## SUPPLEMENTARY INFORMATION

## Trex1 regulates lysosomal biogenesis and interferon-independent activation of antiviral genes

Maroof Hasan, James Koch, Dinesh Rakheja, Asit K. Pattnaik, James Brugarolas, Igor Dozmorov, Beth Levine, Edward K. Wakeland, Min Ae Lee-kirsch and Nan Yan

Correspondence should be addressed to N.Y. (nan.yan@utsouthwestern.edu)



**Supplementary Figure 1.** VSV entry is not affected by Trex1-deficiency or *TREX1* mutation. (a) Fluorescent microscopy of WT and  $Trex1^{-/-}$  MEFs infected with VSV-DiL (red, fluorescently labeled virion) for 1 h. Representative images from 3 independent experiments are shown. (b,c) Quantitative RT-PCR analysis of VSV G and M RNA in WT and  $Trex1^{-/-}$  MEFs (b) or WT and  $TREX1^{R114H/R114H}$  (*TREX1*-mut) human fibroblasts (c) infected with VSV at MOI of 2 for 1 h. WT normalized to 1. ND, not detectable. Data are representative of two independent experiments (error bars, s.d.).



**Supplementary Figure 2**. VSV infection caused cytopathic effect in WT, but not  $Trex1^{-/-}$ , MEFs. WT and  $Trex1^{-/-}$  MEFs were infected with VSV at MOI indicated on top for 18 h. Phase contrast images were taken without fixing the cells. Representative images from three independent experiments are shown.



**Supplementary Figure 3.** Selected host gene expression from RNA-SEQ analysis in Fig. 3a. RPKM, Reads Per Kilobase of exon model per Million mapped reads, indicates expression value of each gene.



**Supplementary Figure 4**. Selected viral gene expression from RNA-SEQ analysis in Fig. 3a. Viral mRNAs that are not polyadenylated or do not contain A rich sequences will not be detected by RNA-SEQ, due to a preparation step that involves poly-dT selection.

## а

| Ran | Network function                                                                                             | Score | Molecules in network                                                                                                                                                                                                                          |
|-----|--------------------------------------------------------------------------------------------------------------|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1   | Antimicrobial Response,<br>Inflammatory Response,<br>Infectious Disease                                      | 40    | ADAR,ATP6V1B1,CH25H,CTSF,CXCL16,Ifitm1,GBP2,IFI27<br>,IFI35,IFI44,Ifi47,Ifi204,IFI27L2,IFI1H1,IFI17,IFI17,IFI171B,Ifft<br>m7,IRF6,IRF1,IRG,ISG15,INFKBIA,NMI,PARP9,PCDH7,PL<br>D3,RNASE4,SP110,SUM03,TNFSF10,TNIP3,WBP5,ZBP1                  |
| 2   | Genetic Disorder,<br>Neurological Disease,<br>Psychological Disorders                                        | 38    | ADRA1D,BAI2,CD97,CELSR2,CYSLTR1,DRD4,F2RL3,FZD<br>1,FZD3,FZD6,FZD7,FZD9,Gpcr,GPR44,GPR56,GPR61,GP<br>R75,GPR88,GPR97,GPR115,GPR124,GPR132,GPR133,G<br>PR157,GPR162,GPR176,GPR137B,GPRC5C,HRH2,HTR6,<br>KISS1R,NPY1R,OPRL1,Pik3r               |
| 3   | Cellular Movement,<br>Connective Tissue<br>Development and Function,<br>Cellular Function and<br>Maintenance | 36    | AASS,AChR,Actg2,AGRN,C13orf15,,CPXM1,DFNA5,DNAH<br>2,Ecm,ECM2,GALM,GDPD5,GYLTL18,H1FX,LOXL2,Masp<br>1,MFAP2,NOV,OVOL1,PDK2,PDZK1IP1,PHKG1,phosphory<br>Iase,PLA1A,RAB9A,RAMP2,ROBO3,SERPINB10,SPAG4,S<br>PARCL1,STARD10,TGFB3,TGFB1,TYMP      |
| 4   | Amino Acid Metabolism,<br>Energy Production, Post-<br>Translational Modification                             | 36    | AIFM3,ARNT2,BIRC3,CASQ1,CD53,FAM43A,IFI44L,Ifng,IK<br>K,IMPACT,L1CAM,MALT1,MDM4,NLRP2,NPAS1,PEA15,PE<br>G3,PKP3,PSEN2,RALGPS2,RHPN2,RpI29,RPS6KA1,Serpi<br>na3k,SFN,SGK223,SHROOM1,SOX7,Sp100,ST5,Tnf,UAC<br>A,XAF1,Zfp108/Zfp93              |
| 5   | Drug Metabolism, Lipid<br>Metabolism, Small Molecule<br>Biochemistry                                         | 34    | ARSG,ARSI,ARSK,Cml5,CYP1A1,Cyp1a,CYP27A1,CYP2C<br>18,CYP2D6,CYP2F1,Cyp2j9,CYP3A4,CYP7B1,FMO5,GAB<br>1,GTPASE,NAALAD2,PRPH,PTPLAD1,RASA4/RASA4B,R<br>BFOX1,RGS16,RGS17,RORA,Shank2,SIDT2,SLC46A3,ST<br>3GA1 4,TSC22D1,UGTUGT146,Lipt1a7, VEPH1 |

