Crystal Structure of Calmodulin Binding Domain of Orai1 in Complex with Ca²⁺/Calmodulin Displays a Unique Binding Mode*

Yanshun Liu^{1¶}, Xunhai Zheng², Geoffrey A. Mueller², Mack Sobhany³, Eugene F. DeRose², Yingpei Zhang¹, Robert E. London² and Lutz Birnbaumer^{1¶}

¹Laboratory of Neurobiology, ²Laboratory of Structural Biology, ³Laboratory of Reproductive and Developmental Toxicology, National Institute of Environmental Health Sciences, National Institutes of Health, 111 TW Alexander Drive, Research Triangle Park, North Carolina 27709

* Running title: Calmodulin and Orai1 form an unusual 1:2 complex

¶To whom correspondence should be addressed: Yanshun Liu or Lutz Birnbaumer, Laboratory of Neurobiology, National Institute of Environmental Health Sciences, National Institutes of Health, 111 TW Alexander Dr., Research Triangle Park, NC27709, USA, Tel.: (919) 541-9010; Fax: (301)480-2718; Email: liuy3@niehs.nih.gov, birnbau1@niehs.nih.gov

Key words: calmodulin, Orai1, calmodulin binding domain, calcium-dependent, store operated calcium entry, crystal structure

Supplemental materials

Figure S1. A sample of electron density map of CaM/Orai1-CMBD. A 2Fo-Fc map was contoured around W76 (labeled in black) of Orai1-CMBD at 1.0σ level using Pymol. The carbon atoms are colored in green for Orai1-CMBD, and in light blue for CaM. The other atoms are colored as: O, red; N, dark blue; S, gold, for both Orai1-CMBD and CaM. The residue numbers of CaM are labeled in blue, and W76 of Orai1-CMBD is labeled in black.

Figure S2. Interaction of Orai1-CMBD with CaM-N of symmetry-related CaM. A. Stick and surface representation of the interaction. Residues involved in this interaction are labeled in black for Orai1-CMBD, and in blue for CaM. The two hydrogen bonds are indicated with the dotted lines. **B.** Surface representation of Orai1-CMBD and CaM-C to show the shape complementarity. **C.** Surface representation of Orai1-CMBD and symmetry-related CaM-N to show the shape complementarity. Comparison of B and C shows that Orai1-CMBD and CaM-C have better shape complementarity than Orai1-CMBD and symmetry-related CaM-N. The color schemes are: C, yellow for CaM, and green for Orai1-CMBD; N, blue; O, red; S, gold.

Figure S3. Hydrophobic interactions between CaM and three residues of Orai1-CMBD. A. L74; **B.** L79; **C.** Y80. The side chains of Orai1-CMBD residues are shown in green sticks. CaM is shown as ribbon in yellow, with residues interacting with Orai1-CMBD residues shown in sticks. Oxygen atoms are shown in red, and sulfur atoms in gold. Residues of Orai1-CMBD are labeled in black, and residues of CaM are labeled in blue.

Figure S4. NMR ¹⁵N-¹H chemical shift perturbations of CaM and CaM-N due to Orai1-CMBD. A. The amide resonances of CaM are shown upon addition of Orai1-CMBD at protein to peptide ratios of 1:0, 1:1, 1:1.5, and 1:2.0. I130 (in red) and A57 (in blue) are highlighted. **B**. The amide resonances of isolated CaM-N are shown upon titration of Orai1-CMBD at protein to peptide ratios of 1:0, 1:0.5, and 1:1. A57 (in blue) is highlighted.

Fig. S1

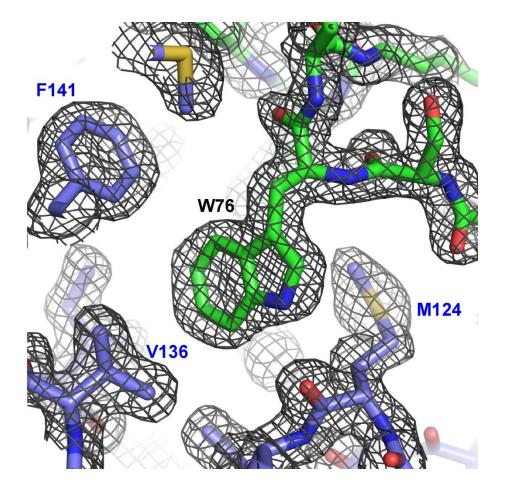


Fig. S2

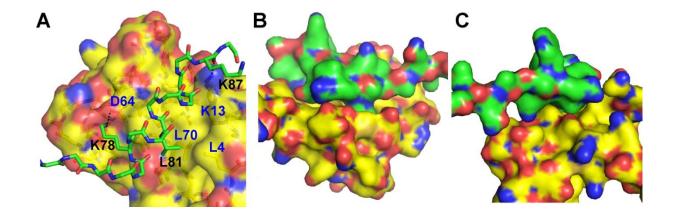


Fig. S3

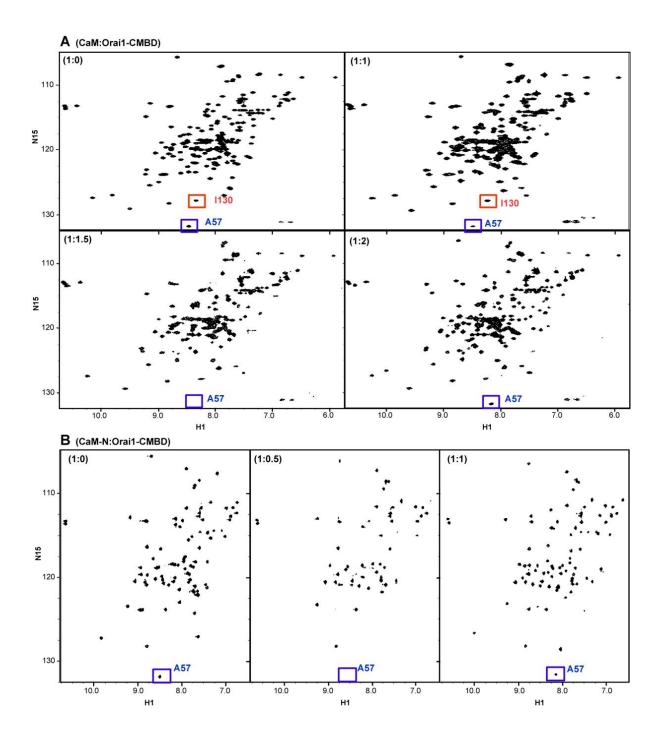



Fig. S4

