Supplementary Material

Inactivation of thiol-dependent enzymes by hypothiocyanous acid: role of sulfenyl thiocyanate and sulfenic acid intermediates.

Tessa J. Barrett, David I. Pattison, Stephen E. Leonard, Kate S. Carroll, Michael J. Davies and Clare L. Hawkins

Supplementary Figure 1: Treatment of CK with HOSCN results in generation of sulfenic acid formation at Cys-73. CK (25 μ M) was treated with HOSCN (12.5 – 250 μ M) for 5 min, prior to reductive alkylation, tryptic digestion and LC/MS/MS analysis. (a) No loss of the alkylated parent Cys-73 containing peptide of CK was observed (Cys-73, [M+3H]³⁺, 1559.7.); (b) formation of the +138 product peptide corresponding to the addition of dimedone at the Cys-73 site of CK ([M+3H]³⁺, 1586.4) was apparent. Peak areas are standardized to the area of the oxidant insensitive CK peptide SEEEYPDLSK ([M+2H]²⁺, 598.5).

* Represents a significant increase (p < 0.05) in the concentration of each peptide of compared to control 1-way ANOVA with Dunnett's post-hoc test. Values are means \pm S.E.M (n = 6). **Supplementary Figure 2:** Fragmentation ion spectra of [M+3H]³⁺ and [M+138+3H]³⁺

peptides from tryptic digests of HOSCN-treated CK. Data shown in (a) are (left-hand side) an extracted ion chromatogram obtained from the MS/MS of the triply charged species m/z 1559.7 (carboxymethyl peptide), with the fragment ions specific for the Cys73 + 58 product and (right-hand side) the corresponding MS/MS spectrum. Fragment ions are doubly charged. Equivalent data are shown in (b) are (left-hand side) obtained from monitoring the specific fragment ions from the Cys73 + 138 product (m/z 1586.4). Data are representative of at least five independent experiments.

Supplementary Figure 3: Treatment of GAPDH with HOSCN results in generation of sulfenic acid formation at the Cys-244 position. GAPDH (25 μ M) was treated with HOSCN (12.5 – 250 μ M) for 5 min, prior to reductive alkylation, tryptic digestion and LC/MS/MS analysis. (a) No loss of the parent Cys-244 containing peptide of GAPDH was observed (Cys-244, [M+2H]²⁺, 779.9); however (b) formation of the +138 product peptide corresponding to the addition of dimedone at the Cys-244 site of GAPDH ([M+2H]²⁺, 819.9) was apparent. Peak areas are standardized to the area of the oxidant insensitive GAPDH peptide GAAQNIIPASTGAAK ([M+2H]²⁺, 685.6).

* Represents a significant increase (p < 0.05) in the concentration of each peptide of compared to control 1-way ANOVA with Dunnett's post-hoc test. Values are means \pm S.E.M (n = 6).

Supplementary Figure 4: Fragmentation ion spectra of $[M+2H]^{2+}$ and $[M+138+2H]^{2+}$ peptides (containing Cys-244) from tryptic digests of HOSCN-treated GAPDH. Data shown in (a) are (left-hand side) an extracted ion chromatogram obtained from the MS/MS of the doubly charged species *m/z* 779.9 (carboxymethyl peptide), with the fragment ions specific for the Cys244 + 58 species and (right-hand side) the corresponding MS/MS spectrum. Equivalent data shown in (b) are (left-hand side) obtained from monitoring the specific fragment ions from the Cys244 + 138 product, *m/z* 819.9. Data are representative of at least five independent experiments.

The $[M+H]^+$ for all Cys-containing peptides includes alkylation of the Cys residue, corresponding to a mass increase of +58 m/z relative to the native peptide. All identified peptides have a cross correlation score ≥ 1 .

Sequence	$[M+H]^{+}$	Location
LNYK	537.6	11-14
SEEEYPDLSK	1197.2	15 – 24
HNNHMAK	851.9	25 - 31
VLTPDLYK	949.1	32 - 39
DKETPSGFTLDDVIQTGVDNPGHPFIMTVGC ⁷³ VAGDEESY		
TVFK	4677.0	43 - 85
DLFDPIIQDR	1232.3	86 - 95
HGGFKPTDK	987.1	96 – 104
HKTDLNHENLK	1349.5	105 – 115
TDLNHENLK	1084.1	107 – 115
TDLNHENLKGGDDLDPHYVLSSR	2596.8	107 – 129
GGDDLDPHYVLSSR	1531.6	116 - 129
GYTLPPHC ¹⁴⁵ SR	1189.3	138 – 147
RAVEK	602.7	151 – 155
LSVEALNSLTGEFK	1508.7	156 – 169
YYPLK	683.8	172 – 176
SMTEQEQQQLIDDHFLFDKPVSPLLLASGMAR	3647.1	177 – 208
DWPDAR	759.8	209 - 214