## b





**Supplementary Figure 5.** Ingenuity pathway analysis of genes up-regulated in  $Trex1^{-/-}$  cells. Gene expression data from RNA-SEQ were analyzed by Ingenuity Pathway Analysis (IPA) software package. (a) Top five ranked gene networks. (b) Detailed view of the most enriched gene network (#1 in a). Numbers below each molecule represent fold up-regulation in  $Trex1^{-/-}$  cells compared to WT cells. Molecules in red were up-regulated more than 10-fold. (c) Top ten ranked canonical pathways. Black bars show the *p*-value of each pathway. Red line represents percentage of genes (Ratio) within each pathway that were up-regulated in  $Trex1^{-/-}$  dataset. Red arrows highlight two innate immune pathways that are up-regulated in  $Trex1^{-/-}$  cells and have high ratio of hits.



**Supplementary Figure 6.** ISG induction signature in infected WT cells (a-c) and uninfected  $Trex1^{-/-}$  cells (d). Each dot represents a gene from **Fig. 3a**: the x-axis value is fold-increase after VSV infection in WT MEFs, and the y-axis value is fold-increase after influenza (a), Sendai (b) or West Nile virus (c) infection in WT MEFs as indicated on the y axis, or fold-increase in uninfected  $Trex1^{-/-}$  MEFs (d). All compared to uninfected WT MEFs.



**Supplementary Figure 7.** IFN- $\beta$  induces *Ifit1* expression in WT and *Trex1<sup>-/-</sup>* MEFs. WT and *Trex1<sup>-/-</sup>* MEFs were treated with recombinant mIFN- $\beta$  at indicated dose for 6 h. *Ifit1* mRNA level was measured by qRT-PCR. Untreated WT sample was normalized to 1. Data are representative of two independent experiments (error bars, s.d.).



**Supplementary Figure 8.** Trex1 does not directly inhibit STING-mediated activation of *Ifit1* in 293T cells. 293T cells were transfected with plasmids expression Flag-TREX1 or HA-STING as indicated. Twenty-four hours after transfection, *Ifit1* mRNA was measured by qRT-PCR. pcDNA transfected sample was normalized to 1. Data are representative of three independent experiments (error bars, s.d.).



**Supplementary Figure 9**. Trex1 knockdown in HeLa cells induces lysosomes. HeLa cells were transfected with Ctrl or Trex1 siRNA for 72 h and stained with LysoTracker Red. Two doses of siRNA were used, 20 pmole and 40 pmole. Representative images from three independent experiments are shown.



