG ACG TCT TTA
	1CA 3'	
SIX1	5' CGC CTG TTT CAG CAG CCT TTC	5'TTT CTA GAC ACC ATC CGG CAG CA
		3'
ID2	5' GCC CTT TCT GCA GTT GGA AGG	5'CTG GTC CTC TGA AAT AAA GCA
		GGC 3'
TWIST1	5' ACC ATC CTC ACA CCT CTG CAT	5'CTT GTG CCT GTC AGT AGC TGC
HIF1a	5' GTA CGT GGT AGC CAC AAT TGC	5'CCA ACA GGG TAG GCA GAA CAT
	ACA 3'	
CDH1	5' CAC TCT TTA CAT GGT GGT GAT	5'ACC TAG TCA AGA TGT GGC CAG
		ACA 3'
BMI1	5' TGG ACT ACA TGT GAT ACT CCT	5'GCA TGT ACT TCT TAG CCA CAT
		CAC 3'
ZEB1	5' AAT AAA TCC GGG TGT GCC TGA	5'TTG TGA GAT GGG AGT CTG GT 3'
	ACC 3'	
ZEB2	5' CGA AGI CIT AAA GIG ACC IGG	5'ACA IIG IAI IIA ACA GIU CUI
OCLN	5' CIG GGC IGA ACA CIC CAA TTA	5'AGG GAG GCT GGT AGA TCA TCA
STAT3	5' ACA GCT GAG AAC GGA AGC TGC	5 TGA TCA GCT GAG GCA AGG TGG
	AGA 3'	TTTT 3'

Supplemental Table 3. 3' UTR primer sequences.

Gene	Forward	Reverse			
SOX9	5' GTA CCC GCA CTT GCA CAA C 3'	5' GTG GTC CTT CTT GTG CTG C 3'			
ATM	5' ATC TGC TGC CGT CAA CTA GAA	5' GAT CTC GAA TCA GGC GCT TAA A 3'			
SOX2	5' AAC CAA GAC GCT CAT GAA GAA G 3'	5' CTGCGAGTAGGACATGCTGTAG 3'			
TWIST1	5' GTC CGC GTC CCA CTA GC 3'	5' TCC ATT TTC TCC TTC TCT GGA A 3'			
HIF1a	5' CGC GAA CGA CAA GAA AAA G 3'	5' AAG TGG CAA CTG ATG AGC AA 3'			
CDH1	5' TTG ACG CCG AGA GCT ACA C 3'	5' GAC CGG TGC AAT CTT CAA A 3'			
BMI1	5' CCA CCT GAT GTG TGT GCT TTG 3'	5' TTC AGT AGT GGT CTG GTC TTG T 3'			
ZEB1	5' TGT TAC CAG GGA GGA GCA GT 3'	5' GCT TCA TCT GCC TGA GCT TC 3'			
ZEB2	5' CGA TCC AGA CCG CAA TTA AC 3'	5' TGC TGA CTG CAT GAC CAT C 3'			
STAT3	5' CCC TTG GAT TGA GAG TCA AGA 3'	5' AAG CGG CTA TAC TGC TGG TC 3'			
VIM	5' AGG AAA TGG CTC GTC ACC TTC GTG 3'	5' GGA GTG TCG GTT GTT AAG AAC TAG 3'			
miR-200a	5' TAA CAC TGT CTG GTA ACG ATG T 3'	Qiagen Universal Reverse			
miR-200b	5' TAA TAC TGC CTG GTA ATG ATG A 3'	Qiagen Universal Reverse			
miR-200c	5' TAA TAC TGC CGG GTA ATG ATG GA 3'	Qiagen Universal Reverse			
miR-429	5' TAA TAC TGT CTG GTA AAA CCG T 3'	Qiagen Universal Reverse			
miR-141	5' TAA CAC TGT CTG GTA AAG ATG G 3'	Qiagen Universal Reverse			
miR-300	5' TAT ACA AGG GCA GAC TCT CT 3'	Qiagen Universal Reverse			
miR-382	5' GAA GTT GTT CGT GGT GGA TT 3'	Qiagen Universal Reverse			
miR-494	5' TGA AAC ATA CAC GGG AAA CC 3'	Qiagen Universal Reverse			
miR-495	5' AAA CAA ACA TGG TGC ACT TC 3'	Qiagen Universal Reverse			
miR-539	5' GGA GAA ATT ATC CTT GGT GT 3'	Qiagen Universal Reverse			
miR-543	5' AAA CAT TCG CGG TGC ACT TC 3'	Qiagen Universal Reverse			
miR-544	5' ATT CTG CAT TTT TAG CAA GTT C 3'	Qiagen Universal Reverse			
GAPDH	5' TGT GTC CGT CGT GGA TCT GA 3'	5' CCT GCT TCA CCA CCT TCT TGA 3'			
RNU6b	Qiagen RNU6b Forward	Qiagen Universal Reverse			

Supplementary Table 4. Real time RT-PCR primer sequences.

CpG Island	Forward	Reverse
CpG 1	5' GTT TAG GGT AGG GAG TTA	5' CCT CCT ACC TAC TAA CCC TCT C
	GAG G 3'	3'
CpG 2	5' ATT TTA GGG GAA GGG ATT T 3'	5' TAA AAT CCA AAC ATA CAC TAT
		CC 3'
CpG 3	5' AGA AGG AAA AGA ATT TGT	5' ATC CCC AAT ATA ATT TCC TCA
	TTA TGG 3'	A 3'
CpG 4	5' AGA GTG AAT GGG TTT TTG AAA	5' TCC CTT CCT AAA AAC TCC TTA A
	Т 3'	3'
CpG 5	5' TTG TTA TAG AAT TTG GGG GGT	5' ACT TCC CCC CAA AAA AAT ATA
	3'	C 3'
CpG 6	5' TTG GTT TTT TTT TGT ATT TTG G	5' CCA CTC TCC CTA CTA CCT AAA
	3'	AA 3'
CpG 7	5' GTT TTT GGA GAG TGT GAG GTT	5' TCC CTT CAA ATA CCA AAA AAA
	Т 3'	A 3'

Supplementary	Table 5.	CpG island	methylation	assav	primer	sequences.
11 1		1	•		1	1