GIWHNDNK	984.1	215 – 222
SFLVWVNEEDHLR	1644.8	223 - 235
VISMEK	706.9	236 - 241
RFC ²⁵³ VGLQK	1009.2	251 - 258
IEEIFK	778.9	259 - 264
AGHPFMWNEHLGYVLTC ²⁸² PSNLGTGLR	2930.3	266 - 291
LAHLSK	668.8	298 - 303
FEEILTR	908.0	307 - 313
RGTGGVDTAAVGSVFDISNADR	2166.3	319 - 340
LGSSEVEQVQLVVDGVK	1787.01	341 - 357
LMVEMEKK	1008.3	358 - 365
KLEK	517.6	364 - 367
GQSIDDMIPAQK	1303.5	369 – 380

The $[M+H]^+$ for all Cys-containing peptides includes alkylation of the Cys residue, corresponding to a mass increase of +58 m/z relative to the native peptide. All identified peptides have a cross correlation score ≥ 1 .

Sequence	[M +H] ⁺	Location
VGVNGFGR	805.9	3-10
AITIFQER	978.1	70 - 77
AGAHLK	596.7	105 - 110
RVIISAPSADAPMFVMGVNHEK	2370.8	115 - 136
VIISAPSADAPMFVMGVNHEK	2214.6	116 - 136
IVSNASC ¹⁴⁹ TTNC ¹⁵³ LAPLAK	1823.0	143 - 159
VIHDHFGIVEGLMTTVHAITATQK	2620.0	160 - 183
GAAQNIIPASTGAAK	1370.5	198 - 212
VIPELNGK	870.0	217 - 224
LTGMAFR	795.9	225 - 231
VPTPNVSVVDLTC ²⁴⁴ R	1558.8	232 - 245
YDDIK	653.7	252 - 256
VVDLMVHMASK	1230.5	321 - 331
VVDLMVHMASKE	1359.7	321 - 332

MS and HPLC features of the different CK active site containing peptides observed after

HOSCN treatment on tryptic digestion.

Assignment	[M+2H] ²⁺	Retention	EIC parameters
		Time (min)	
$Cys^{282} + 58$	1465.6	25.5	913.0-915.0, 1074.0-1076.0, 1288.0-1290.0,
			1319.0-1321.0, 1331.0-1333.0, 1607.0-
			1609.0, 1638.0-1640.0
$Cys^{282} + 138$	1505.6	28.0	913.0-915.0, 969.0-971.0, 1155.0-1157.0,
			1440.0-1442.0, 1468.0-1470.0, 1540.0-
			1542.0, 1854.0-1856.0
$Cys^{282} + 32$	1452.6	25.9	913.0-915.0, 1418.0-1420.0, 1889.0-1990.0
$Cys^{282} + 48$	1460.6	23.9	502.0-504.0, 913.0-915.0, 1278.0-1280.0,
			1373.0-1375.0, 1540.0-1542.0, 1639.0-
			1641.0, 1752.0-1754.0

Sequence: AGHPFMWNEHLGYVLTC²⁸²PSNLGTGLR

MS and HPLC features of the different GAPDH active site containing peptides observed after HOSCN treatment on tryptic digestion.

 $[M+2H]^{2+}$ Assignment Retention EIC parameters Time (min) $Cys^{149} + 58$, 427.0-429.0, 498.0-500.0, 772.0-912.0 18.1 $Cys^{153} + 58$ 774.0, 1088.0-1090.0, 1249.0-1251.0, 1336.0-1338.0, 1393.0-1395.0 $Cys^{149} + 138$, 952.0 21.1 988.0-990.0, 1089.0-1091.0, 1015.0- $Cys^{153} + 58$ 1017.0 $Cys^{149} + 32$, 899.0 17.0 706.0-708.0, 772.0-774.0, 807.0- $Cys^{153} + 58$ 809.0, 887.0-889.0, 907.0-909.0, 988.0-990.0, 1023.0-1025.0, 1088.0-1090.0 $Cys^{149} + 48$, 907.0 15.9 722.0-724.0, 772.0-774.0, 823.0- $Cys^{153} + 58$ 825.0, 887.0-889.0, 924.0-926.0, 988.0-990.0, 1089.0-1091.0

Sequence: IVSNASC¹⁴⁹TTNC¹⁵³LAPLAK

Identity	Matched	Sequence	M _r	Swiss-Prot ID
	Peptides	Coverage (%)		
GAPDH	11	47	35810	P16858
СК	7	23	42714	Q0447

Parameters associated with CK and GAPDH identification from excised gel bands.

Supplementary Figure 1

Supplementary Figure 3

Supplementary Figure 4

13