**Supplementary Figure 10.** Autophagsome formation in WT and  $Trex1^{-/-}$  cells. (a) Western blot analysis of endogenous LC3, p62 proteins in WT and  $Trex1^{-/-}$  MEFs and BMDMs. HMGB1 serves as loading controls. Representative blots from three independent experiments are shown. (b) Control (*ACTB*) and autophage-related gene expression values determined by RNA-SEQ (**Fig. 3**). WT values were normalized to 1. (c) Fluorescence microscopy analysis of GFP-LC3 dot formation in WT and  $Trex1^{-/-}$  MEFs. Cells grown on slides were transfected with GFP-LC3 plasmids and fixed 24 h post transfection. Numbers of GFP-LC3 dot per cell are shown on the right. Averages of 12 cells are shown (error bars. s.d.).



**Supplementary Figure 11**. Genes related to lysosomal biogenesis are up-regulated in  $Trex1^{-/-}$  cells. Gene expression values were determined by RNA-SEQ as in **Fig. 3**. WT values were normalized to 1. (a) lysosomal gene expression values comparing WT and  $Trex1^{-/-}$ . (b-c) lysosomal gene (b) or ISGs (c) expression values comparing WT,  $Trex1^{-/-}$  and  $Trex1^{-/-}Irf3^{-/-}$ . (d) Western blot analysis of LAMP1 protein level in WT,  $Trex1^{-/-}$  and  $Trex1^{-/-}Irf3^{-/-}$ . MEFs. A representative blot from three independent experiments is shown.



**Supplementary Figure 12**. TFEB knockdown does not affect innate immune gene expression. MEFs stably expressing shCtrl or shTFEB were used for qRT-PCR analysis of indicated genes. Data are representative of three independent experiments (error bars, s.d.).



**Supplementary Figure 13**. Effects of various inhibitors on VSV replication in WT and  $Trex1^{-/-}$  cells. Western blot analysis of VSV proteins in WT and  $Trex1^{-/-}$  MEFs treated with indicated drugs for 1 h and infected with VSV for 24 h. MG132 was used at 2.5 uM, NH<sub>4</sub>Cl at 20 mM, chloroquine at 50 uM, 3-MA at 1mM, wortmannin at 10 uM. A representative blot from two independent experiments is shown.



**Supplementary Figure 14**. A model showing how TREX1 regulates lysosomal biogenesis and IFN-independent activation of antiviral genes.

| Oligo name         | Forward and reverse oligo sequence |
|--------------------|------------------------------------|
| Mouse Gapdh        | TTCACCACCATGGAGAAGGC,              |
|                    | GGCATCGACTGTGGTCATGA               |
| Mouse Ifnb         | CTGCGTTCCTGCTGTGCTTCTCCA,          |
|                    | TTCTCCGTCATCTCCATAGGGATC           |
| VSV G              | CAAGTCAAAATGCCCAAGAGTCACA,         |
|                    | TTTCCTTGCATTGTTCTACAGATGG          |
| VSV M              | TATGATCCGAATCAATTAAGATATG,         |
|                    | GGGACGTTTCCCTGCCATTCCGATG          |
| Influenza NS1      | TCGAGACAGCCACACGTGCTGGAAA,         |
|                    | AAGAGGGCCTGCCACTTTCTGCTTG          |
| SeV P              | TGTTATCGGATTCCTCGACGCAGTC,         |
|                    | TACTCTCCTCACCTGATCGATTATC          |
| WNV Env            | TCACGCATCTCTCCACCAAAG,             |
|                    | GGGTCAGCACGTTTGTCATTG              |
| Mouse Ifit1        | GAACCCATTGGGGATGCACAACCT,          |
|                    | CTTGTCCAGGTAGATCTGGGCTTCT          |
| Mouse <i>Ifit2</i> | ATGAGTTTCAGAACAGTGAGTTTAA,         |
|                    | AACTGGCCCATGTGATAGTAGACCC          |
| Mouse Ifit3        | TGGCCTACATAAAGCACCTAGATGG,         |
|                    | CGCAAACTTTTGGCAAACTTGTCT           |
| Mouse Irf7         | ATGCACAGATCTTCAAGGCCTGGGC,         |
|                    | GTGCTGTGGAGTGCACAGCGGAAGT          |
| Mouse Ifitm3       | GAGGTGGCTGAGATGGGGGGCACCG,         |
|                    | CTCCAGTCACATCACCCACCATCTT          |
| Mouse Stat1        | AAGGTGAAGCCAATGGTGTGGCGAA,         |
|                    | CCGATGCAGGCGCTCTGCTGCCTTC          |
| Mouse Stat2        | ACAGGATGTCTTCAGCTTCAGATAC,         |
|                    | CACTCGTCCAGCTTGGGCAGCAATA          |
| Mouse Ifna4        | CTTTCCTCATGATCCTGGTAATGAT,         |
|                    | AATCCAAAATCCTTCCTGTCCTTC           |
| Mouse Ctsa         | GACTCCAAGCACTTCCACTACTGGT,         |
|                    | CTGGCTGGATCAGAAAGGGGCCGTG          |
| Mouse Sgsh         | CCCTGTCCCGCCACAGCCTTATCTT,         |
|                    | GAGTTGAAGTGATGCACATCCTGGT          |
| Mouse Lamp1        | TAATGGCCAGCTTCTCTGCCTCCTT,         |
|                    | AGGCTGGGGTCAGAAACATTTTCTT          |
| Mouse Mcoln1       | CCCACAGAAGAGGAAGACCTCCGCC,         |
|                    | AGAGAATGAGCTGCACAGTGACCAC          |
| Mouse <i>Tpp1</i>  | GCTGGGTGTCCCTGGGCCGCGTGGA,         |
|                    | AGGGTTAGGTACTTTCCATATTGAG          |
| Mouse Tcfeb        | GAGCTAACAGATGCTGAGAGCAGAGC,        |
|                    | GCATCCTCCGGATGTAATCCACAGA          |

Supplementary Table 1. DNA oligos used in this study. All oligos were purchased from Sigma.

| Mouse Tbk1   | CCAGTGGATGTTCAAATGAGAGAAT, |
|--------------|----------------------------|
|              | TCTAGAACAGTGTATAAACTCCCAC  |
| Mouse Mapk1  | CTGCTTATGATAATCTCAACAAAGT, |
|              | TGCCCGGATGATGTCATTGATGCCA  |
| Mouse Trim25 | AATGTCGCAAAGTGTACCAGGTGCG, |
|              | ACGAGGCACGTCTTCACTGCGATCT  |

| Oligo name | Sequence                                  |
|------------|-------------------------------------------|
| Control    | UAGCGACUAAACACAUCAA                       |
| Trex1      | GCUACAGCCUGGGCAGCAU, CAGGGAAUGGUUCGAGGAA, |
|            | CACACAACGGUGACCGCUA                       |
| IFIT1      | GAAAUGAACCCUGCAUUCU, CAACAAAUCUCCCAACUGA  |
| IFITM3     | CACGGAUCGGCUUCUGUCA, GCACCUUGGUCCUCAGCAU  |
| STAT1      | CUCAGAACACUCUGAUUAA, CACAGUAUAAACACGAAUU  |
| STAT2      | GAAUCAGGCUCAAAGAGCU, GUGAUUAUUUCUAACAUGA  |
| IRF3       | CAAGGUUGUUCCUACAUGU, GUCCUCAGAUCUGGCUAUU  |
| IRF7       | GGAAAUUGCCCUCGAUGUU, CACCUAAUUUACUAGAGCU  |
| TFEB       | CAACAGUCCCAUGGCCAUG, CCAACCUGUCCAAGAAGGA  |
| TBK1       | CGGAAGAGUGGAUGAGAAA                       |
| STING      | UCAAUCAGCUACAUAACAA                       |
| IFI204     | UUAGUUUACUGCCUGGUUC                       |
| RIG-I      | CAAGAAGAGUACCACUUAA                       |
| MAVS       | GAUCAAGUGACUCGAGUUU                       |
| mTOR       | GGAUCAACCACCAGCGCUA, CUGACUACGCCUCCCGCAU  |

**Supplementary Table 2.** siRNA oligos used in this study. All oligos were purchased from Sigma.